|
import sys |
|
|
|
model_name = sys.argv[1] |
|
|
|
model_card = f"""--- |
|
language: |
|
- en |
|
license: openrail++ |
|
tags: |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- stable-diffusion-xl |
|
- text-to-image |
|
- art |
|
- artistic |
|
- diffusers |
|
- anime |
|
--- |
|
|
|
# {model_name.split("/")[-1].replace("-", " ").capitalize()} |
|
|
|
`{model_name}` is a Stable Diffusion model that has been fine-tuned on [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0). |
|
|
|
Please consider supporting me: |
|
- on [Patreon](https://www.patreon.com/Lykon275) |
|
- or [buy me a coffee](https://snipfeed.co/lykon) |
|
|
|
## Diffusers |
|
|
|
For more general information on how to run text-to-image models with 🧨 Diffusers, see [the docs](https://huggingface.co/docs/diffusers/using-diffusers/conditional_image_generation). |
|
|
|
1. Installation |
|
|
|
``` |
|
pip install diffusers transformers accelerate |
|
``` |
|
|
|
2. Run |
|
```py |
|
from diffusers import AutoPipelineForText2Image, DEISMultistepScheduler |
|
import torch |
|
|
|
pipe = AutoPipelineForText2Image.from_pretrained('{model_name}', torch_dtype=torch.float16, variant="fp16") |
|
pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config) |
|
pipe = pipe.to("cuda") |
|
|
|
prompt = "portrait photo of muscular bearded guy in a worn mech suit, light bokeh, intricate, steel metal, elegant, sharp focus, soft lighting, vibrant colors" |
|
|
|
generator = torch.manual_seed(0) |
|
image = pipe(prompt, num_inference_steps=25).images[0] |
|
image.save("./image.png") |
|
``` |
|
|
|
![](./image.png) |
|
""" |
|
from huggingface_hub import HfApi |
|
api = HfApi() |
|
|
|
read_me_path = "./README.md" |
|
with open(read_me_path, "w") as f: |
|
f.write(model_card) |
|
|
|
api.upload_file( |
|
path_or_fileobj=read_me_path, |
|
path_in_repo=read_me_path, |
|
repo_id=model_name, |
|
repo_type="model", |
|
) |
|
|
|
from diffusers import AutoPipelineForText2Image, DEISMultistepScheduler |
|
import torch |
|
|
|
pipe = AutoPipelineForText2Image.from_pretrained(model_name, torch_dtype=torch.float16) |
|
pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config) |
|
|
|
pipe = pipe.to("cuda") |
|
|
|
prompt = "portrait photo of muscular bearded guy in a worn mech suit, light bokeh, intricate, steel metal, elegant, sharp focus, soft lighting, vibrant colors" |
|
|
|
generator = torch.manual_seed(0) |
|
image = pipe(prompt, num_inference_steps=25).images[0] |
|
image_path = "./image.png" |
|
|
|
image.save(image_path) |
|
|
|
api.upload_file( |
|
path_or_fileobj=image_path, |
|
path_in_repo=image_path, |
|
repo_id=model_name, |
|
repo_type="model", |
|
) |
|
|
|
pipe.push_to_hub(model_name, variant="fp16") |
|
|