MRaCL / CGFormer /scripts /train_gref_bash.sh
dianecy's picture
Upload folder using huggingface_hub
ea1014e verified
#!/bin/bash
GPUS=6
MASTER_PORT=7031
if [ "$#" -ne 2 ]; then
echo "Usage: bash train.sh <OUTPUT_DIR> <EXP_NAME>"
exit 1
fi
OUTPUT_DIR=$1
EXP_NAME=$2
LOG_DIR="./bash_logs"
LOG_FILE="${LOG_DIR}/${EXP_NAME}.log"
mkdir -p "${LOG_DIR}"
MARGIN=12
TEMP=0.07
MODE=hardpos_only_sbertsim_refined
MLW=0.1
BATCH_SIZE=30
MIXUP_FQ=False
echo "Starting distributed training with ${GPUS} GPUs on port ${MASTER_PORT}..."
echo "Experiment Name: ${EXP_NAME}, Output Dir: ${OUTPUT_DIR}"
echo "Logging to: ${LOG_FILE}"
ml purge
ml load cuda/11.8
eval "$(conda shell.bash hook)"
conda activate ris_all
cd /data2/projects/chaeyun/CGFormer/
export NVIDIA_TF32_OVERRIDE=1
export NCCL_DEBUG=INFO
export NCCL_IB_TIMEOUT=100
export NCCL_IB_RETRY_CNT=15
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5 python -m torch.distributed.launch \
--nproc_per_node=${GPUS} \
--master_port=${MASTER_PORT} \
train_gref.py \
--config config/config_gref_ace.yaml \
--opts TRAIN.batch_size ${BATCH_SIZE} \
TRAIN.exp_name ${EXP_NAME} \
TRAIN.output_folder ${OUTPUT_DIR} \
TRAIN.metric_mode ${MODE} \
TRAIN.metric_loss_weight ${MLW} \
TRAIN.margin_value ${MARGIN} \
TRAIN.temperature ${TEMP} \
TRAIN.mixup_lasttwo ${MIXUP_FQ} \
> "${LOG_FILE}" 2>&1