Added major speedup
Browse files- BertForJointParsing.py +39 -32
- BertForMorphTagging.py +23 -23
- BertForPrefixMarking.py +6 -6
- BertForSyntaxParsing.py +49 -22
BertForJointParsing.py
CHANGED
@@ -208,31 +208,32 @@ class BertForJointParsing(BertPreTrainedModel):
|
|
208 |
inputs = {k:v.to(self.device) for k,v in inputs.items()}
|
209 |
output = self.forward(**inputs, return_dict=True, compute_syntax_mst=compute_syntax_mst)
|
210 |
|
211 |
-
|
|
|
212 |
# Syntax logits: each sentence gets a dict(tree: List[dict(word,dep_head,dep_head_idx,dep_func)], root_idx: int)
|
213 |
if output.syntax_logits is not None:
|
214 |
-
for sent_idx,parsed in enumerate(syntax_parse_logits(
|
215 |
merge_token_list(final_output[sent_idx]['tokens'], parsed['tree'], 'syntax')
|
216 |
final_output[sent_idx]['root_idx'] = parsed['root_idx']
|
217 |
|
218 |
# Prefix logits: each sentence gets a list([prefix_segment, word_without_prefix]) - **WITH CLS & SEP**
|
219 |
if output.prefix_logits is not None:
|
220 |
-
for sent_idx,parsed in enumerate(prefix_parse_logits(
|
221 |
merge_token_list(final_output[sent_idx]['tokens'], map(tuple, parsed[1:-1]), 'seg')
|
222 |
|
223 |
# Lex logits each sentence gets a list(tuple(word, lexeme))
|
224 |
if output.lex_logits is not None:
|
225 |
-
for sent_idx, parsed in enumerate(lex_parse_logits(
|
226 |
merge_token_list(final_output[sent_idx]['tokens'], map(itemgetter(1), parsed), 'lex')
|
227 |
|
228 |
# morph logits each sentences get a dict(text=str, tokens=list(dict(token, pos, feats, prefixes, suffix, suffix_feats?)))
|
229 |
if output.morph_logits is not None:
|
230 |
-
for sent_idx,parsed in enumerate(morph_parse_logits(
|
231 |
merge_token_list(final_output[sent_idx]['tokens'], parsed['tokens'], 'morph')
|
232 |
|
233 |
# NER logits each sentence gets a list(tuple(word, ner))
|
234 |
if output.ner_logits is not None:
|
235 |
-
for sent_idx,parsed in enumerate(ner_parse_logits(
|
236 |
if per_token_ner:
|
237 |
merge_token_list(final_output[sent_idx]['tokens'], map(itemgetter(1), parsed), 'ner')
|
238 |
final_output[sent_idx]['ner_entities'] = aggregate_ner_tokens(final_output[sent_idx], parsed)
|
@@ -267,31 +268,32 @@ def merge_token_list(src, update, key):
|
|
267 |
for token_src, token_update in zip(src, update):
|
268 |
token_src[key] = token_update
|
269 |
|
270 |
-
def combine_token_wordpieces(input_ids:
|
271 |
offset_mapping = offset_mapping.tolist()
|
272 |
ret = []
|
|
|
273 |
for token, offsets in zip(tokenizer.convert_ids_to_tokens(input_ids), offset_mapping):
|
274 |
-
if token in
|
275 |
if token.startswith('##'):
|
276 |
ret[-1]['token'] += token[2:]
|
277 |
ret[-1]['offsets']['end'] = offsets[1]
|
278 |
else: ret.append(dict(token=token, offsets=dict(start=offsets[0], end=offsets[1])))
|
279 |
return ret
|
280 |
|
281 |
-
def ner_parse_logits(
|
282 |
-
|
283 |
-
|
284 |
-
predictions = torch.argmax(logits, dim=-1)
|
285 |
batch_ret = []
|
|
|
|
|
286 |
for batch_idx in range(len(sentences)):
|
|
|
287 |
ret = []
|
288 |
batch_ret.append(ret)
|
289 |
-
for tok_idx in range(input_ids.shape[1]):
|
290 |
-
token_id = input_ids[batch_idx, tok_idx]
|
291 |
-
# ignore cls, sep, pad
|
292 |
-
if token_id in [tokenizer.cls_token_id, tokenizer.sep_token_id, tokenizer.pad_token_id]: continue
|
293 |
|
294 |
-
|
|
|
|
|
|
|
295 |
|
296 |
# wordpieces should just be appended to the previous word
|
297 |
# we modify the last token in ret
|
@@ -299,29 +301,29 @@ def ner_parse_logits(inputs: Dict[str, torch.Tensor], sentences: List[str], toke
|
|
299 |
if token.startswith('##'):
|
300 |
continue
|
301 |
# for each token, we append a tuple containing: token, label, start position, end position
|
302 |
-
ret.append((token, id2label[predictions[batch_idx
|
303 |
|
304 |
return batch_ret
|
305 |
|
306 |
-
def lex_parse_logits(
|
307 |
-
input_ids = inputs['input_ids']
|
308 |
|
309 |
-
predictions = torch.argsort(logits, dim=-1, descending=True)[..., :3]
|
310 |
batch_ret = []
|
|
|
|
|
311 |
for batch_idx in range(len(sentences)):
|
312 |
intermediate_ret = []
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
if
|
317 |
|
318 |
-
token = tokenizer._convert_id_to_token(token_id)
|
319 |
# wordpieces should just be appended to the previous word
|
320 |
if token.startswith('##'):
|
321 |
intermediate_ret[-1] = (intermediate_ret[-1][0] + token[2:], intermediate_ret[-1][1])
|
322 |
continue
|
323 |
-
intermediate_ret.append((token, tokenizer.convert_ids_to_tokens(predictions[batch_idx
|
324 |
-
|
325 |
# build the final output taking into account valid letters
|
326 |
ret = []
|
327 |
batch_ret.append(ret)
|
@@ -376,10 +378,15 @@ def convert_output_to_ud(output_sentences, style: Literal['htb', 'iahlt']):
|
|
376 |
# store a mapping between each word index and the actual line it appears in
|
377 |
idx_to_key = {-1: 0}
|
378 |
for word_idx,word in enumerate(sentence['tokens']):
|
379 |
-
|
380 |
-
|
381 |
-
word['lex']
|
382 |
-
|
|
|
|
|
|
|
|
|
|
|
383 |
start = len(intermediate_output)
|
384 |
# Add in all the prefixes
|
385 |
if len(word['seg']) > 1:
|
|
|
208 |
inputs = {k:v.to(self.device) for k,v in inputs.items()}
|
209 |
output = self.forward(**inputs, return_dict=True, compute_syntax_mst=compute_syntax_mst)
|
210 |
|
211 |
+
input_ids = inputs['input_ids'].tolist() # convert once
|
212 |
+
final_output = [dict(text=sentence, tokens=combine_token_wordpieces(ids, offsets, tokenizer)) for sentence, ids, offsets in zip(sentences, input_ids, offset_mapping)]
|
213 |
# Syntax logits: each sentence gets a dict(tree: List[dict(word,dep_head,dep_head_idx,dep_func)], root_idx: int)
|
214 |
if output.syntax_logits is not None:
|
215 |
+
for sent_idx,parsed in enumerate(syntax_parse_logits(input_ids, sentences, tokenizer, output.syntax_logits)):
|
216 |
merge_token_list(final_output[sent_idx]['tokens'], parsed['tree'], 'syntax')
|
217 |
final_output[sent_idx]['root_idx'] = parsed['root_idx']
|
218 |
|
219 |
# Prefix logits: each sentence gets a list([prefix_segment, word_without_prefix]) - **WITH CLS & SEP**
|
220 |
if output.prefix_logits is not None:
|
221 |
+
for sent_idx,parsed in enumerate(prefix_parse_logits(input_ids, sentences, tokenizer, output.prefix_logits)):
|
222 |
merge_token_list(final_output[sent_idx]['tokens'], map(tuple, parsed[1:-1]), 'seg')
|
223 |
|
224 |
# Lex logits each sentence gets a list(tuple(word, lexeme))
|
225 |
if output.lex_logits is not None:
|
226 |
+
for sent_idx, parsed in enumerate(lex_parse_logits(input_ids, sentences, tokenizer, output.lex_logits)):
|
227 |
merge_token_list(final_output[sent_idx]['tokens'], map(itemgetter(1), parsed), 'lex')
|
228 |
|
229 |
# morph logits each sentences get a dict(text=str, tokens=list(dict(token, pos, feats, prefixes, suffix, suffix_feats?)))
|
230 |
if output.morph_logits is not None:
|
231 |
+
for sent_idx,parsed in enumerate(morph_parse_logits(input_ids, sentences, tokenizer, output.morph_logits)):
|
232 |
merge_token_list(final_output[sent_idx]['tokens'], parsed['tokens'], 'morph')
|
233 |
|
234 |
# NER logits each sentence gets a list(tuple(word, ner))
|
235 |
if output.ner_logits is not None:
|
236 |
+
for sent_idx,parsed in enumerate(ner_parse_logits(input_ids, sentences, tokenizer, output.ner_logits, self.config.id2label)):
|
237 |
if per_token_ner:
|
238 |
merge_token_list(final_output[sent_idx]['tokens'], map(itemgetter(1), parsed), 'ner')
|
239 |
final_output[sent_idx]['ner_entities'] = aggregate_ner_tokens(final_output[sent_idx], parsed)
|
|
|
268 |
for token_src, token_update in zip(src, update):
|
269 |
token_src[key] = token_update
|
270 |
|
271 |
+
def combine_token_wordpieces(input_ids: List[int], offset_mapping: torch.Tensor, tokenizer: BertTokenizerFast):
|
272 |
offset_mapping = offset_mapping.tolist()
|
273 |
ret = []
|
274 |
+
special_toks = tokenizer.all_special_tokens
|
275 |
for token, offsets in zip(tokenizer.convert_ids_to_tokens(input_ids), offset_mapping):
|
276 |
+
if token in special_toks: continue
|
277 |
if token.startswith('##'):
|
278 |
ret[-1]['token'] += token[2:]
|
279 |
ret[-1]['offsets']['end'] = offsets[1]
|
280 |
else: ret.append(dict(token=token, offsets=dict(start=offsets[0], end=offsets[1])))
|
281 |
return ret
|
282 |
|
283 |
+
def ner_parse_logits(input_ids: List[List[int]], sentences: List[str], tokenizer: BertTokenizerFast, logits: torch.Tensor, id2label: Dict[int, str]):
|
284 |
+
predictions = torch.argmax(logits, dim=-1).tolist()
|
|
|
|
|
285 |
batch_ret = []
|
286 |
+
|
287 |
+
special_toks = tokenizer.all_special_tokens
|
288 |
for batch_idx in range(len(sentences)):
|
289 |
+
|
290 |
ret = []
|
291 |
batch_ret.append(ret)
|
|
|
|
|
|
|
|
|
292 |
|
293 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids[batch_idx])
|
294 |
+
for tok_idx in range(len(tokens)):
|
295 |
+
token = tokens[tok_idx]
|
296 |
+
if token in special_toks: continue
|
297 |
|
298 |
# wordpieces should just be appended to the previous word
|
299 |
# we modify the last token in ret
|
|
|
301 |
if token.startswith('##'):
|
302 |
continue
|
303 |
# for each token, we append a tuple containing: token, label, start position, end position
|
304 |
+
ret.append((token, id2label[predictions[batch_idx][tok_idx]]))
|
305 |
|
306 |
return batch_ret
|
307 |
|
308 |
+
def lex_parse_logits(input_ids: List[List[int]], sentences: List[str], tokenizer: BertTokenizerFast, logits: torch.Tensor):
|
|
|
309 |
|
310 |
+
predictions = torch.argsort(logits, dim=-1, descending=True)[..., :3].tolist()
|
311 |
batch_ret = []
|
312 |
+
|
313 |
+
special_toks = tokenizer.all_special_tokens
|
314 |
for batch_idx in range(len(sentences)):
|
315 |
intermediate_ret = []
|
316 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids[batch_idx])
|
317 |
+
for tok_idx in range(len(tokens)):
|
318 |
+
token = tokens[tok_idx]
|
319 |
+
if token in special_toks: continue
|
320 |
|
|
|
321 |
# wordpieces should just be appended to the previous word
|
322 |
if token.startswith('##'):
|
323 |
intermediate_ret[-1] = (intermediate_ret[-1][0] + token[2:], intermediate_ret[-1][1])
|
324 |
continue
|
325 |
+
intermediate_ret.append((token, tokenizer.convert_ids_to_tokens(predictions[batch_idx][tok_idx])))
|
326 |
+
|
327 |
# build the final output taking into account valid letters
|
328 |
ret = []
|
329 |
batch_ret.append(ret)
|
|
|
378 |
# store a mapping between each word index and the actual line it appears in
|
379 |
idx_to_key = {-1: 0}
|
380 |
for word_idx,word in enumerate(sentence['tokens']):
|
381 |
+
try:
|
382 |
+
# handle blank lexemes
|
383 |
+
if word['lex'] == '[BLANK]':
|
384 |
+
word['lex'] = word['seg'][-1]
|
385 |
+
except KeyError:
|
386 |
+
import json
|
387 |
+
print(json.dumps(sentence, ensure_ascii=False, indent=2))
|
388 |
+
exit(0)
|
389 |
+
|
390 |
start = len(intermediate_output)
|
391 |
# Add in all the prefixes
|
392 |
if len(word['seg']) > 1:
|
BertForMorphTagging.py
CHANGED
@@ -159,42 +159,42 @@ class BertForMorphTagging(BertPreTrainedModel):
|
|
159 |
inputs = {k:v.to(self.device) for k,v in inputs.items()}
|
160 |
# calculate the logits
|
161 |
logits = self.forward(**inputs, return_dict=True).logits
|
162 |
-
return parse_logits(inputs, sentences, tokenizer, logits)
|
163 |
|
164 |
-
def parse_logits(
|
165 |
prefix_logits, pos_logits, feats_logits, suffix_logits, suffix_feats_logits = \
|
166 |
logits.prefix_logits, logits.pos_logits, logits.features_logits, logits.suffix_logits, logits.suffix_features_logits
|
167 |
|
168 |
-
prefix_predictions = (prefix_logits > 0.5).int() # Threshold at 0.5 for multi-label classification
|
169 |
-
pos_predictions = pos_logits.argmax(axis=-1)
|
170 |
-
suffix_predictions = suffix_logits.argmax(axis=-1)
|
171 |
-
feats_predictions = [logits.argmax(axis=-1) for logits in feats_logits]
|
172 |
-
suffix_feats_predictions = [logits.argmax(axis=-1) for logits in suffix_feats_logits]
|
173 |
|
174 |
# create the return dictionary
|
175 |
# for each sentence, return a dict object with the following files { text, tokens }
|
176 |
# Where tokens is a list of dicts, where each dict is:
|
177 |
# { pos: str, feats: dict, prefixes: List[str], suffix: str | bool, suffix_feats: dict | None}
|
178 |
-
|
179 |
ret = []
|
180 |
for sent_idx,sentence in enumerate(sentences):
|
181 |
-
input_id_strs = tokenizer.convert_ids_to_tokens(
|
182 |
# iterate through each token in the sentence, ignoring special tokens
|
183 |
tokens = []
|
184 |
for token_idx,token_str in enumerate(input_id_strs):
|
185 |
-
if
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
ret.append(dict(text=sentence, tokens=tokens))
|
199 |
return ret
|
200 |
|
@@ -204,7 +204,7 @@ def get_suffix_or_false(suffix):
|
|
204 |
def get_features_dict_from_predictions(predictions, idx):
|
205 |
ret = {}
|
206 |
for (feat_idx, (feat_name, feat_values)) in enumerate(ALL_FEATURES):
|
207 |
-
val = feat_values[predictions[feat_idx][idx]]
|
208 |
if val != 'none':
|
209 |
ret[feat_name] = val
|
210 |
return ret
|
|
|
159 |
inputs = {k:v.to(self.device) for k,v in inputs.items()}
|
160 |
# calculate the logits
|
161 |
logits = self.forward(**inputs, return_dict=True).logits
|
162 |
+
return parse_logits(inputs['input_ids'].tolist(), sentences, tokenizer, logits)
|
163 |
|
164 |
+
def parse_logits(input_ids: List[List[int]], sentences: List[str], tokenizer: BertTokenizerFast, logits: MorphLogitsOutput):
|
165 |
prefix_logits, pos_logits, feats_logits, suffix_logits, suffix_feats_logits = \
|
166 |
logits.prefix_logits, logits.pos_logits, logits.features_logits, logits.suffix_logits, logits.suffix_features_logits
|
167 |
|
168 |
+
prefix_predictions = (prefix_logits > 0.5).int().tolist() # Threshold at 0.5 for multi-label classification
|
169 |
+
pos_predictions = pos_logits.argmax(axis=-1).tolist()
|
170 |
+
suffix_predictions = suffix_logits.argmax(axis=-1).tolist()
|
171 |
+
feats_predictions = [logits.argmax(axis=-1).tolist() for logits in feats_logits]
|
172 |
+
suffix_feats_predictions = [logits.argmax(axis=-1).tolist() for logits in suffix_feats_logits]
|
173 |
|
174 |
# create the return dictionary
|
175 |
# for each sentence, return a dict object with the following files { text, tokens }
|
176 |
# Where tokens is a list of dicts, where each dict is:
|
177 |
# { pos: str, feats: dict, prefixes: List[str], suffix: str | bool, suffix_feats: dict | None}
|
178 |
+
special_toks = tokenizer.all_special_tokens
|
179 |
ret = []
|
180 |
for sent_idx,sentence in enumerate(sentences):
|
181 |
+
input_id_strs = tokenizer.convert_ids_to_tokens(input_ids[sent_idx])
|
182 |
# iterate through each token in the sentence, ignoring special tokens
|
183 |
tokens = []
|
184 |
for token_idx,token_str in enumerate(input_id_strs):
|
185 |
+
if token_str in special_toks: continue
|
186 |
+
if token_str.startswith('##'):
|
187 |
+
tokens[-1]['token'] += token_str[2:]
|
188 |
+
continue
|
189 |
+
tokens.append(dict(
|
190 |
+
token=token_str,
|
191 |
+
pos=ALL_POS[pos_predictions[sent_idx][token_idx]],
|
192 |
+
feats=get_features_dict_from_predictions(feats_predictions, (sent_idx, token_idx)),
|
193 |
+
prefixes=[ALL_PREFIX_POS[idx] for idx,i in enumerate(prefix_predictions[sent_idx][token_idx]) if i > 0],
|
194 |
+
suffix=get_suffix_or_false(ALL_SUFFIX_POS[suffix_predictions[sent_idx][token_idx]]),
|
195 |
+
))
|
196 |
+
if tokens[-1]['suffix']:
|
197 |
+
tokens[-1]['suffix_feats'] = get_features_dict_from_predictions(suffix_feats_predictions, (sent_idx, token_idx))
|
198 |
ret.append(dict(text=sentence, tokens=tokens))
|
199 |
return ret
|
200 |
|
|
|
204 |
def get_features_dict_from_predictions(predictions, idx):
|
205 |
ret = {}
|
206 |
for (feat_idx, (feat_name, feat_values)) in enumerate(ALL_FEATURES):
|
207 |
+
val = feat_values[predictions[feat_idx][idx[0]][idx[1]]]
|
208 |
if val != 'none':
|
209 |
ret[feat_name] = val
|
210 |
return ret
|
BertForPrefixMarking.py
CHANGED
@@ -154,15 +154,15 @@ class BertForPrefixMarking(BertPreTrainedModel):
|
|
154 |
|
155 |
# run through bert
|
156 |
logits = self.forward(**inputs, return_dict=True).logits
|
157 |
-
return parse_logits(inputs, sentences, tokenizer, logits)
|
158 |
|
159 |
-
def parse_logits(
|
160 |
# extract the predictions by argmaxing the final dimension (batch x sequence x prefixes x prediction)
|
161 |
-
logit_preds = torch.argmax(logits, axis=3)
|
162 |
|
163 |
ret = []
|
164 |
|
165 |
-
for sent_idx,sent_ids in enumerate(
|
166 |
tokens = tokenizer.convert_ids_to_tokens(sent_ids)
|
167 |
ret.append([])
|
168 |
for tok_idx,token in enumerate(tokens):
|
@@ -176,7 +176,7 @@ def parse_logits(inputs: Dict[str, torch.Tensor], sentences: List[str], tokenize
|
|
176 |
token += tokens[next_tok_idx][2:]
|
177 |
next_tok_idx += 1
|
178 |
|
179 |
-
prefix_len = get_predicted_prefix_len_from_logits(token, logit_preds[sent_idx
|
180 |
|
181 |
if not prefix_len:
|
182 |
ret[-1].append([token])
|
@@ -232,7 +232,7 @@ def get_predicted_prefix_len_from_logits(token, token_logits):
|
|
232 |
seen_prefixes.add(prefix)
|
233 |
|
234 |
# check if we predicted this prefix
|
235 |
-
if token_logits[PREFIXES_TO_CLASS[prefix]]
|
236 |
cur_len += len(prefix)
|
237 |
if last_check: break
|
238 |
skip_next = len(prefix) > 1
|
|
|
154 |
|
155 |
# run through bert
|
156 |
logits = self.forward(**inputs, return_dict=True).logits
|
157 |
+
return parse_logits(inputs['input_ids'].tolist(), sentences, tokenizer, logits)
|
158 |
|
159 |
+
def parse_logits(input_ids: List[List[int]], sentences: List[str], tokenizer: BertTokenizerFast, logits: torch.FloatTensor):
|
160 |
# extract the predictions by argmaxing the final dimension (batch x sequence x prefixes x prediction)
|
161 |
+
logit_preds = torch.argmax(logits, axis=3).tolist()
|
162 |
|
163 |
ret = []
|
164 |
|
165 |
+
for sent_idx,sent_ids in enumerate(input_ids):
|
166 |
tokens = tokenizer.convert_ids_to_tokens(sent_ids)
|
167 |
ret.append([])
|
168 |
for tok_idx,token in enumerate(tokens):
|
|
|
176 |
token += tokens[next_tok_idx][2:]
|
177 |
next_tok_idx += 1
|
178 |
|
179 |
+
prefix_len = get_predicted_prefix_len_from_logits(token, logit_preds[sent_idx][tok_idx])
|
180 |
|
181 |
if not prefix_len:
|
182 |
ret[-1].append([token])
|
|
|
232 |
seen_prefixes.add(prefix)
|
233 |
|
234 |
# check if we predicted this prefix
|
235 |
+
if token_logits[PREFIXES_TO_CLASS[prefix]]:
|
236 |
cur_len += len(prefix)
|
237 |
if last_check: break
|
238 |
skip_next = len(prefix) > 1
|
BertForSyntaxParsing.py
CHANGED
@@ -73,7 +73,7 @@ class BertSyntaxParsingHead(nn.Module):
|
|
73 |
dep_indices = labels.dependency_labels.clamp_min(0)
|
74 |
# Otherwise - check if he wants the MST or just the argmax
|
75 |
elif compute_mst:
|
76 |
-
dep_indices = compute_mst_tree(attention_scores)
|
77 |
else:
|
78 |
dep_indices = torch.argmax(attention_scores, dim=-1)
|
79 |
|
@@ -160,14 +160,16 @@ class BertForSyntaxParsing(BertPreTrainedModel):
|
|
160 |
inputs = tokenizer(sentences, padding='longest', truncation=True, return_tensors='pt')
|
161 |
inputs = {k:v.to(self.device) for k,v in inputs.items()}
|
162 |
logits = self.forward(**inputs, return_dict=True, compute_syntax_mst=compute_mst).logits
|
163 |
-
return parse_logits(inputs, sentences, tokenizer, logits)
|
164 |
|
165 |
-
def parse_logits(
|
166 |
outputs = []
|
|
|
|
|
167 |
for i in range(len(sentences)):
|
168 |
deps = logits.dependency_head_indices[i].tolist()
|
169 |
funcs = logits.function_logits.argmax(-1)[i].tolist()
|
170 |
-
toks = tokenizer.convert_ids_to_tokens(
|
171 |
|
172 |
# first, go through the tokens and create a mapping between each dependency index and the index without wordpieces
|
173 |
# wordpieces. At the same time, append the wordpieces in
|
@@ -187,6 +189,8 @@ def parse_logits(inputs: Dict[str, torch.Tensor], sentences: List[str], tokenize
|
|
187 |
continue
|
188 |
|
189 |
dep_idx = deps[i + 1] - 1 # increase 1 for cls, decrease 1 for cls
|
|
|
|
|
190 |
dep_head = 'root' if dep_idx == -1 else toks[dep_idx]
|
191 |
dep_func = ALL_FUNCTION_LABELS[funcs[i + 1]]
|
192 |
|
@@ -200,7 +204,7 @@ def parse_logits(inputs: Dict[str, torch.Tensor], sentences: List[str], tokenize
|
|
200 |
return outputs
|
201 |
|
202 |
|
203 |
-
def compute_mst_tree(attention_scores: torch.Tensor):
|
204 |
# attention scores should be 3 dimensions - batch x seq x seq (if it is 2 - just unsqueeze)
|
205 |
if attention_scores.ndim == 2: attention_scores = attention_scores.unsqueeze(0)
|
206 |
if attention_scores.ndim != 3 or attention_scores.shape[1] != attention_scores.shape[2]:
|
@@ -209,40 +213,58 @@ def compute_mst_tree(attention_scores: torch.Tensor):
|
|
209 |
batch_size, seq_len, _ = attention_scores.shape
|
210 |
# start by softmaxing so the scores are comparable
|
211 |
attention_scores = attention_scores.softmax(dim=-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
# set the values for the CLS and sep to all by very low, so they never get chosen as a replacement arc
|
214 |
-
attention_scores[:, 0, :] =
|
215 |
-
attention_scores[
|
216 |
-
attention_scores[
|
|
|
|
|
217 |
|
218 |
# find the root, and make him super high so we never have a conflict
|
219 |
root_cands = torch.argsort(attention_scores[:, :, 0], dim=-1)
|
220 |
-
batch_indices
|
221 |
-
attention_scores[batch_indices
|
222 |
-
|
223 |
-
|
224 |
# we start by getting the argmax for each score, and then computing the cycles and contracting them
|
225 |
sorted_indices = torch.argsort(attention_scores, dim=-1, descending=True)
|
226 |
indices = sorted_indices[:, :, 0].clone() # take the argmax
|
227 |
|
|
|
|
|
|
|
|
|
|
|
228 |
# go through each batch item and make sure our tree works
|
229 |
for batch_idx in range(batch_size):
|
230 |
# We have one root - detect the cycles and contract them. A cycle can never contain the root so really
|
231 |
# for every cycle, we look at all the nodes, and find the highest arc out of the cycle for any values. Replace that and tada
|
232 |
-
has_cycle, cycle_nodes = detect_cycle(indices[batch_idx])
|
|
|
233 |
while has_cycle:
|
234 |
-
base_idx, head_idx = choose_contracting_arc(indices[batch_idx], sorted_indices[batch_idx], cycle_nodes, attention_scores[batch_idx])
|
235 |
indices[batch_idx, base_idx] = head_idx
|
|
|
236 |
# find the next cycle
|
237 |
-
has_cycle, cycle_nodes = detect_cycle(indices[batch_idx])
|
238 |
-
|
239 |
return indices
|
240 |
|
241 |
-
def detect_cycle(indices: torch.LongTensor):
|
242 |
# Simple cycle detection algorithm
|
243 |
# Returns a boolean indicating if a cycle is detected and the nodes involved in the cycle
|
244 |
visited = set()
|
245 |
-
for node in range(1,
|
246 |
if node in visited:
|
247 |
continue
|
248 |
current_path = set()
|
@@ -255,31 +277,36 @@ def detect_cycle(indices: torch.LongTensor):
|
|
255 |
return True, current_path # Cycle detected
|
256 |
return False, None
|
257 |
|
258 |
-
def choose_contracting_arc(indices: torch.LongTensor, sorted_indices:
|
259 |
# Chooses the highest-scoring, non-cycling arc from a graph. Iterates through 'cycle_nodes' to find
|
260 |
# the best arc based on 'scores', avoiding cycles and zero node connections.
|
261 |
# For each node, we only look at the next highest scoring non-cycling arc
|
262 |
best_base_idx, best_head_idx = -1, -1
|
263 |
-
score =
|
264 |
|
265 |
# convert the indices to a list once, to avoid multiple conversions (saves a few seconds)
|
266 |
currents = indices.tolist()
|
267 |
for base_node in cycle_nodes:
|
|
|
268 |
# we don't want to take anything that has a higher score than the current value - we can end up in an endless loop
|
269 |
# Since the indices are sorted, as soon as we find our current item, we can move on to the next.
|
270 |
current = currents[base_node]
|
271 |
found_current = False
|
272 |
|
273 |
-
for head_node in sorted_indices[base_node]
|
274 |
if head_node == current:
|
275 |
found_current = True
|
276 |
continue
|
|
|
277 |
if not found_current or head_node in cycle_nodes or head_node == 0:
|
278 |
continue
|
279 |
|
280 |
-
current_score = scores[base_node
|
281 |
if current_score > score:
|
282 |
best_base_idx, best_head_idx, score = base_node, head_node, current_score
|
283 |
break
|
284 |
|
|
|
|
|
|
|
285 |
return best_base_idx, best_head_idx
|
|
|
73 |
dep_indices = labels.dependency_labels.clamp_min(0)
|
74 |
# Otherwise - check if he wants the MST or just the argmax
|
75 |
elif compute_mst:
|
76 |
+
dep_indices = compute_mst_tree(attention_scores, extended_attention_mask)
|
77 |
else:
|
78 |
dep_indices = torch.argmax(attention_scores, dim=-1)
|
79 |
|
|
|
160 |
inputs = tokenizer(sentences, padding='longest', truncation=True, return_tensors='pt')
|
161 |
inputs = {k:v.to(self.device) for k,v in inputs.items()}
|
162 |
logits = self.forward(**inputs, return_dict=True, compute_syntax_mst=compute_mst).logits
|
163 |
+
return parse_logits(inputs['input_ids'].tolist(), sentences, tokenizer, logits)
|
164 |
|
165 |
+
def parse_logits(input_ids: List[List[int]], sentences: List[str], tokenizer: BertTokenizerFast, logits: SyntaxLogitsOutput):
|
166 |
outputs = []
|
167 |
+
|
168 |
+
special_toks = tokenizer.all_special_tokens
|
169 |
for i in range(len(sentences)):
|
170 |
deps = logits.dependency_head_indices[i].tolist()
|
171 |
funcs = logits.function_logits.argmax(-1)[i].tolist()
|
172 |
+
toks = [tok for tok in tokenizer.convert_ids_to_tokens(input_ids[i]) if tok not in special_toks]
|
173 |
|
174 |
# first, go through the tokens and create a mapping between each dependency index and the index without wordpieces
|
175 |
# wordpieces. At the same time, append the wordpieces in
|
|
|
189 |
continue
|
190 |
|
191 |
dep_idx = deps[i + 1] - 1 # increase 1 for cls, decrease 1 for cls
|
192 |
+
if dep_idx == len(toks): dep_idx = i - 1 # if he predicts sep, then just point to the previous word
|
193 |
+
|
194 |
dep_head = 'root' if dep_idx == -1 else toks[dep_idx]
|
195 |
dep_func = ALL_FUNCTION_LABELS[funcs[i + 1]]
|
196 |
|
|
|
204 |
return outputs
|
205 |
|
206 |
|
207 |
+
def compute_mst_tree(attention_scores: torch.Tensor, extended_attention_mask: torch.LongTensor):
|
208 |
# attention scores should be 3 dimensions - batch x seq x seq (if it is 2 - just unsqueeze)
|
209 |
if attention_scores.ndim == 2: attention_scores = attention_scores.unsqueeze(0)
|
210 |
if attention_scores.ndim != 3 or attention_scores.shape[1] != attention_scores.shape[2]:
|
|
|
213 |
batch_size, seq_len, _ = attention_scores.shape
|
214 |
# start by softmaxing so the scores are comparable
|
215 |
attention_scores = attention_scores.softmax(dim=-1)
|
216 |
+
|
217 |
+
batch_indices = torch.arange(batch_size, device=attention_scores.device)
|
218 |
+
seq_indices = torch.arange(seq_len, device=attention_scores.device)
|
219 |
+
|
220 |
+
seq_lens = torch.full((batch_size,), seq_len)
|
221 |
+
|
222 |
+
if extended_attention_mask is not None:
|
223 |
+
seq_lens = torch.argmax((extended_attention_mask != 0).int(), dim=2).squeeze(1)
|
224 |
+
# zero out any padding
|
225 |
+
attention_scores[extended_attention_mask.squeeze(1) != 0] = 0
|
226 |
|
227 |
# set the values for the CLS and sep to all by very low, so they never get chosen as a replacement arc
|
228 |
+
attention_scores[:, 0, :] = 0
|
229 |
+
attention_scores[batch_indices, seq_lens - 1, :] = 0
|
230 |
+
attention_scores[batch_indices, :, seq_lens - 1] = 0 # can never predict sep
|
231 |
+
# set the values for each token pointing to itself be 0
|
232 |
+
attention_scores[:, seq_indices, seq_indices] = 0
|
233 |
|
234 |
# find the root, and make him super high so we never have a conflict
|
235 |
root_cands = torch.argsort(attention_scores[:, :, 0], dim=-1)
|
236 |
+
attention_scores[batch_indices.unsqueeze(1), root_cands, 0] = 0
|
237 |
+
attention_scores[batch_indices, root_cands[:, -1], 0] = 1.0
|
238 |
+
|
|
|
239 |
# we start by getting the argmax for each score, and then computing the cycles and contracting them
|
240 |
sorted_indices = torch.argsort(attention_scores, dim=-1, descending=True)
|
241 |
indices = sorted_indices[:, :, 0].clone() # take the argmax
|
242 |
|
243 |
+
attention_scores = attention_scores.tolist()
|
244 |
+
seq_lens = seq_lens.tolist()
|
245 |
+
sorted_indices = [[sub_l[:slen] for sub_l in l[:slen]] for l,slen in zip(sorted_indices.tolist(), seq_lens)]
|
246 |
+
|
247 |
+
|
248 |
# go through each batch item and make sure our tree works
|
249 |
for batch_idx in range(batch_size):
|
250 |
# We have one root - detect the cycles and contract them. A cycle can never contain the root so really
|
251 |
# for every cycle, we look at all the nodes, and find the highest arc out of the cycle for any values. Replace that and tada
|
252 |
+
has_cycle, cycle_nodes = detect_cycle(indices[batch_idx], seq_lens[batch_idx])
|
253 |
+
contracted_arcs = set()
|
254 |
while has_cycle:
|
255 |
+
base_idx, head_idx = choose_contracting_arc(indices[batch_idx], sorted_indices[batch_idx], cycle_nodes, contracted_arcs, seq_lens[batch_idx], attention_scores[batch_idx])
|
256 |
indices[batch_idx, base_idx] = head_idx
|
257 |
+
contracted_arcs.add(base_idx)
|
258 |
# find the next cycle
|
259 |
+
has_cycle, cycle_nodes = detect_cycle(indices[batch_idx], seq_lens[batch_idx])
|
260 |
+
|
261 |
return indices
|
262 |
|
263 |
+
def detect_cycle(indices: torch.LongTensor, seq_len: int):
|
264 |
# Simple cycle detection algorithm
|
265 |
# Returns a boolean indicating if a cycle is detected and the nodes involved in the cycle
|
266 |
visited = set()
|
267 |
+
for node in range(1, seq_len - 1): # ignore the CLS/SEP tokens
|
268 |
if node in visited:
|
269 |
continue
|
270 |
current_path = set()
|
|
|
277 |
return True, current_path # Cycle detected
|
278 |
return False, None
|
279 |
|
280 |
+
def choose_contracting_arc(indices: torch.LongTensor, sorted_indices: List[List[int]], cycle_nodes: set, contracted_arcs: set, seq_len: int, scores: List[List[float]]):
|
281 |
# Chooses the highest-scoring, non-cycling arc from a graph. Iterates through 'cycle_nodes' to find
|
282 |
# the best arc based on 'scores', avoiding cycles and zero node connections.
|
283 |
# For each node, we only look at the next highest scoring non-cycling arc
|
284 |
best_base_idx, best_head_idx = -1, -1
|
285 |
+
score = 0
|
286 |
|
287 |
# convert the indices to a list once, to avoid multiple conversions (saves a few seconds)
|
288 |
currents = indices.tolist()
|
289 |
for base_node in cycle_nodes:
|
290 |
+
if base_node in contracted_arcs: continue
|
291 |
# we don't want to take anything that has a higher score than the current value - we can end up in an endless loop
|
292 |
# Since the indices are sorted, as soon as we find our current item, we can move on to the next.
|
293 |
current = currents[base_node]
|
294 |
found_current = False
|
295 |
|
296 |
+
for head_node in sorted_indices[base_node]:
|
297 |
if head_node == current:
|
298 |
found_current = True
|
299 |
continue
|
300 |
+
if head_node in contracted_arcs: continue
|
301 |
if not found_current or head_node in cycle_nodes or head_node == 0:
|
302 |
continue
|
303 |
|
304 |
+
current_score = scores[base_node][head_node]
|
305 |
if current_score > score:
|
306 |
best_base_idx, best_head_idx, score = base_node, head_node, current_score
|
307 |
break
|
308 |
|
309 |
+
if best_base_idx == -1:
|
310 |
+
raise ValueError('Stuck in endless loop trying to compute syntax mst. Please try again setting compute_syntax_mst=False')
|
311 |
+
|
312 |
return best_base_idx, best_head_idx
|