VerbCentric-RIS / model_ /__init__.py
dianecy's picture
Upload folder using huggingface_hub
da6d0ff verified
from .segmenter import CRIS
# from .segmenter_angular import CRIS_S
from .segmenter_verbonly import CRIS_PosOnly
from .segmenter_verbonly_fin import CRIS_PosOnly_rev
from .segmenter_verbonly_hardneg import CRIS_VerbOnly
from loguru import logger
def build_segmenter_pos_rev(args):
model = CRIS_PosOnly_rev(args)
backbone = []
head = []
for k, v in model.named_parameters():
if k.startswith('backbone') and 'positional_embedding' not in k:
backbone.append(v)
else:
head.append(v)
logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
param_list = [{
'params': backbone,
'initial_lr': args.lr_multi * args.base_lr
}, {
'params': head,
'initial_lr': args.base_lr
}]
return model, param_list
def build_segmenter_pos(args):
model = CRIS_PosOnly(args)
backbone = []
head = []
for k, v in model.named_parameters():
if k.startswith('backbone') and 'positional_embedding' not in k:
backbone.append(v)
else:
head.append(v)
logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
param_list = [{
'params': backbone,
'initial_lr': args.lr_multi * args.base_lr
}, {
'params': head,
'initial_lr': args.base_lr
}]
return model, param_list
def build_segmenter(args):
model = CRIS_VerbOnly(args)
backbone = []
head = []
for k, v in model.named_parameters():
if k.startswith('backbone') and 'positional_embedding' not in k:
backbone.append(v)
else:
head.append(v)
logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
param_list = [{
'params': backbone,
'initial_lr': args.lr_multi * args.base_lr
}, {
'params': head,
'initial_lr': args.base_lr
}]
return model, param_list
def build_segmenter_original(args):
model = CRIS(args)
backbone = []
head = []
for k, v in model.named_parameters():
if k.startswith('backbone') and 'positional_embedding' not in k:
backbone.append(v)
else:
head.append(v)
logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
param_list = [{
'params': backbone,
'initial_lr': args.lr_multi * args.base_lr
}, {
'params': head,
'initial_lr': args.base_lr
}]
return model, param_list
# def build_segmenter_textaug(args):
# model = CRIS_Wo_Noise(args)
# backbone = []
# head = []
# for k, v in model.named_parameters():
# if k.startswith('backbone') and 'positional_embedding' not in k:
# backbone.append(v)
# else:
# head.append(v)
# logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
# param_list = [{
# 'params': backbone,
# 'initial_lr': args.lr_multi * args.base_lr
# }, {
# 'params': head,
# 'initial_lr': args.base_lr
# }]
# return model, param_list