YiYiXu commited on
Commit
0386a8c
·
1 Parent(s): c2c546e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -1
README.md CHANGED
@@ -28,4 +28,46 @@ prompt: Cinematic, neoclassical table in the living room, cinematic, contour, li
28
  ![images_3)](./out_room.png)
29
 
30
  prompt: a tornado hitting grass field, 1980's film grain. overcast, muted colors.
31
- ![images_0)](./out_tornado.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  ![images_3)](./out_room.png)
29
 
30
  prompt: a tornado hitting grass field, 1980's film grain. overcast, muted colors.
31
+ ![images_0)](./out_tornado.png)
32
+
33
+ ## Usage
34
+
35
+ ```python
36
+ from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
37
+ from diffusers.utils import load_image
38
+ from PIL import Image
39
+ import torch
40
+ import numpy as np
41
+ import cv2
42
+
43
+ prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
44
+ negative_prompt = 'low quality, bad quality, sketches'
45
+
46
+ image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png")
47
+
48
+ controlnet_conditioning_scale = 0.5 # recommended for good generalization
49
+
50
+ controlnet = ControlNetModel.from_pretrained(
51
+ "diffusers/controlnet-sdxl-1.0", subfolder="checkpoint-3000/controlnet", torch_dtype=torch.float16
52
+ )
53
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
54
+ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
55
+ "stabilityai/stable-diffusion-xl-base-1.0",
56
+ controlnet=controlnet,
57
+ torch_dtype=torch.float16,
58
+ )
59
+ pipe.enable_model_cpu_offload()
60
+
61
+ image = np.array(image)
62
+ image = cv2.Canny(image, 100, 200)
63
+ image = image[:, :, None]
64
+ image = np.concatenate([image, image, image], axis=2)
65
+ image = Image.fromarray(image)
66
+
67
+ images = pipe(
68
+ prompt, image=image, controlnet_conditioning_scale=controlnet_conditioning_scale,
69
+ ).images
70
+
71
+ image[0]_.save(f"hug_lab.png")
72
+ ```
73
+