|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Create masked LM/next sentence masked_lm TF examples for BERT.""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import collections |
|
import random |
|
import tokenization |
|
import tensorflow as tf |
|
|
|
flags = tf.flags |
|
|
|
FLAGS = flags.FLAGS |
|
|
|
flags.DEFINE_string("input_file", None, |
|
"Input raw text file (or comma-separated list of files).") |
|
|
|
flags.DEFINE_string( |
|
"output_file", None, |
|
"Output TF example file (or comma-separated list of files).") |
|
|
|
flags.DEFINE_string("vocab_file", None, |
|
"The vocabulary file that the BERT model was trained on.") |
|
|
|
flags.DEFINE_bool( |
|
"do_lower_case", True, |
|
"Whether to lower case the input text. Should be True for uncased " |
|
"models and False for cased models.") |
|
|
|
flags.DEFINE_bool( |
|
"do_whole_word_mask", False, |
|
"Whether to use whole word masking rather than per-WordPiece masking.") |
|
|
|
flags.DEFINE_integer("max_seq_length", 128, "Maximum sequence length.") |
|
|
|
flags.DEFINE_integer("max_predictions_per_seq", 20, |
|
"Maximum number of masked LM predictions per sequence.") |
|
|
|
flags.DEFINE_integer("random_seed", 12345, "Random seed for data generation.") |
|
|
|
flags.DEFINE_integer( |
|
"dupe_factor", 10, |
|
"Number of times to duplicate the input data (with different masks).") |
|
|
|
flags.DEFINE_float("masked_lm_prob", 0.15, "Masked LM probability.") |
|
|
|
flags.DEFINE_float( |
|
"short_seq_prob", 0.1, |
|
"Probability of creating sequences which are shorter than the " |
|
"maximum length.") |
|
|
|
|
|
class TrainingInstance(object): |
|
"""A single training instance (sentence pair).""" |
|
|
|
def __init__(self, tokens, segment_ids, masked_lm_positions, masked_lm_labels, |
|
is_random_next): |
|
self.tokens = tokens |
|
self.segment_ids = segment_ids |
|
self.is_random_next = is_random_next |
|
self.masked_lm_positions = masked_lm_positions |
|
self.masked_lm_labels = masked_lm_labels |
|
|
|
def __str__(self): |
|
s = "" |
|
s += "tokens: %s\n" % (" ".join( |
|
[tokenization.printable_text(x) for x in self.tokens])) |
|
s += "segment_ids: %s\n" % (" ".join([str(x) for x in self.segment_ids])) |
|
s += "is_random_next: %s\n" % self.is_random_next |
|
s += "masked_lm_positions: %s\n" % (" ".join( |
|
[str(x) for x in self.masked_lm_positions])) |
|
s += "masked_lm_labels: %s\n" % (" ".join( |
|
[tokenization.printable_text(x) for x in self.masked_lm_labels])) |
|
s += "\n" |
|
return s |
|
|
|
def __repr__(self): |
|
return self.__str__() |
|
|
|
|
|
def write_instance_to_example_files(instances, tokenizer, max_seq_length, |
|
max_predictions_per_seq, output_files): |
|
"""Create TF example files from `TrainingInstance`s.""" |
|
writers = [] |
|
for output_file in output_files: |
|
writers.append(tf.python_io.TFRecordWriter(output_file)) |
|
|
|
writer_index = 0 |
|
|
|
total_written = 0 |
|
for (inst_index, instance) in enumerate(instances): |
|
input_ids = tokenizer.convert_tokens_to_ids(instance.tokens) |
|
input_mask = [1] * len(input_ids) |
|
segment_ids = list(instance.segment_ids) |
|
assert len(input_ids) <= max_seq_length |
|
|
|
while len(input_ids) < max_seq_length: |
|
input_ids.append(0) |
|
input_mask.append(0) |
|
segment_ids.append(0) |
|
|
|
assert len(input_ids) == max_seq_length |
|
assert len(input_mask) == max_seq_length |
|
assert len(segment_ids) == max_seq_length |
|
|
|
masked_lm_positions = list(instance.masked_lm_positions) |
|
masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels) |
|
masked_lm_weights = [1.0] * len(masked_lm_ids) |
|
|
|
while len(masked_lm_positions) < max_predictions_per_seq: |
|
masked_lm_positions.append(0) |
|
masked_lm_ids.append(0) |
|
masked_lm_weights.append(0.0) |
|
|
|
next_sentence_label = 1 if instance.is_random_next else 0 |
|
|
|
features = collections.OrderedDict() |
|
features["input_ids"] = create_int_feature(input_ids) |
|
features["input_mask"] = create_int_feature(input_mask) |
|
features["segment_ids"] = create_int_feature(segment_ids) |
|
features["masked_lm_positions"] = create_int_feature(masked_lm_positions) |
|
features["masked_lm_ids"] = create_int_feature(masked_lm_ids) |
|
features["masked_lm_weights"] = create_float_feature(masked_lm_weights) |
|
features["next_sentence_labels"] = create_int_feature([next_sentence_label]) |
|
|
|
tf_example = tf.train.Example(features=tf.train.Features(feature=features)) |
|
|
|
writers[writer_index].write(tf_example.SerializeToString()) |
|
writer_index = (writer_index + 1) % len(writers) |
|
|
|
total_written += 1 |
|
|
|
if inst_index < 20: |
|
tf.logging.info("*** Example ***") |
|
tf.logging.info("tokens: %s" % " ".join( |
|
[tokenization.printable_text(x) for x in instance.tokens])) |
|
|
|
for feature_name in features.keys(): |
|
feature = features[feature_name] |
|
values = [] |
|
if feature.int64_list.value: |
|
values = feature.int64_list.value |
|
elif feature.float_list.value: |
|
values = feature.float_list.value |
|
tf.logging.info( |
|
"%s: %s" % (feature_name, " ".join([str(x) for x in values]))) |
|
|
|
for writer in writers: |
|
writer.close() |
|
|
|
tf.logging.info("Wrote %d total instances", total_written) |
|
|
|
|
|
def create_int_feature(values): |
|
feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) |
|
return feature |
|
|
|
|
|
def create_float_feature(values): |
|
feature = tf.train.Feature(float_list=tf.train.FloatList(value=list(values))) |
|
return feature |
|
|
|
|
|
def create_training_instances(input_files, tokenizer, max_seq_length, |
|
dupe_factor, short_seq_prob, masked_lm_prob, |
|
max_predictions_per_seq, rng): |
|
"""Create `TrainingInstance`s from raw text.""" |
|
all_documents = [[]] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for input_file in input_files: |
|
with tf.gfile.GFile(input_file, "r") as reader: |
|
while True: |
|
line = tokenization.convert_to_unicode(reader.readline()) |
|
if not line: |
|
break |
|
line = line.strip() |
|
|
|
|
|
if not line: |
|
all_documents.append([]) |
|
tokens = tokenizer.tokenize(line) |
|
if tokens: |
|
all_documents[-1].append(tokens) |
|
|
|
|
|
all_documents = [x for x in all_documents if x] |
|
rng.shuffle(all_documents) |
|
|
|
vocab_words = list(tokenizer.vocab.keys()) |
|
instances = [] |
|
for _ in range(dupe_factor): |
|
for document_index in range(len(all_documents)): |
|
instances.extend( |
|
create_instances_from_document( |
|
all_documents, document_index, max_seq_length, short_seq_prob, |
|
masked_lm_prob, max_predictions_per_seq, vocab_words, rng)) |
|
|
|
rng.shuffle(instances) |
|
return instances |
|
|
|
|
|
def create_instances_from_document( |
|
all_documents, document_index, max_seq_length, short_seq_prob, |
|
masked_lm_prob, max_predictions_per_seq, vocab_words, rng): |
|
"""Creates `TrainingInstance`s for a single document.""" |
|
document = all_documents[document_index] |
|
|
|
|
|
max_num_tokens = max_seq_length - 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
target_seq_length = max_num_tokens |
|
if rng.random() < short_seq_prob: |
|
target_seq_length = rng.randint(2, max_num_tokens) |
|
|
|
|
|
|
|
|
|
|
|
|
|
instances = [] |
|
current_chunk = [] |
|
current_length = 0 |
|
i = 0 |
|
while i < len(document): |
|
segment = document[i] |
|
current_chunk.append(segment) |
|
current_length += len(segment) |
|
if i == len(document) - 1 or current_length >= target_seq_length: |
|
if current_chunk: |
|
|
|
|
|
a_end = 1 |
|
if len(current_chunk) >= 2: |
|
a_end = rng.randint(1, len(current_chunk) - 1) |
|
|
|
tokens_a = [] |
|
for j in range(a_end): |
|
tokens_a.extend(current_chunk[j]) |
|
|
|
tokens_b = [] |
|
|
|
is_random_next = False |
|
if len(current_chunk) == 1 or rng.random() < 0.5: |
|
is_random_next = True |
|
target_b_length = target_seq_length - len(tokens_a) |
|
|
|
|
|
|
|
|
|
|
|
for _ in range(10): |
|
random_document_index = rng.randint(0, len(all_documents) - 1) |
|
if random_document_index != document_index: |
|
break |
|
|
|
random_document = all_documents[random_document_index] |
|
random_start = rng.randint(0, len(random_document) - 1) |
|
for j in range(random_start, len(random_document)): |
|
tokens_b.extend(random_document[j]) |
|
if len(tokens_b) >= target_b_length: |
|
break |
|
|
|
|
|
num_unused_segments = len(current_chunk) - a_end |
|
i -= num_unused_segments |
|
|
|
else: |
|
is_random_next = False |
|
for j in range(a_end, len(current_chunk)): |
|
tokens_b.extend(current_chunk[j]) |
|
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng) |
|
|
|
assert len(tokens_a) >= 1 |
|
assert len(tokens_b) >= 1 |
|
|
|
tokens = [] |
|
segment_ids = [] |
|
tokens.append("[CLS]") |
|
segment_ids.append(0) |
|
for token in tokens_a: |
|
tokens.append(token) |
|
segment_ids.append(0) |
|
|
|
tokens.append("[SEP]") |
|
segment_ids.append(0) |
|
|
|
for token in tokens_b: |
|
tokens.append(token) |
|
segment_ids.append(1) |
|
tokens.append("[SEP]") |
|
segment_ids.append(1) |
|
|
|
(tokens, masked_lm_positions, |
|
masked_lm_labels) = create_masked_lm_predictions( |
|
tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng) |
|
instance = TrainingInstance( |
|
tokens=tokens, |
|
segment_ids=segment_ids, |
|
is_random_next=is_random_next, |
|
masked_lm_positions=masked_lm_positions, |
|
masked_lm_labels=masked_lm_labels) |
|
instances.append(instance) |
|
current_chunk = [] |
|
current_length = 0 |
|
i += 1 |
|
|
|
return instances |
|
|
|
|
|
MaskedLmInstance = collections.namedtuple("MaskedLmInstance", |
|
["index", "label"]) |
|
|
|
|
|
def create_masked_lm_predictions(tokens, masked_lm_prob, |
|
max_predictions_per_seq, vocab_words, rng): |
|
"""Creates the predictions for the masked LM objective.""" |
|
|
|
cand_indexes = [] |
|
for (i, token) in enumerate(tokens): |
|
if token == "[CLS]" or token == "[SEP]": |
|
continue |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (FLAGS.do_whole_word_mask and len(cand_indexes) >= 1 and |
|
token.startswith("##")): |
|
cand_indexes[-1].append(i) |
|
else: |
|
cand_indexes.append([i]) |
|
|
|
rng.shuffle(cand_indexes) |
|
|
|
output_tokens = list(tokens) |
|
|
|
num_to_predict = min(max_predictions_per_seq, |
|
max(1, int(round(len(tokens) * masked_lm_prob)))) |
|
|
|
masked_lms = [] |
|
covered_indexes = set() |
|
for index_set in cand_indexes: |
|
if len(masked_lms) >= num_to_predict: |
|
break |
|
|
|
|
|
if len(masked_lms) + len(index_set) > num_to_predict: |
|
continue |
|
is_any_index_covered = False |
|
for index in index_set: |
|
if index in covered_indexes: |
|
is_any_index_covered = True |
|
break |
|
if is_any_index_covered: |
|
continue |
|
for index in index_set: |
|
covered_indexes.add(index) |
|
|
|
masked_token = None |
|
|
|
if rng.random() < 0.8: |
|
masked_token = "[MASK]" |
|
else: |
|
|
|
if rng.random() < 0.5: |
|
masked_token = tokens[index] |
|
|
|
else: |
|
masked_token = vocab_words[rng.randint(0, len(vocab_words) - 1)] |
|
|
|
output_tokens[index] = masked_token |
|
|
|
masked_lms.append(MaskedLmInstance(index=index, label=tokens[index])) |
|
assert len(masked_lms) <= num_to_predict |
|
masked_lms = sorted(masked_lms, key=lambda x: x.index) |
|
|
|
masked_lm_positions = [] |
|
masked_lm_labels = [] |
|
for p in masked_lms: |
|
masked_lm_positions.append(p.index) |
|
masked_lm_labels.append(p.label) |
|
|
|
return (output_tokens, masked_lm_positions, masked_lm_labels) |
|
|
|
|
|
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng): |
|
"""Truncates a pair of sequences to a maximum sequence length.""" |
|
while True: |
|
total_length = len(tokens_a) + len(tokens_b) |
|
if total_length <= max_num_tokens: |
|
break |
|
|
|
trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b |
|
assert len(trunc_tokens) >= 1 |
|
|
|
|
|
|
|
if rng.random() < 0.5: |
|
del trunc_tokens[0] |
|
else: |
|
trunc_tokens.pop() |
|
|
|
|
|
def main(_): |
|
tf.logging.set_verbosity(tf.logging.INFO) |
|
|
|
tokenizer = tokenization.FullTokenizer( |
|
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) |
|
|
|
input_files = [] |
|
for input_pattern in FLAGS.input_file.split(","): |
|
input_files.extend(tf.gfile.Glob(input_pattern)) |
|
|
|
tf.logging.info("*** Reading from input files ***") |
|
for input_file in input_files: |
|
tf.logging.info(" %s", input_file) |
|
|
|
rng = random.Random(FLAGS.random_seed) |
|
instances = create_training_instances( |
|
input_files, tokenizer, FLAGS.max_seq_length, FLAGS.dupe_factor, |
|
FLAGS.short_seq_prob, FLAGS.masked_lm_prob, FLAGS.max_predictions_per_seq, |
|
rng) |
|
|
|
output_files = FLAGS.output_file.split(",") |
|
tf.logging.info("*** Writing to output files ***") |
|
for output_file in output_files: |
|
tf.logging.info(" %s", output_file) |
|
|
|
write_instance_to_example_files(instances, tokenizer, FLAGS.max_seq_length, |
|
FLAGS.max_predictions_per_seq, output_files) |
|
|
|
|
|
if __name__ == "__main__": |
|
flags.mark_flag_as_required("input_file") |
|
flags.mark_flag_as_required("output_file") |
|
flags.mark_flag_as_required("vocab_file") |
|
tf.app.run() |
|
|