#SBATCH --job-name=n_obj_ours # Submit a job named "example" | |
#SBATCH --mail-user=vip.maildummy@gmail.com | |
#SBATCH --mail-type=BEGIN,END,FAIL | |
#SBATCH --partition=a5000 # a6000 or a100 | |
#SBATCH --gres=gpu:1 | |
#SBATCH --time=7-00:00:00 # d-hh:mm:ss, max time limit | |
#SBATCH --mem=48000 # cpu memory size | |
#SBATCH --cpus-per-task=4 # cpu num | |
#SBATCH --output=log_refcocog_umd_repro_n_obj.txt # std output filename | |
ml cuda/11.0 # ํ์ํ ์ฟ ๋ค ๋ฒ์ ๋ก๋ | |
eval "$(conda shell.bash hook)" # Initialize Conda Environment | |
conda activate lavt # Activate your conda environment | |
# ckpt | |
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \ | |
# --resume checkpoints/ckpt_lavt_one/gref_umd.pth --workers 4 --ddp_trained_weights --window12 --img_size 480 \ | |
# --config config/n_obj/n_12.yaml | |
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \ | |
# --resume checkpoints/ckpt_lavt_one/gref_umd.pth --workers 4 --ddp_trained_weights --window12 --img_size 480 \ | |
# --config config/n_obj/n_34.yaml | |
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \ | |
# --resume checkpoints/ckpt_lavt_one/gref_umd.pth --workers 4 --ddp_trained_weights --window12 --img_size 480 \ | |
# --config config/n_obj/n_56.yaml | |
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \ | |
# --resume checkpoints/ckpt_lavt_one/gref_umd.pth --workers 4 --ddp_trained_weights --window12 --img_size 480 \ | |
# --config config/n_obj/n_78.yaml | |
# repro | |
srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \ | |
--resume checkpoints/repro_lavt_one/model_best_gref_umd_lavt_one.pth \ | |
--workers 4 --ddp_trained_weights --window12 --img_size 480 \ | |
--config config/n_obj/n_12.yaml | |
srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \ | |
--resume checkpoints/repro_lavt_one/model_best_gref_umd_lavt_one.pth \ | |
--workers 4 --ddp_trained_weights --window12 --img_size 480 \ | |
--config config/n_obj/n_34.yaml | |
srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \ | |
--resume checkpoints/repro_lavt_one/model_best_gref_umd_lavt_one.pth \ | |
--workers 4 --ddp_trained_weights --window12 --img_size 480 \ | |
--config config/n_obj/n_56.yaml | |
srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \ | |
--resume checkpoints/repro_lavt_one/model_best_gref_umd_lavt_one.pth \ | |
--workers 4 --ddp_trained_weights --window12 --img_size 480 \ | |
--config config/n_obj/n_78.yaml | |
# our best_model (retrieval) | |
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \ | |
# --resume experiments/refcocog_umd/retrieval_gref_umd_433_10up_40epoch/model_best_retrieval_gref_umd_433_10up_40epoch.pth \ | |
# --workers 4 --ddp_trained_weights --window12 --img_size 480 \ | |
# --config config/n_obj/n_12.yaml | |
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \ | |
# --resume experiments/refcocog_umd/retrieval_gref_umd_433_10up_40epoch/model_best_retrieval_gref_umd_433_10up_40epoch.pth \ | |
# --workers 4 --ddp_trained_weights --window12 --img_size 480 \ | |
# --config config/n_obj/n_34.yaml | |
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \ | |
# --resume experiments/refcocog_umd/retrieval_gref_umd_433_10up_40epoch/model_best_retrieval_gref_umd_433_10up_40epoch.pth \ | |
# --workers 4 --ddp_trained_weights --window12 --img_size 480 \ | |
# --config config/n_obj/n_56.yaml | |
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \ | |
# --resume experiments/refcocog_umd/retrieval_gref_umd_433_10up_40epoch/model_best_retrieval_gref_umd_433_10up_40epoch.pth \ | |
# --workers 4 --ddp_trained_weights --window12 --img_size 480 \ | |
# --config config/n_obj/n_78.yaml | |
# random | |
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \ | |
# --resume checkpoints/random_550_lavt_one/model_best_mosaic_gref_umd_lavt_one.pth \ | |
# --workers 4 --ddp_trained_weights --window12 --img_size 480 \ | |
# --config config/n_obj/n_12.yaml | |
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \ | |
# --resume checkpoints/random_550_lavt_one/model_best_mosaic_gref_umd_lavt_one.pth \ | |
# --workers 4 --ddp_trained_weights --window12 --img_size 480 \ | |
# --config config/n_obj/n_34.yaml | |
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \ | |
# --resume checkpoints/random_550_lavt_one/model_best_mosaic_gref_umd_lavt_one.pth \ | |
# --workers 4 --ddp_trained_weights --window12 --img_size 480 \ | |
# --config config/n_obj/n_56.yaml | |
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \ | |
# --resume checkpoints/random_550_lavt_one/model_best_mosaic_gref_umd_lavt_one.pth \ | |
# --workers 4 --ddp_trained_weights --window12 --img_size 480 \ | |
# --config config/n_obj/n_78.yaml |