diffuser34 commited on
Commit
080b39c
1 Parent(s): 7d377f5

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 274.41 +/- 22.83
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a8db0b20dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a8db0b20e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a8db0b20ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a8db0b20f70>", "_build": "<function ActorCriticPolicy._build at 0x7a8db0b21000>", "forward": "<function ActorCriticPolicy.forward at 0x7a8db0b21090>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a8db0b21120>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a8db0b211b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a8db0b21240>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a8db0b212d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a8db0b21360>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a8db0b213f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a8db9ad0c00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689561347436035841, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG3gB77UfZm8duGSvWk+krsTcBS94yM8PQAAgD8AAIA/M10avZyiLLzd/hW8zX2bu6y1k72ukoC8AACAPwAAgD9mrG+9PiaWP11+d763kPO+0z/tvTT0Sb4AAAAAAAAAAK2cFT5/1FY/zIoiPneL9r4/FOw9uINdvQAAAAAAAAAAM7MquuxPiD9WlWk9ip4Bvwhqq722a5w9AAAAAAAAAADmzmg+uE6bPvIPDL6d+XG+kRT2PbPbFr0AAAAAAAAAAJpI6TwkT24+kkojO0xdhL56qn08p5ABPQAAAAAAAAAAmnPYvIVruThSZbm9kUwqM0DdbrtYmVWzAACAPwAAgD9mn7497PKsP32HID9xebm+91ghPXLVSD4AAAAAAAAAAE16hL0U9oO62BMKOu/rGrWALgA76QUguQAAAAAAAAAAzaZbvYO5vz7eLfw9Xz2zvsZuFj3JaBu9AAAAAAAAAADNioI8pO8WP6dDgz0jMci+9dFgPe78DD0AAAAAAAAAAGpSoD6RJUk/kwJLPqFo+r5fVLI+xmtRvQAAAAAAAAAAzRo9PLTwrT5qhwQ9vCy+vujr0jwYM1e9AAAAAAAAAAAAKe88XLNDuk8JhDMAvWwsM6ndOv9/vLMAAIA/AACAP81oeD0rVVw/oPgbPXLN4775gz09IzC2PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVFQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9f6NVBD5WMAWyUS92MAXSUR0CUSq3/xUeddX2UKGgGR0BxylMzuWrwaAdL8mgIR0CUTHrM1TBJdX2UKGgGR0BxOAdMj/uLaAdNAgFoCEdAlEx2I9C/oXV9lChoBkdANfPPgNwzcmgHS7poCEdAlE0Vq8DjinV9lChoBkdAcHoYW+GoJmgHTSMBaAhHQJRNx0yP+4t1fZQoaAZHQHELZlOGj9JoB0vmaAhHQJROQjiXIEN1fZQoaAZHQHE9Hjp9qlBoB0vxaAhHQJRO4f/3nIR1fZQoaAZHQHASjkp7TlVoB007AWgIR0CUTul9BrvcdX2UKGgGR0BxLTytmtheaAdL8mgIR0CUT3uGsV+JdX2UKGgGR0BzabXwsoUjaAdL5WgIR0CUUA5rxiG4dX2UKGgGR0BzKccT8HfNaAdNEAFoCEdAlFA4dp7CznV9lChoBkdAb5qxTKkl/2gHTQ0BaAhHQJRQl78ejmF1fZQoaAZHQHBcvZAY51hoB00EAWgIR0CUUhfMOf/WdX2UKGgGR0ByJ1uR9w3paAdNKwFoCEdAlFK+uRs/IXV9lChoBkdAcBIVc2R7q2gHTQ4BaAhHQJRS4tGus911fZQoaAZHQG69c7QswtdoB0veaAhHQJRS+rMkhRt1fZQoaAZHQHDveOCGvfVoB00tAWgIR0CUU7fuTibVdX2UKGgGR0ByhSfthNM5aAdL/WgIR0CUVHkmx+rmdX2UKGgGR0BwmHo2XLNfaAdL72gIR0CUVLho/RmcdX2UKGgGR0BxEch2W6bwaAdL6mgIR0CUVP779AHFdX2UKGgGR0ByyMMoc7yQaAdNJgFoCEdAlFUImG/N7nV9lChoBkdASHTdFfAsTWgHS7hoCEdAlFVFyaNMoXV9lChoBkdAbeCpAlfJFWgHS/VoCEdAlFXNz8xbjnV9lChoBkdAbaAyB06o2mgHS+loCEdAlFYKKYRdyHV9lChoBkdAcYWHwPRRdmgHS+xoCEdAlFbC9h7VrnV9lChoBkdAcSyz1schkmgHS99oCEdAlFbKjzqbB3V9lChoBkdAc2ubd8Aq/mgHTTABaAhHQJRXSuhbnox1fZQoaAZHQHIzj4pMHr1oB0vhaAhHQJRZFUm2LHd1fZQoaAZHQHB3EeQuEmJoB0vqaAhHQJRZHB3zMA51fZQoaAZHQHN5cZP2wmpoB01XA2gIR0CUWVJWvKU3dX2UKGgGR0Buvte2NNrTaAdNDwFoCEdAlFpJ2MbWE3V9lChoBkdAcjVjCpFTemgHTTsBaAhHQJRaykDZDiR1fZQoaAZHQHDb5uqFRHhoB0vuaAhHQJRbeZPVNHp1fZQoaAZHQHHch+rlvIhoB00HAWgIR0CUW6ZZ0SyudX2UKGgGR0BwreBQN0/4aAdNCQFoCEdAlFv4C2c8T3V9lChoBkdAclEnAIppe2gHTQkBaAhHQJRcOqYJE6V1fZQoaAZHQHJ5UdaMaS9oB0vxaAhHQJRcpEd/8VJ1fZQoaAZHQHMba2WpqAVoB008AWgIR0CUXgFMIu5CdX2UKGgGR0BzrUdQwblzaAdL82gIR0CUboH0btJGdX2UKGgGR0ByUzvb48EFaAdNNQFoCEdAlG6xbwBo3HV9lChoBkdAchOPO6d1+2gHTQ8BaAhHQJRuuQ0XP7h1fZQoaAZHQHE0gRPGhmJoB00iAWgIR0CUbzDjR2KVdX2UKGgGR0BycYXSBshxaAdL+GgIR0CUcG2ovSMMdX2UKGgGR0BxhPcUM5OraAdNBQFoCEdAlHDYv8IiT3V9lChoBkdAcEV9kjHGTGgHTRkBaAhHQJRxq4uscQ11fZQoaAZHQHLoQxnFo+RoB00SAWgIR0CUcoIpH7P6dX2UKGgGR0BxnGZBsyi3aAdL8mgIR0CUcwQIUrTZdX2UKGgGR0ByqPDye7L/aAdNKQFoCEdAlHPXT/hl2HV9lChoBkdAcjaKoAGSp2gHTRIBaAhHQJRz4HTqjah1fZQoaAZHQHC1Csr/bTNoB00EAWgIR0CUc/RGMGX5dX2UKGgGR0BxhbGn4wh4aAdL52gIR0CUdciMo+fRdX2UKGgGR0BtkttXPqs2aAdNKAFoCEdAlHXvbj94vHV9lChoBkdAcV3TA31jAmgHTRoBaAhHQJR1+/wiJO51fZQoaAZHQHMHyg5BC2NoB0vYaAhHQJR2b/ffoA51fZQoaAZHQG4nTmfXf65oB0v1aAhHQJR2ynjyWiV1fZQoaAZHQHN+8V+I/JNoB00AAWgIR0CUdzN0vGp/dX2UKGgGR0ByBFelbeMyaAdNBwFoCEdAlHc0ngHeJ3V9lChoBkdAc06XAuZkTmgHS/doCEdAlHkDfm9xqHV9lChoBkdAb6nXzUZvUGgHS/poCEdAlHmg3xWkrXV9lChoBkdAcIypG4I8hmgHS+NoCEdAlHrMxj8UEnV9lChoBkdAcKH62fChvmgHTQEBaAhHQJR65/XoTwl1fZQoaAZHQHH0T19ORDFoB0vwaAhHQJR9EgZCOWB1fZQoaAZHQHLpFiay8jBoB0v+aAhHQJR96XBxgiN1fZQoaAZHQHGGlkUbkwNoB0vlaAhHQJR+7JLdvbZ1fZQoaAZHQHJ2QmZ3LV5oB00XAWgIR0CUfxToMa0hdX2UKGgGR0BwqW43FUADaAdNMgFoCEdAlH8iy6cy33V9lChoBkdAcZ2aKDTScGgHS/xoCEdAlIATMRpUP3V9lChoBkdAb9WqEvkBCGgHS95oCEdAlIBMAzYVZnV9lChoBkdAcN/WiUPhAGgHS+toCEdAlIBZQtSQ5nV9lChoBkdAcAAxJd0JW2gHS/xoCEdAlICdCu2ZzHV9lChoBkdAb550J4SpSGgHTQ4BaAhHQJSAp1uBMBZ1fZQoaAZHQHF6NXYDklxoB0vzaAhHQJSBFIiC8OF1fZQoaAZHQHF8d8uzyBloB0vsaAhHQJSC01ZTyax1fZQoaAZHQHJLv/R3NcJoB0vWaAhHQJSD5OuaF251fZQoaAZHQGEyY46wMYxoB03oA2gIR0CUhcvK2a2GdX2UKGgGR0Bwufi4rjHXaAdNCgFoCEdAlIZGG21D0HV9lChoBkdAcw4GqPwNLGgHS+1oCEdAlIcpM6BAfXV9lChoBkdAcW+9nK4hEGgHS/ZoCEdAlIfhnnMdLnV9lChoBkdAcsHYDTz/ZWgHTWYBaAhHQJSIJRQ79yd1fZQoaAZHQHMMGt+1Bt1oB0vmaAhHQJSI1yGSIP91fZQoaAZHQHH/2G/N7jVoB00BAWgIR0CUiNO938oAdX2UKGgGR0ByFLw3HaN/aAdNDQFoCEdAlIkvpdKNAHV9lChoBkdAccNkU9IPLGgHTSEBaAhHQJSJqG5+Ytx1fZQoaAZHQHNUgDFId2hoB0v8aAhHQJSJrN8ma6V1fZQoaAZHQHF6K1w5vLpoB00QAWgIR0CUiiwS8J2MdX2UKGgGR0BxlKzcAR02aAdNBwFoCEdAlIpHSSeRP3V9lChoBkdAcM5gbZOBUmgHTT0BaAhHQJSLFciW3Sd1fZQoaAZHQHGM4AsCkoFoB01YAWgIR0CUi6SJCSiedX2UKGgGR0BxIdXEIgNgaAdNGAFoCEdAlIvYUN8VpXV9lChoBkdAcx8E+PikwmgHTQ0BaAhHQJSNhsvZh8Z1fZQoaAZHQHHBVqnFYMhoB01AAWgIR0CUjcCvHLiddX2UKGgGR0ByUO7wrlNlaAdL82gIR0CUjb7gKnejdX2UKGgGR0BwotAHE/B4aAdNDQFoCEdAlI3cLronr3V9lChoBkdAbrxh5xBE8mgHS/toCEdAlI6qTSsr/nV9lChoBkdAbNDM6ij+JmgHTQ4BaAhHQJSPeuq3mV91fZQoaAZHQHET6fapPyloB0vsaAhHQJSPknhKlHl1fZQoaAZHQHK00MPSUkhoB00EAWgIR0CUj+HCXQdCdX2UKGgGR0Byfl/PPcBVaAdNEAFoCEdAlJA4CMglnnV9lChoBkdAc6yGQSzw+mgHTQMBaAhHQJSQnfgrH2h1fZQoaAZHQHMP5J04iotoB0vxaAhHQJSQv4i5d4V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:179e044252c2c3f8727bcf35c66bdf7dd28aef884d1b92f0268a28b8926b0f5c
3
+ size 146694
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a8db0b20dc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a8db0b20e50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a8db0b20ee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a8db0b20f70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a8db0b21000>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a8db0b21090>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a8db0b21120>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a8db0b211b0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a8db0b21240>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a8db0b212d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a8db0b21360>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a8db0b213f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a8db9ad0c00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1689561347436035841,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG3gB77UfZm8duGSvWk+krsTcBS94yM8PQAAgD8AAIA/M10avZyiLLzd/hW8zX2bu6y1k72ukoC8AACAPwAAgD9mrG+9PiaWP11+d763kPO+0z/tvTT0Sb4AAAAAAAAAAK2cFT5/1FY/zIoiPneL9r4/FOw9uINdvQAAAAAAAAAAM7MquuxPiD9WlWk9ip4Bvwhqq722a5w9AAAAAAAAAADmzmg+uE6bPvIPDL6d+XG+kRT2PbPbFr0AAAAAAAAAAJpI6TwkT24+kkojO0xdhL56qn08p5ABPQAAAAAAAAAAmnPYvIVruThSZbm9kUwqM0DdbrtYmVWzAACAPwAAgD9mn7497PKsP32HID9xebm+91ghPXLVSD4AAAAAAAAAAE16hL0U9oO62BMKOu/rGrWALgA76QUguQAAAAAAAAAAzaZbvYO5vz7eLfw9Xz2zvsZuFj3JaBu9AAAAAAAAAADNioI8pO8WP6dDgz0jMci+9dFgPe78DD0AAAAAAAAAAGpSoD6RJUk/kwJLPqFo+r5fVLI+xmtRvQAAAAAAAAAAzRo9PLTwrT5qhwQ9vCy+vujr0jwYM1e9AAAAAAAAAAAAKe88XLNDuk8JhDMAvWwsM6ndOv9/vLMAAIA/AACAP81oeD0rVVw/oPgbPXLN4775gz09IzC2PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVFQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9f6NVBD5WMAWyUS92MAXSUR0CUSq3/xUeddX2UKGgGR0BxylMzuWrwaAdL8mgIR0CUTHrM1TBJdX2UKGgGR0BxOAdMj/uLaAdNAgFoCEdAlEx2I9C/oXV9lChoBkdANfPPgNwzcmgHS7poCEdAlE0Vq8DjinV9lChoBkdAcHoYW+GoJmgHTSMBaAhHQJRNx0yP+4t1fZQoaAZHQHELZlOGj9JoB0vmaAhHQJROQjiXIEN1fZQoaAZHQHE9Hjp9qlBoB0vxaAhHQJRO4f/3nIR1fZQoaAZHQHASjkp7TlVoB007AWgIR0CUTul9BrvcdX2UKGgGR0BxLTytmtheaAdL8mgIR0CUT3uGsV+JdX2UKGgGR0BzabXwsoUjaAdL5WgIR0CUUA5rxiG4dX2UKGgGR0BzKccT8HfNaAdNEAFoCEdAlFA4dp7CznV9lChoBkdAb5qxTKkl/2gHTQ0BaAhHQJRQl78ejmF1fZQoaAZHQHBcvZAY51hoB00EAWgIR0CUUhfMOf/WdX2UKGgGR0ByJ1uR9w3paAdNKwFoCEdAlFK+uRs/IXV9lChoBkdAcBIVc2R7q2gHTQ4BaAhHQJRS4tGus911fZQoaAZHQG69c7QswtdoB0veaAhHQJRS+rMkhRt1fZQoaAZHQHDveOCGvfVoB00tAWgIR0CUU7fuTibVdX2UKGgGR0ByhSfthNM5aAdL/WgIR0CUVHkmx+rmdX2UKGgGR0BwmHo2XLNfaAdL72gIR0CUVLho/RmcdX2UKGgGR0BxEch2W6bwaAdL6mgIR0CUVP779AHFdX2UKGgGR0ByyMMoc7yQaAdNJgFoCEdAlFUImG/N7nV9lChoBkdASHTdFfAsTWgHS7hoCEdAlFVFyaNMoXV9lChoBkdAbeCpAlfJFWgHS/VoCEdAlFXNz8xbjnV9lChoBkdAbaAyB06o2mgHS+loCEdAlFYKKYRdyHV9lChoBkdAcYWHwPRRdmgHS+xoCEdAlFbC9h7VrnV9lChoBkdAcSyz1schkmgHS99oCEdAlFbKjzqbB3V9lChoBkdAc2ubd8Aq/mgHTTABaAhHQJRXSuhbnox1fZQoaAZHQHIzj4pMHr1oB0vhaAhHQJRZFUm2LHd1fZQoaAZHQHB3EeQuEmJoB0vqaAhHQJRZHB3zMA51fZQoaAZHQHN5cZP2wmpoB01XA2gIR0CUWVJWvKU3dX2UKGgGR0Buvte2NNrTaAdNDwFoCEdAlFpJ2MbWE3V9lChoBkdAcjVjCpFTemgHTTsBaAhHQJRaykDZDiR1fZQoaAZHQHDb5uqFRHhoB0vuaAhHQJRbeZPVNHp1fZQoaAZHQHHch+rlvIhoB00HAWgIR0CUW6ZZ0SyudX2UKGgGR0BwreBQN0/4aAdNCQFoCEdAlFv4C2c8T3V9lChoBkdAclEnAIppe2gHTQkBaAhHQJRcOqYJE6V1fZQoaAZHQHJ5UdaMaS9oB0vxaAhHQJRcpEd/8VJ1fZQoaAZHQHMba2WpqAVoB008AWgIR0CUXgFMIu5CdX2UKGgGR0BzrUdQwblzaAdL82gIR0CUboH0btJGdX2UKGgGR0ByUzvb48EFaAdNNQFoCEdAlG6xbwBo3HV9lChoBkdAchOPO6d1+2gHTQ8BaAhHQJRuuQ0XP7h1fZQoaAZHQHE0gRPGhmJoB00iAWgIR0CUbzDjR2KVdX2UKGgGR0BycYXSBshxaAdL+GgIR0CUcG2ovSMMdX2UKGgGR0BxhPcUM5OraAdNBQFoCEdAlHDYv8IiT3V9lChoBkdAcEV9kjHGTGgHTRkBaAhHQJRxq4uscQ11fZQoaAZHQHLoQxnFo+RoB00SAWgIR0CUcoIpH7P6dX2UKGgGR0BxnGZBsyi3aAdL8mgIR0CUcwQIUrTZdX2UKGgGR0ByqPDye7L/aAdNKQFoCEdAlHPXT/hl2HV9lChoBkdAcjaKoAGSp2gHTRIBaAhHQJRz4HTqjah1fZQoaAZHQHC1Csr/bTNoB00EAWgIR0CUc/RGMGX5dX2UKGgGR0BxhbGn4wh4aAdL52gIR0CUdciMo+fRdX2UKGgGR0BtkttXPqs2aAdNKAFoCEdAlHXvbj94vHV9lChoBkdAcV3TA31jAmgHTRoBaAhHQJR1+/wiJO51fZQoaAZHQHMHyg5BC2NoB0vYaAhHQJR2b/ffoA51fZQoaAZHQG4nTmfXf65oB0v1aAhHQJR2ynjyWiV1fZQoaAZHQHN+8V+I/JNoB00AAWgIR0CUdzN0vGp/dX2UKGgGR0ByBFelbeMyaAdNBwFoCEdAlHc0ngHeJ3V9lChoBkdAc06XAuZkTmgHS/doCEdAlHkDfm9xqHV9lChoBkdAb6nXzUZvUGgHS/poCEdAlHmg3xWkrXV9lChoBkdAcIypG4I8hmgHS+NoCEdAlHrMxj8UEnV9lChoBkdAcKH62fChvmgHTQEBaAhHQJR65/XoTwl1fZQoaAZHQHH0T19ORDFoB0vwaAhHQJR9EgZCOWB1fZQoaAZHQHLpFiay8jBoB0v+aAhHQJR96XBxgiN1fZQoaAZHQHGGlkUbkwNoB0vlaAhHQJR+7JLdvbZ1fZQoaAZHQHJ2QmZ3LV5oB00XAWgIR0CUfxToMa0hdX2UKGgGR0BwqW43FUADaAdNMgFoCEdAlH8iy6cy33V9lChoBkdAcZ2aKDTScGgHS/xoCEdAlIATMRpUP3V9lChoBkdAb9WqEvkBCGgHS95oCEdAlIBMAzYVZnV9lChoBkdAcN/WiUPhAGgHS+toCEdAlIBZQtSQ5nV9lChoBkdAcAAxJd0JW2gHS/xoCEdAlICdCu2ZzHV9lChoBkdAb550J4SpSGgHTQ4BaAhHQJSAp1uBMBZ1fZQoaAZHQHF6NXYDklxoB0vzaAhHQJSBFIiC8OF1fZQoaAZHQHF8d8uzyBloB0vsaAhHQJSC01ZTyax1fZQoaAZHQHJLv/R3NcJoB0vWaAhHQJSD5OuaF251fZQoaAZHQGEyY46wMYxoB03oA2gIR0CUhcvK2a2GdX2UKGgGR0Bwufi4rjHXaAdNCgFoCEdAlIZGG21D0HV9lChoBkdAcw4GqPwNLGgHS+1oCEdAlIcpM6BAfXV9lChoBkdAcW+9nK4hEGgHS/ZoCEdAlIfhnnMdLnV9lChoBkdAcsHYDTz/ZWgHTWYBaAhHQJSIJRQ79yd1fZQoaAZHQHMMGt+1Bt1oB0vmaAhHQJSI1yGSIP91fZQoaAZHQHH/2G/N7jVoB00BAWgIR0CUiNO938oAdX2UKGgGR0ByFLw3HaN/aAdNDQFoCEdAlIkvpdKNAHV9lChoBkdAccNkU9IPLGgHTSEBaAhHQJSJqG5+Ytx1fZQoaAZHQHNUgDFId2hoB0v8aAhHQJSJrN8ma6V1fZQoaAZHQHF6K1w5vLpoB00QAWgIR0CUiiwS8J2MdX2UKGgGR0BxlKzcAR02aAdNBwFoCEdAlIpHSSeRP3V9lChoBkdAcM5gbZOBUmgHTT0BaAhHQJSLFciW3Sd1fZQoaAZHQHGM4AsCkoFoB01YAWgIR0CUi6SJCSiedX2UKGgGR0BxIdXEIgNgaAdNGAFoCEdAlIvYUN8VpXV9lChoBkdAcx8E+PikwmgHTQ0BaAhHQJSNhsvZh8Z1fZQoaAZHQHHBVqnFYMhoB01AAWgIR0CUjcCvHLiddX2UKGgGR0ByUO7wrlNlaAdL82gIR0CUjb7gKnejdX2UKGgGR0BwotAHE/B4aAdNDQFoCEdAlI3cLronr3V9lChoBkdAbrxh5xBE8mgHS/toCEdAlI6qTSsr/nV9lChoBkdAbNDM6ij+JmgHTQ4BaAhHQJSPeuq3mV91fZQoaAZHQHET6fapPyloB0vsaAhHQJSPknhKlHl1fZQoaAZHQHK00MPSUkhoB00EAWgIR0CUj+HCXQdCdX2UKGgGR0Byfl/PPcBVaAdNEAFoCEdAlJA4CMglnnV9lChoBkdAc6yGQSzw+mgHTQMBaAhHQJSQnfgrH2h1fZQoaAZHQHMP5J04iotoB0vxaAhHQJSQv4i5d4V1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 256,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c060c177278f493bc9ff0e0982728130fe8f5d6134bb11b12ce7a156e297f886
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:225db363f545483a6676153f7288401a4cedc7005d16903cddf61b1ebc3b980b
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (187 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 274.40560481569037, "std_reward": 22.832897223509587, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-17T03:03:55.168607"}