|
|
|
import torch |
|
import os |
|
from huggingface_hub import HfApi |
|
from pathlib import Path |
|
from diffusers.utils import load_image |
|
import cv2 |
|
from PIL import Image |
|
import numpy as np |
|
|
|
from diffusers import ( |
|
ControlNetModel, |
|
EulerDiscreteScheduler, |
|
StableDiffusionControlNetPipeline, |
|
StableDiffusionXLControlNetPipeline, |
|
UniPCMultistepScheduler, |
|
) |
|
import sys |
|
|
|
checkpoint = sys.argv[1] |
|
|
|
prompts = [ |
|
"beautiful room", |
|
"a photo-realistic image of two paradise birds", |
|
"a snowy house behind a forest", |
|
"a couple watching a romantic sunset", |
|
"boats in the Amazonas", |
|
"a photo of a beautiful face of a woman", |
|
"a skater in Brooklyn", |
|
"a tornado in Iowa" |
|
] |
|
|
|
sd_xl = "control_v11p" not in checkpoint |
|
|
|
if sd_xl: |
|
base_ckpt = "stabilityai/stable-diffusion-xl-base-0.9" |
|
controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16) |
|
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( |
|
base_ckpt, controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
size = 1024 |
|
else: |
|
base_ckpt = "runwayml/stable-diffusion-v1-5" |
|
controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16) |
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
base_ckpt, controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
size = 512 |
|
|
|
import ipdb; ipdb.set_trace() |
|
|
|
|
|
pipe.to("cuda") |
|
|
|
|
|
for i in range(8): |
|
for seed in range(4): |
|
image = load_image( |
|
f"https://huggingface.co/datasets/patrickvonplaten/webdatasets_images/resolve/main/image_{i}.png" |
|
) |
|
image = image.resize((size, size)) |
|
prompt = prompts[i] |
|
image = np.array(image) |
|
|
|
low_threshold = 100 |
|
high_threshold = 200 |
|
|
|
image = cv2.Canny(image, low_threshold, high_threshold) |
|
image = image[:, :, None] |
|
image = np.concatenate([image, image, image], axis=2) |
|
canny_image = Image.fromarray(image) |
|
|
|
generator = torch.manual_seed(seed) |
|
out_image = pipe(prompt, generator=generator, num_inference_steps=20, image=canny_image, controlnet_conditioning_scale=1.0).images[0] |
|
|
|
path = os.path.join(Path.home(), "images", "control_sdxl", f"{i}_{seed}.png") |
|
path_in_repo = "/".join(path.split("/")[-2:]) |
|
out_image.save(path) |
|
|
|
api = HfApi() |
|
|
|
api.upload_file( |
|
path_or_fileobj=path, |
|
path_in_repo=path_in_repo, |
|
repo_id="patrickvonplaten/images", |
|
repo_type="dataset", |
|
) |
|
print(f"https://huggingface.co/datasets/patrickvonplaten/images/blob/main/control_sdxl/{i}_{seed}.png") |
|
|