Upload before_denoise.py with huggingface_hub
Browse files- before_denoise.py +218 -0
before_denoise.py
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
from diffusers.modular_pipelines import (
|
| 17 |
+
ModularPipelineBlocks,
|
| 18 |
+
ComponentSpec,
|
| 19 |
+
PipelineState,
|
| 20 |
+
ModularPipeline,
|
| 21 |
+
OutputParam,
|
| 22 |
+
InputParam,
|
| 23 |
+
)
|
| 24 |
+
from diffusers.modular_pipelines.wan.before_denoise import retrieve_timesteps
|
| 25 |
+
from typing import Optional, List, Union, Tuple
|
| 26 |
+
from diffusers.image_processor import PipelineImageInput
|
| 27 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 28 |
+
import torch
|
| 29 |
+
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler
|
| 30 |
+
|
| 31 |
+
# One needs Wan anyway to run ChronoEdit (`AutoencoderKLWan`).
|
| 32 |
+
from diffusers.pipelines.wan.pipeline_wan_i2v import retrieve_latents
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class ChronoEditSetTimestepsStep(ModularPipelineBlocks):
|
| 36 |
+
model_name = "chronoedit"
|
| 37 |
+
|
| 38 |
+
@property
|
| 39 |
+
def expected_components(self) -> List[ComponentSpec]:
|
| 40 |
+
return [
|
| 41 |
+
ComponentSpec("scheduler", UniPCMultistepScheduler)
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
@property
|
| 45 |
+
def inputs(self) -> List[InputParam]:
|
| 46 |
+
return [
|
| 47 |
+
InputParam("num_inference_steps", default=50),
|
| 48 |
+
InputParam("timesteps"),
|
| 49 |
+
InputParam("sigmas")
|
| 50 |
+
]
|
| 51 |
+
|
| 52 |
+
@property
|
| 53 |
+
def intermediate_outputs(self) -> List[OutputParam]:
|
| 54 |
+
return [
|
| 55 |
+
OutputParam("timesteps", type_hint=torch.Tensor, description="The timesteps to use for inference"),
|
| 56 |
+
OutputParam(
|
| 57 |
+
"num_inference_steps",
|
| 58 |
+
type_hint=int,
|
| 59 |
+
description="The number of denoising steps to perform at inference time",
|
| 60 |
+
),
|
| 61 |
+
]
|
| 62 |
+
|
| 63 |
+
@torch.no_grad()
|
| 64 |
+
def __call__(self, components: ModularPipeline, state: PipelineState) -> PipelineState:
|
| 65 |
+
block_state = self.get_block_state(state)
|
| 66 |
+
block_state.device = components._execution_device
|
| 67 |
+
|
| 68 |
+
block_state.timesteps, block_state.num_inference_steps = retrieve_timesteps(
|
| 69 |
+
components.scheduler,
|
| 70 |
+
block_state.num_inference_steps,
|
| 71 |
+
block_state.device,
|
| 72 |
+
block_state.timesteps,
|
| 73 |
+
block_state.sigmas,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
self.set_block_state(state, block_state)
|
| 77 |
+
return components, state
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
class ChronoEditPrepareLatentStep(ModularPipelineBlocks):
|
| 81 |
+
model_name = "chronoedit"
|
| 82 |
+
|
| 83 |
+
@property
|
| 84 |
+
def expected_components(self) -> List[ComponentSpec]:
|
| 85 |
+
return [ComponentSpec("vae", AutoencoderKLWan)]
|
| 86 |
+
|
| 87 |
+
@property
|
| 88 |
+
def inputs(self) -> List[InputParam]:
|
| 89 |
+
return [
|
| 90 |
+
InputParam("processed_image", type_hint=PipelineImageInput),
|
| 91 |
+
InputParam("image_embeds", type_hint=torch.Tensor),
|
| 92 |
+
InputParam("height", type_hint=int, default=480),
|
| 93 |
+
InputParam("width", type_hint=int, default=832),
|
| 94 |
+
InputParam("num_frames", type_hint=int, default=81),
|
| 95 |
+
InputParam("batch_size"),
|
| 96 |
+
InputParam("num_videos_per_prompt", type_hint=int, default=1),
|
| 97 |
+
InputParam("latents", type_hint=Optional[torch.Tensor]),
|
| 98 |
+
InputParam("generator"),
|
| 99 |
+
]
|
| 100 |
+
|
| 101 |
+
@property
|
| 102 |
+
def intermediate_outputs(self) -> List[OutputParam]:
|
| 103 |
+
return [
|
| 104 |
+
OutputParam(
|
| 105 |
+
"latents",
|
| 106 |
+
type_hint=torch.Tensor,
|
| 107 |
+
description="The initial latents to use for the denoising process.",
|
| 108 |
+
),
|
| 109 |
+
OutputParam(
|
| 110 |
+
"condition",
|
| 111 |
+
type_hint=torch.Tensor,
|
| 112 |
+
description="Conditioning latents for the denoising process.",
|
| 113 |
+
),
|
| 114 |
+
]
|
| 115 |
+
|
| 116 |
+
@staticmethod
|
| 117 |
+
def check_inputs(height, width):
|
| 118 |
+
if height % 16 != 0 or width % 16 != 0:
|
| 119 |
+
raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
|
| 120 |
+
|
| 121 |
+
@staticmethod
|
| 122 |
+
def prepare_latents(
|
| 123 |
+
components,
|
| 124 |
+
image: PipelineImageInput,
|
| 125 |
+
batch_size: int,
|
| 126 |
+
num_channels_latents: int = 16,
|
| 127 |
+
height: int = 480,
|
| 128 |
+
width: int = 832,
|
| 129 |
+
num_frames: int = 81,
|
| 130 |
+
dtype: Optional[torch.dtype] = None,
|
| 131 |
+
device: Optional[torch.device] = None,
|
| 132 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 133 |
+
latents: Optional[torch.Tensor] = None,
|
| 134 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 135 |
+
num_latent_frames = (num_frames - 1) // components.vae_scale_factor_temporal + 1
|
| 136 |
+
latent_height = height // components.vae_scale_factor_spatial
|
| 137 |
+
latent_width = width // components.vae_scale_factor_spatial
|
| 138 |
+
|
| 139 |
+
shape = (batch_size, num_channels_latents, num_latent_frames, latent_height, latent_width)
|
| 140 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 141 |
+
raise ValueError(
|
| 142 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 143 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
if latents is None:
|
| 147 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 148 |
+
else:
|
| 149 |
+
latents = latents.to(device=device, dtype=dtype)
|
| 150 |
+
|
| 151 |
+
image = image.unsqueeze(2)
|
| 152 |
+
video_condition = torch.cat(
|
| 153 |
+
[image, image.new_zeros(image.shape[0], image.shape[1], num_frames - 1, height, width)], dim=2
|
| 154 |
+
)
|
| 155 |
+
video_condition = video_condition.to(device=device, dtype=dtype)
|
| 156 |
+
|
| 157 |
+
latents_mean = (
|
| 158 |
+
torch.tensor(components.vae.config.latents_mean)
|
| 159 |
+
.view(1, components.vae.config.z_dim, 1, 1, 1)
|
| 160 |
+
.to(latents.device, latents.dtype)
|
| 161 |
+
)
|
| 162 |
+
latents_std = 1.0 / torch.tensor(components.vae.config.latents_std).view(
|
| 163 |
+
1, components.vae.config.z_dim, 1, 1, 1
|
| 164 |
+
).to(latents.device, latents.dtype)
|
| 165 |
+
|
| 166 |
+
if isinstance(generator, list):
|
| 167 |
+
latent_condition = [
|
| 168 |
+
retrieve_latents(components.vae.encode(video_condition), sample_mode="argmax") for _ in generator
|
| 169 |
+
]
|
| 170 |
+
latent_condition = torch.cat(latent_condition)
|
| 171 |
+
else:
|
| 172 |
+
latent_condition = retrieve_latents(components.vae.encode(video_condition), sample_mode="argmax")
|
| 173 |
+
latent_condition = latent_condition.repeat(batch_size, 1, 1, 1, 1)
|
| 174 |
+
|
| 175 |
+
latent_condition = (latent_condition - latents_mean) * latents_std
|
| 176 |
+
|
| 177 |
+
mask_lat_size = torch.ones(batch_size, 1, num_frames, latent_height, latent_width)
|
| 178 |
+
mask_lat_size[:, :, list(range(1, num_frames))] = 0
|
| 179 |
+
first_frame_mask = mask_lat_size[:, :, 0:1]
|
| 180 |
+
first_frame_mask = torch.repeat_interleave(
|
| 181 |
+
first_frame_mask, dim=2, repeats=components.vae_scale_factor_temporal
|
| 182 |
+
)
|
| 183 |
+
mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:, :]], dim=2)
|
| 184 |
+
mask_lat_size = mask_lat_size.view(
|
| 185 |
+
batch_size, -1, components.vae_scale_factor_temporal, latent_height, latent_width
|
| 186 |
+
)
|
| 187 |
+
mask_lat_size = mask_lat_size.transpose(1, 2)
|
| 188 |
+
mask_lat_size = mask_lat_size.to(latent_condition.device)
|
| 189 |
+
|
| 190 |
+
return latents, torch.concat([mask_lat_size, latent_condition], dim=1)
|
| 191 |
+
|
| 192 |
+
@torch.no_grad()
|
| 193 |
+
def __call__(self, components: ModularPipeline, state: PipelineState) -> PipelineState:
|
| 194 |
+
block_state = self.get_block_state(state)
|
| 195 |
+
|
| 196 |
+
self.check_inputs(block_state.height, block_state.width)
|
| 197 |
+
|
| 198 |
+
block_state.device = components._execution_device
|
| 199 |
+
block_state.num_channels_latents = components.num_channels_latents
|
| 200 |
+
|
| 201 |
+
batch_size = block_state.batch_size * block_state.num_videos_per_prompt
|
| 202 |
+
block_state.latents, block_state.condition = self.prepare_latents(
|
| 203 |
+
components,
|
| 204 |
+
block_state.processed_image,
|
| 205 |
+
batch_size,
|
| 206 |
+
block_state.num_channels_latents,
|
| 207 |
+
block_state.height,
|
| 208 |
+
block_state.width,
|
| 209 |
+
block_state.num_frames,
|
| 210 |
+
torch.bfloat16,
|
| 211 |
+
block_state.device,
|
| 212 |
+
block_state.generator,
|
| 213 |
+
block_state.latents,
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
self.set_block_state(state, block_state)
|
| 217 |
+
|
| 218 |
+
return components, state
|