|
import math |
|
import numpy as np |
|
import cv2 |
|
|
|
|
|
def db_eval_iou(annotation, segmentation, void_pixels=None): |
|
""" Compute region similarity as the Jaccard Index. |
|
Arguments: |
|
annotation (ndarray): binary annotation map. |
|
segmentation (ndarray): binary segmentation map. |
|
void_pixels (ndarray): optional mask with void pixels |
|
|
|
Return: |
|
jaccard (float): region similarity |
|
""" |
|
assert annotation.shape == segmentation.shape, \ |
|
f'Annotation({annotation.shape}) and segmentation:{segmentation.shape} dimensions do not match.' |
|
annotation = annotation.astype(np.bool) |
|
segmentation = segmentation.astype(np.bool) |
|
|
|
if void_pixels is not None: |
|
assert annotation.shape == void_pixels.shape, \ |
|
f'Annotation({annotation.shape}) and void pixels:{void_pixels.shape} dimensions do not match.' |
|
void_pixels = void_pixels.astype(np.bool) |
|
else: |
|
void_pixels = np.zeros_like(segmentation) |
|
|
|
|
|
inters = np.sum((segmentation & annotation) & np.logical_not(void_pixels), axis=(-2, -1)) |
|
union = np.sum((segmentation | annotation) & np.logical_not(void_pixels), axis=(-2, -1)) |
|
|
|
j = inters / union |
|
if j.ndim == 0: |
|
j = 1 if np.isclose(union, 0) else j |
|
else: |
|
j[np.isclose(union, 0)] = 1 |
|
return j |
|
|
|
|
|
def db_eval_boundary(annotation, segmentation, void_pixels=None, bound_th=0.008): |
|
assert annotation.shape == segmentation.shape |
|
if void_pixels is not None: |
|
assert annotation.shape == void_pixels.shape |
|
if annotation.ndim == 3: |
|
n_frames = annotation.shape[0] |
|
f_res = np.zeros(n_frames) |
|
for frame_id in range(n_frames): |
|
void_pixels_frame = None if void_pixels is None else void_pixels[frame_id, :, :, ] |
|
f_res[frame_id] = f_measure(segmentation[frame_id, :, :, ], annotation[frame_id, :, :], void_pixels_frame, bound_th=bound_th) |
|
elif annotation.ndim == 2: |
|
f_res = f_measure(segmentation, annotation, void_pixels, bound_th=bound_th) |
|
else: |
|
raise ValueError(f'db_eval_boundary does not support tensors with {annotation.ndim} dimensions') |
|
return f_res |
|
|
|
|
|
def f_measure(foreground_mask, gt_mask, void_pixels=None, bound_th=0.008): |
|
""" |
|
Compute mean,recall and decay from per-frame evaluation. |
|
Calculates precision/recall for boundaries between foreground_mask and |
|
gt_mask using morphological operators to speed it up. |
|
|
|
Arguments: |
|
foreground_mask (ndarray): binary segmentation image. |
|
gt_mask (ndarray): binary annotated image. |
|
void_pixels (ndarray): optional mask with void pixels |
|
|
|
Returns: |
|
F (float): boundaries F-measure |
|
""" |
|
assert np.atleast_3d(foreground_mask).shape[2] == 1 |
|
if void_pixels is not None: |
|
void_pixels = void_pixels.astype(np.bool) |
|
else: |
|
void_pixels = np.zeros_like(foreground_mask).astype(np.bool) |
|
|
|
bound_pix = bound_th if bound_th >= 1 else \ |
|
np.ceil(bound_th * np.linalg.norm(foreground_mask.shape)) |
|
|
|
|
|
fg_boundary = _seg2bmap(foreground_mask * np.logical_not(void_pixels)) |
|
gt_boundary = _seg2bmap(gt_mask * np.logical_not(void_pixels)) |
|
|
|
from skimage.morphology import disk |
|
|
|
|
|
fg_dil = cv2.dilate(fg_boundary.astype(np.uint8), disk(bound_pix).astype(np.uint8)) |
|
|
|
gt_dil = cv2.dilate(gt_boundary.astype(np.uint8), disk(bound_pix).astype(np.uint8)) |
|
|
|
|
|
gt_match = gt_boundary * fg_dil |
|
fg_match = fg_boundary * gt_dil |
|
|
|
|
|
n_fg = np.sum(fg_boundary) |
|
n_gt = np.sum(gt_boundary) |
|
|
|
|
|
if n_fg == 0 and n_gt > 0: |
|
precision = 1 |
|
recall = 0 |
|
elif n_fg > 0 and n_gt == 0: |
|
precision = 0 |
|
recall = 1 |
|
elif n_fg == 0 and n_gt == 0: |
|
precision = 1 |
|
recall = 1 |
|
else: |
|
precision = np.sum(fg_match) / float(n_fg) |
|
recall = np.sum(gt_match) / float(n_gt) |
|
|
|
|
|
if precision + recall == 0: |
|
F = 0 |
|
else: |
|
F = 2 * precision * recall / (precision + recall) |
|
|
|
return F |
|
|
|
|
|
def _seg2bmap(seg, width=None, height=None): |
|
""" |
|
From a segmentation, compute a binary boundary map with 1 pixel wide |
|
boundaries. The boundary pixels are offset by 1/2 pixel towards the |
|
origin from the actual segment boundary. |
|
Arguments: |
|
seg : Segments labeled from 1..k. |
|
width : Width of desired bmap <= seg.shape[1] |
|
height : Height of desired bmap <= seg.shape[0] |
|
Returns: |
|
bmap (ndarray): Binary boundary map. |
|
David Martin <dmartin@eecs.berkeley.edu> |
|
January 2003 |
|
""" |
|
|
|
seg = seg.astype(np.bool) |
|
seg[seg > 0] = 1 |
|
|
|
assert np.atleast_3d(seg).shape[2] == 1 |
|
|
|
width = seg.shape[1] if width is None else width |
|
height = seg.shape[0] if height is None else height |
|
|
|
h, w = seg.shape[:2] |
|
|
|
ar1 = float(width) / float(height) |
|
ar2 = float(w) / float(h) |
|
|
|
assert not ( |
|
width > w | height > h | abs(ar1 - ar2) > 0.01 |
|
), "Can" "t convert %dx%d seg to %dx%d bmap." % (w, h, width, height) |
|
|
|
e = np.zeros_like(seg) |
|
s = np.zeros_like(seg) |
|
se = np.zeros_like(seg) |
|
|
|
e[:, :-1] = seg[:, 1:] |
|
s[:-1, :] = seg[1:, :] |
|
se[:-1, :-1] = seg[1:, 1:] |
|
|
|
b = seg ^ e | seg ^ s | seg ^ se |
|
b[-1, :] = seg[-1, :] ^ e[-1, :] |
|
b[:, -1] = seg[:, -1] ^ s[:, -1] |
|
b[-1, -1] = 0 |
|
|
|
if w == width and h == height: |
|
bmap = b |
|
else: |
|
bmap = np.zeros((height, width)) |
|
for x in range(w): |
|
for y in range(h): |
|
if b[y, x]: |
|
j = 1 + math.floor((y - 1) + height / h) |
|
i = 1 + math.floor((x - 1) + width / h) |
|
bmap[j, i] = 1 |
|
|
|
return bmap |
|
|
|
|
|
if __name__ == '__main__': |
|
from davis2017.davis import DAVIS |
|
from davis2017.results import Results |
|
|
|
dataset = DAVIS(root='input_dir/ref', subset='val', sequences='aerobatics') |
|
results = Results(root_dir='examples/osvos') |
|
|
|
for seq in dataset.get_sequences(): |
|
all_gt_masks, _, all_masks_id = dataset.get_all_masks(seq, True) |
|
all_gt_masks, all_masks_id = all_gt_masks[:, 1:-1, :, :], all_masks_id[1:-1] |
|
all_res_masks = results.read_masks(seq, all_masks_id) |
|
f_metrics_res = np.zeros(all_gt_masks.shape[:2]) |
|
for ii in range(all_gt_masks.shape[0]): |
|
f_metrics_res[ii, :] = db_eval_boundary(all_gt_masks[ii, ...], all_res_masks[ii, ...]) |
|
|
|
|
|
|
|
|