ppo-MountainCar-v0 / config.json
diegocp01's picture
Upload PPO MountainCar-v0 trained agent
3322abd verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d01dc4e9ea0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d01dc4e9f30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d01dc4e9fc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d01dc4ea050>", "_build": "<function ActorCriticPolicy._build at 0x7d01dc4ea0e0>", "forward": "<function ActorCriticPolicy.forward at 0x7d01dc4ea170>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d01dc4ea200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d01dc4ea290>", "_predict": "<function ActorCriticPolicy._predict at 0x7d01dc4ea320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d01dc4ea3b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d01dc4ea440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d01dc4ea4d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d01dc479800>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726777659179225833, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAALteDL9Ff9m71934vqvmBbzzUBC/iHu1u+LcDb8KOKQ8KTvivt3eKLyJwa2+K1QFPL6/Cr/qE1O7SVLtvgLGm7zvRCi/2UuEuq24Cr8TM1g7yhMEv04DKbyrOd6+gC3uOrZ2q76cSac7Qk/2viBMRzwEfxO/2WruOtDmN79rFJe8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0Bkkuq1gH/tdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BkkuUyHmA9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BkkuDJ2dNGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BkktyksSTRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BknuTHKfWddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BknqyhSLqEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bknqbx3FDOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BknqH9FWn1dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bknp1FH8TBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BknphMJx//dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BknpNwiqyXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bkno6Kcd5qdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BknomVqveQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BknoTEit7sdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BkngzabnX/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BkngfwI+nqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BkngIa99MLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BknfyVfNRndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BknfgpBomHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BknfP7el9CdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlN/sw+MZQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlN8MmWt2cdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlN72FnIyTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlN7ibUgB+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlN7PyCnP3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlN68Djin6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlN6o0hvBKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlN6VW0Z3tdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlN6BshxHYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlN5uQ6p5vdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlNyOvMbFTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlNx7RfF72dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlNxkI5YHPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlNxOP/7zkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlNw9FF2FGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlNwsmOU+tdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlQ5+WnjyXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlQ2eUY8+zdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlQ2HnEETydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlQ10NjLB9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlQ1hXr+o+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlQ1Net0V8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlQ06DGtITdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlQ0ma6STydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlQ0SkCV8kdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlQz+717IDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlQsfNiYsvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlQsLhJiAldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlQr0L+glGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlQreEZiuudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlQrMotthvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlQq77Kq4pdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTukBS1mbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTrDqGDcudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTqteUpuudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTqaVlf7adX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTqHwgDA8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTp0EHMUzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTpg1FYuCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTpNZeRgadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTo5vLowFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTomTkhicdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlThGz8gp0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTgz7/GVBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTgcxTKkmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTgG6f8MvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTf1anrIHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTfk5p8F7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWkXFcY65dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWg2uPmxMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWggieNDMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWgMvysjndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWf58BuGcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWfmDDjzadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWfSpiqhldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWe/BWPtEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWerKeTV2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWeXiR4hVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWW32EkB0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWWkLx7RfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWWM0gr6MdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWV2vB7/odX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWVlAeJYUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWVUQ04zadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlZSXUpd8idX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlZO2qkuYhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlZOf29L6DdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlZOMAFPi2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlZN5KODJ2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlZNlRP421dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlZNSVGCqZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlZM+zMRpUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlZMq+ajN7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlZMXYUWVNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlZE3qAz55dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlZEj/uLJkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlZEMoc7yQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlZD2g3974dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlZDkyULUkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlZDUAksz3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpAEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAmpmZvylcj72UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAJqZGT8pXI89lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "low_repr": "[-1.2 -0.07]", "high_repr": "[0.6 0.07]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "3", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}