VerbCentric-RIS / utils /dataset_verbonly.py
dianecy's picture
Upload folder using huggingface_hub
fce6bfe verified
raw
history blame
12.9 kB
#%%
import os
from typing import List, Union
import json
import cv2
import lmdb
import random
import numpy as np
import pyarrow as pa
import torch
from torch.utils.data import Dataset
import itertools
import albumentations as A
from albumentations.pytorch import ToTensorV2
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
info = {
'refcoco': {
'train': 42404,
'val': 3811,
'val-test': 3811,
'testA': 1975,
'testB': 1810
},
'refcoco+': {
'train': 42278,
'val': 3805,
'val-test': 3805,
'testA': 1975,
'testB': 1798
},
'refcocog_u': {
'train': 42226,
'val': 2573,
'val-test': 2573,
'test': 5023,
},
'refcocog_g': {
'train': 44822,
'val': 5000,
'val-test': 5000
}
}
_tokenizer = _Tokenizer()
#%%
def tokenize(texts: Union[str, List[str]],
context_length: int = 77,
truncate: bool = False) -> torch.LongTensor:
"""
Returns the tokenized representation of given input string(s)
Parameters
----------
texts : Union[str, List[str]]
An input string or a list of input strings to tokenize
context_length : int
The context length to use; all CLIP models use 77 as the context length
truncate: bool
Whether to truncate the text in case its encoding is longer than the context length
Returns
-------
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
"""
if isinstance(texts, str):
texts = [texts]
sot_token = _tokenizer.encoder["<|startoftext|>"]
eot_token = _tokenizer.encoder["<|endoftext|>"]
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token]
for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
if len(tokens) > context_length:
if truncate:
tokens = tokens[:context_length]
tokens[-1] = eot_token
else:
raise RuntimeError(
f"Input {texts[i]} is too long for context length {context_length}"
)
result[i, :len(tokens)] = torch.tensor(tokens)
return result
def loads_pyarrow(buf):
"""
Args:
buf: the output of `dumps`.
"""
return pa.deserialize(buf)
class RefDataset(Dataset):
def __init__(self, lmdb_dir, mask_dir, dataset, split, mode, input_size,
word_length, args):
super(RefDataset, self).__init__()
self.lmdb_dir = lmdb_dir
self.mask_dir = mask_dir
self.dataset = dataset
self.split = split
self.mode = mode
self.input_size = (input_size, input_size)
self.word_length = word_length
self.mean = torch.tensor([0.48145466, 0.4578275,
0.40821073]).reshape(3, 1, 1)
self.std = torch.tensor([0.26862954, 0.26130258,
0.27577711]).reshape(3, 1, 1)
self.length = info[dataset][split]
self.env = None
self.exclude_position = args.exclude_pos
self.metric_learning = args.metric_learning
self.exclude_multiobj = args.exclude_multiobj
self.metric_mode = args.metric_mode
self.resize_bg1 = A.Compose([
A.Resize(input_size, input_size, always_apply=True)])
if self.metric_learning:
self.hardneg_prob = args.hn_prob # Hard negative probability �߰�
self.multi_obj_ref_ids = self._load_multi_obj_ref_ids()
self.hardpos_meta, self.hardneg_meta = self._load_metadata()
else:
self.hardneg_prob = 0.0
self.multi_obj_ref_ids = None
self.hardpos_meta, self.hardneg_meta = None, None
def _load_multi_obj_ref_ids(self):
# Load multi-object reference IDs based on configurations
if not self.exclude_multiobj and not self.exclude_position :
return None
elif self.exclude_position:
multiobj_path = '/home/chaeyun/data/projects/chaeyun/RIS/CRIS.pytorch/multiobj_ov2_nopos.txt'
elif self.exclude_multiobj :
multiobj_path = '/home/chaeyun/data/projects/chaeyun/RIS/CRIS.pytorch/multiobj_ov3.txt'
with open(multiobj_path, 'r') as f:
return [int(line.strip()) for line in f.readlines()]
def _load_metadata(self):
# Load metadata for hard positive verb phrases, hard negative queries
hardpos_path = '/data2/projects/chaeyun/VerbCentric_RIS/hardpos_verbphrase_0906upd.json'
hardneg_path = '/data2/projects/chaeyun/VerbCentric_RIS/hardneg_verb.json'
with open(hardpos_path, 'r', encoding='utf-8') as f:
hardpos_json = json.load(f)
if self.metric_mode == "hardpos_only" :
hardneg_json = None
else :
with open(hardneg_path, 'r', encoding='utf-8') as q:
hardneg_json = json.load(q)
return hardpos_json, hardneg_json
def _init_db(self):
self.env = lmdb.open(self.lmdb_dir,
subdir=os.path.isdir(self.lmdb_dir),
readonly=True,
lock=False,
readahead=False,
meminit=False)
with self.env.begin(write=False) as txn:
self.length = loads_pyarrow(txn.get(b'__len__'))
self.keys = loads_pyarrow(txn.get(b'__keys__'))
def __len__(self):
return self.length
def __getitem__(self, index):
# Delay loading LMDB data until after initialization: https://github.com/chainer/chainermn/issues/129
if self.env is None:
self._init_db()
env = self.env
with env.begin(write=False) as txn:
byteflow = txn.get(self.keys[index])
ref = loads_pyarrow(byteflow)
# img
ori_img = cv2.imdecode(np.frombuffer(ref['img'], np.uint8),
cv2.IMREAD_COLOR)
img = cv2.cvtColor(ori_img, cv2.COLOR_BGR2RGB)
# mask
seg_id = ref['seg_id']
mask_dir = os.path.join(self.mask_dir, str(seg_id) + '.png')
mask = cv2.imdecode(np.frombuffer(ref['mask'], np.uint8),
cv2.IMREAD_GRAYSCALE)
mask = mask / 255.
# image resizing
resized = self.resize_bg1(image=img, mask=mask)
imgs, masks = [resized['image']], [resized['mask']]
img = imgs[0]
mask = masks[0]
mask = mask.astype(np.uint8)
mask[mask>0] = 1
# image transform
img_size = img.shape[:2]
mat, mat_inv = self.getTransformMat(img_size, True)
img = cv2.warpAffine(
img,
mat,
self.input_size,
flags=cv2.INTER_CUBIC,
borderValue=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255])
# sentences
sents = ref['sents']
n_sentences = ref['num_sents']
if self.mode == 'train':
# mask transform
mask = cv2.warpAffine(mask,
mat,
self.input_size,
flags=cv2.INTER_LINEAR,
borderValue=0.)
# if metric learning, assign hard positive verb phrase if applicable
idx = np.random.choice(n_sentences, 1, replace=False)[0]
sent = sents[idx]
raw_hardpos, hardpos = self._get_hardpos_verb(ref, seg_id, idx)
img, mask = self.convert(img, mask)
word_vec = tokenize(sent, self.word_length, True).squeeze(0)
if self.metric_mode == "hardpos_only" :
return img, word_vec, mask, hardpos
else :
choice = np.random.choice(['hn', 'no_hn'], p=[self.hardneg_prob, 1 - self.hardneg_prob])
if choice == 'hn' and raw_hardpos :
raw_hardneg, hardneg = self._get_hardneg_verb(ref, seg_id, idx)
else :
hardneg = torch.zeros(self.word_length, dtype=torch.long)
return img, word_vec, mask, hardpos, hardneg
elif self.mode == 'val':
# sentence -> vector
sent = sents[0]
word_vec = tokenize(sent, self.word_length, True).squeeze(0)
img = self.convert(img)[0]
params = {
'mask_dir': mask_dir,
'inverse': mat_inv,
'ori_size': np.array(img_size)
}
return img, word_vec, mask, params
else:
# sentence -> vector
img = self.convert(img)[0]
params = {
'ori_img': ori_img,
'seg_id': seg_id,
'mask_dir': mask_dir,
'inverse': mat_inv,
'ori_size': np.array(img_size),
'sents': sents
}
return img, mask, params
def _get_hardneg_verb(self, ref, seg_id, sent_idx):
"""
Handle the logic for selecting hard positive verb phrases during metric learning.
Returns the sentence, raw_verb, and tokenized verb if applicable.
"""
# Extract metadata for hard positives if present
hardneg_dict = self.hardneg_meta.get(str(seg_id), {})
sent_id_list = list(hardneg_dict.keys())
cur_hardneg = hardpos_dict.get(sent_id_list[sent_idx], [])
if cur_hardneg:
# Assign a hard positive verb phrase if available
raw_verb_hardneg = random.choice(cur_hardneg)
verb_hardneg = tokenize(raw_verb_hardneg, self.word_length, True).squeeze(0)
return raw_verb_hardneg, verb_hardneg
verb_hardneg = torch.zeros(self.word_length, dtype=torch.long)
return '', verb_hardneg
def _get_hardpos_verb(self, ref, seg_id, sent_idx):
"""
Handle the logic for selecting hard positive verb phrases during metric learning.
Returns the sentence, raw_verb, and tokenized verb if applicable.
"""
# If the object appears multiple times, no hard positive is used
if seg_id in self.multi_obj_ref_ids:
verb_hardpos = torch.zeros(self.word_length, dtype=torch.long)
return '', verb_hardpos
# Extract metadata for hard positives if present
hardpos_dict = self.hardpos_meta.get(str(seg_id), {})
sent_id_list = list(hardpos_dict.keys())
# cur_hardpos = hardpos_dict.get(sent_id_list[sent_idx], [])
cur_hardpos = list(itertools.chain(*hardpos_dict.values()))
if cur_hardpos:
# Assign a hard positive verb phrase if available
raw_verb = random.choice(cur_hardpos)
verb_hardpos = tokenize(raw_verb, self.word_length, True).squeeze(0)
return raw_verb, verb_hardpos
verb_hardpos = torch.zeros(self.word_length, dtype=torch.long)
return '', verb_hardpos
def getTransformMat(self, img_size, inverse=False):
ori_h, ori_w = img_size
inp_h, inp_w = self.input_size
scale = min(inp_h / ori_h, inp_w / ori_w)
new_h, new_w = ori_h * scale, ori_w * scale
bias_x, bias_y = (inp_w - new_w) / 2., (inp_h - new_h) / 2.
src = np.array([[0, 0], [ori_w, 0], [0, ori_h]], np.float32)
dst = np.array([[bias_x, bias_y], [new_w + bias_x, bias_y],
[bias_x, new_h + bias_y]], np.float32)
mat = cv2.getAffineTransform(src, dst)
if inverse:
mat_inv = cv2.getAffineTransform(dst, src)
return mat, mat_inv
return mat, None
def convert(self, img, mask=None):
# Image ToTensor & Normalize
img = torch.from_numpy(img.transpose((2, 0, 1)))
if not isinstance(img, torch.FloatTensor):
img = img.float()
img.div_(255.).sub_(self.mean).div_(self.std)
# Mask ToTensor
if mask is not None:
mask = torch.from_numpy(mask)
if not isinstance(mask, torch.FloatTensor):
mask = mask.float()
return img, mask
def __repr__(self):
return self.__class__.__name__ + "(" + \
f"db_path={self.lmdb_dir}, " + \
f"dataset={self.dataset}, " + \
f"split={self.split}, " + \
f"mode={self.mode}, " + \
f"input_size={self.input_size}, " + \
f"word_length={self.word_length}"
# def get_length(self):
# return self.length
# def get_sample(self, idx):
# return self.__getitem__(idx)