diabolic6045
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,142 +1,142 @@
|
|
1 |
-
---
|
2 |
-
base_model: meta-llama/Llama-3.2-1B
|
3 |
-
library_name: peft
|
4 |
-
tags:
|
5 |
-
- code
|
6 |
-
- llm
|
7 |
-
- Evolution_Learning_Network
|
8 |
-
- qlora
|
9 |
-
- llama
|
10 |
-
---
|
11 |
-
|
12 |
-
# Evolution Learning Network (ELN) with QLoRA and Genetic Algorithms For LLM
|
13 |
-
|
14 |
-
## Overview
|
15 |
-
|
16 |
-
This project implements an **Evolution Learning Network (ELN)** to fine-tune transformer-based models like LLaMA using a combination of **Quantized Low-Rank Adaptation (QLoRA)** and **Genetic Algorithms (GA)**. The primary objective is to evolve a population of models across multiple generations to optimize for performance (fitness) and specialization, while maintaining diversity.
|
17 |
-
|
18 |
-
### Key Features
|
19 |
-
- Efficient model fine-tuning using **QLoRA**.
|
20 |
-
- Evolutionary strategies, including **random mutations** and fitness-based selection.
|
21 |
-
- Hardware-efficient training with **4-bit quantization**.
|
22 |
-
- Comprehensive experiment tracking with **WandB**.
|
23 |
-
- Diversity maintenance through **LoRA weight fingerprinting**.
|
24 |
-
|
25 |
-
---
|
26 |
-
|
27 |
-
## Model Details
|
28 |
-
|
29 |
-
### Base Model
|
30 |
-
- **Name**: [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) (can be replaced with any Hugging Face model).
|
31 |
-
- **Architecture**: Transformer-based causal language model.
|
32 |
-
|
33 |
-
### Quantization Configuration
|
34 |
-
- **Quantization Type**: 4-bit using `bitsandbytes` (`bnb_4bit`).
|
35 |
-
- **Parameters**:
|
36 |
-
- Compute Type: `torch.float16`
|
37 |
-
- Quantization Type: `"nf4"` (Nonlinear quantization).
|
38 |
-
- Double Quantization: Enabled.
|
39 |
-
- Nested Quantization: Enabled.
|
40 |
-
|
41 |
-
### LoRA (Low-Rank Adaptation)
|
42 |
-
- **Dimensions (r)**: 8
|
43 |
-
- **Alpha (Scaling)**: 16
|
44 |
-
- **Target Modules**: Query and Value projections (`q_proj`, `v_proj`).
|
45 |
-
- **Dropout**: 0.05
|
46 |
-
- **Task Type**: Causal Language Modeling (`CAUSAL_LM`).
|
47 |
-
|
48 |
-
### Training Strategy
|
49 |
-
- **Optimizer**: `paged_adamw_8bit` for memory-efficient updates.
|
50 |
-
- **Precision**: Mixed precision (`fp16`) for faster training.
|
51 |
-
|
52 |
-
---
|
53 |
-
|
54 |
-
## Hyperparameters
|
55 |
-
|
56 |
-
### General Parameters
|
57 |
-
- **Generations**: 10
|
58 |
-
- **Population Size**: 4
|
59 |
-
- **Dataset Size**: 2000 samples per split (adjustable for larger datasets).
|
60 |
-
|
61 |
-
### Training
|
62 |
-
- **Batch Size**: 8
|
63 |
-
- **Gradient Accumulation**: 16 steps.
|
64 |
-
- **Learning Rate**: `2e-4`
|
65 |
-
- **Epochs per Model**: 2
|
66 |
-
|
67 |
-
### Mutations
|
68 |
-
- **Mutation Rate**: 10% (probability per parameter).
|
69 |
-
- **Mutation Scale**: Noise added with a standard deviation of 0.02.
|
70 |
-
|
71 |
-
---
|
72 |
-
|
73 |
-
## Dataset Details
|
74 |
-
|
75 |
-
### Source
|
76 |
-
- **Name**: WikiText ([wikitext-2-raw-v1](https://huggingface.co/datasets/Salesforce/wikitext/viewer/wikitext-2-raw-v1) for larger datasets).
|
77 |
-
- **Splits**:
|
78 |
-
- `train` → Model training.
|
79 |
-
- `validation` → General task evaluation.
|
80 |
-
- `test` → Specific task evaluation.
|
81 |
-
|
82 |
-
### Tokenization
|
83 |
-
- **Tokenizer**: Hugging Face `AutoTokenizer`.
|
84 |
-
- **Max Token Length**: 128 tokens.
|
85 |
-
- **Padding**: Fixed to `"max_length"`.
|
86 |
-
|
87 |
-
---
|
88 |
-
|
89 |
-
## Results
|
90 |
-
|
91 |
-
### Summary
|
92 |
-
- **Total Generations**: 10
|
93 |
-
- **Best Fitness Achieved**: 0.4772
|
94 |
-
- **Final Population Diversity**: 0.0011
|
95 |
-
|
96 |
-
### Evolution History (Highlights)
|
97 |
-
| Generation | Best Fitness | Avg Fitness | Diversity | Best Specialization |
|
98 |
-
|------------|--------------|-------------|-----------|---------------------|
|
99 |
-
| 1 | 0.4096 | 0.4023 | 0.00097 | 0.9967 |
|
100 |
-
| 5 | 0.4727 | 0.4722 | 0.00099 | 0.9968 |
|
101 |
-
| 10 | 0.4772 | 0.4768 | 0.00106 | 0.9972 |
|
102 |
-
|
103 |
-
---
|
104 |
-
|
105 |
-
## Hardware & Framework
|
106 |
-
|
107 |
-
### Hardware
|
108 |
-
- Multi-GPU support with `torch.nn.parallel.DistributedDataParallel` or `Accelerator`.
|
109 |
-
- Logs GPU/CPU usage with `psutil` and `torch.cuda`.
|
110 |
-
|
111 |
-
### Frameworks & Libraries
|
112 |
-
- **Transformers**: Hugging Face model and tokenizer handling.
|
113 |
-
- **Datasets**: Data loading and processing.
|
114 |
-
- **WandB**: Experiment tracking and visualization.
|
115 |
-
- **BitsAndBytes**: 4-bit quantization.
|
116 |
-
- **PEFT**: LoRA-based fine-tuning.
|
117 |
-
|
118 |
-
---
|
119 |
-
|
120 |
-
## Future Work
|
121 |
-
- Explore larger population sizes and more generations for enhanced diversity.
|
122 |
-
- Experiment with other datasets to generalize findings.
|
123 |
-
- Integrate additional mutation strategies for broader exploration.
|
124 |
-
|
125 |
-
---
|
126 |
-
|
127 |
-
## Citation
|
128 |
-
Remaining
|
129 |
-
|
130 |
-
---
|
131 |
-
> Code to run locally
|
132 |
-
|
133 |
-
```python
|
134 |
-
from peft import PeftModel
|
135 |
-
from transformers import AutoModelForCausalLM
|
136 |
-
|
137 |
-
base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B")
|
138 |
-
model = PeftModel.from_pretrained(base_model, "diabolic6045/ELN-
|
139 |
-
```
|
140 |
-
### Framework versions
|
141 |
-
|
142 |
- PEFT 0.14.0
|
|
|
1 |
+
---
|
2 |
+
base_model: meta-llama/Llama-3.2-1B
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- code
|
6 |
+
- llm
|
7 |
+
- Evolution_Learning_Network
|
8 |
+
- qlora
|
9 |
+
- llama
|
10 |
+
---
|
11 |
+
|
12 |
+
# Evolution Learning Network (ELN) with QLoRA and Genetic Algorithms For LLM
|
13 |
+
|
14 |
+
## Overview
|
15 |
+
|
16 |
+
This project implements an **Evolution Learning Network (ELN)** to fine-tune transformer-based models like LLaMA using a combination of **Quantized Low-Rank Adaptation (QLoRA)** and **Genetic Algorithms (GA)**. The primary objective is to evolve a population of models across multiple generations to optimize for performance (fitness) and specialization, while maintaining diversity.
|
17 |
+
|
18 |
+
### Key Features
|
19 |
+
- Efficient model fine-tuning using **QLoRA**.
|
20 |
+
- Evolutionary strategies, including **random mutations** and fitness-based selection.
|
21 |
+
- Hardware-efficient training with **4-bit quantization**.
|
22 |
+
- Comprehensive experiment tracking with **WandB**.
|
23 |
+
- Diversity maintenance through **LoRA weight fingerprinting**.
|
24 |
+
|
25 |
+
---
|
26 |
+
|
27 |
+
## Model Details
|
28 |
+
|
29 |
+
### Base Model
|
30 |
+
- **Name**: [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) (can be replaced with any Hugging Face model).
|
31 |
+
- **Architecture**: Transformer-based causal language model.
|
32 |
+
|
33 |
+
### Quantization Configuration
|
34 |
+
- **Quantization Type**: 4-bit using `bitsandbytes` (`bnb_4bit`).
|
35 |
+
- **Parameters**:
|
36 |
+
- Compute Type: `torch.float16`
|
37 |
+
- Quantization Type: `"nf4"` (Nonlinear quantization).
|
38 |
+
- Double Quantization: Enabled.
|
39 |
+
- Nested Quantization: Enabled.
|
40 |
+
|
41 |
+
### LoRA (Low-Rank Adaptation)
|
42 |
+
- **Dimensions (r)**: 8
|
43 |
+
- **Alpha (Scaling)**: 16
|
44 |
+
- **Target Modules**: Query and Value projections (`q_proj`, `v_proj`).
|
45 |
+
- **Dropout**: 0.05
|
46 |
+
- **Task Type**: Causal Language Modeling (`CAUSAL_LM`).
|
47 |
+
|
48 |
+
### Training Strategy
|
49 |
+
- **Optimizer**: `paged_adamw_8bit` for memory-efficient updates.
|
50 |
+
- **Precision**: Mixed precision (`fp16`) for faster training.
|
51 |
+
|
52 |
+
---
|
53 |
+
|
54 |
+
## Hyperparameters
|
55 |
+
|
56 |
+
### General Parameters
|
57 |
+
- **Generations**: 10
|
58 |
+
- **Population Size**: 4
|
59 |
+
- **Dataset Size**: 2000 samples per split (adjustable for larger datasets).
|
60 |
+
|
61 |
+
### Training
|
62 |
+
- **Batch Size**: 8
|
63 |
+
- **Gradient Accumulation**: 16 steps.
|
64 |
+
- **Learning Rate**: `2e-4`
|
65 |
+
- **Epochs per Model**: 2
|
66 |
+
|
67 |
+
### Mutations
|
68 |
+
- **Mutation Rate**: 10% (probability per parameter).
|
69 |
+
- **Mutation Scale**: Noise added with a standard deviation of 0.02.
|
70 |
+
|
71 |
+
---
|
72 |
+
|
73 |
+
## Dataset Details
|
74 |
+
|
75 |
+
### Source
|
76 |
+
- **Name**: WikiText ([wikitext-2-raw-v1](https://huggingface.co/datasets/Salesforce/wikitext/viewer/wikitext-2-raw-v1) for larger datasets).
|
77 |
+
- **Splits**:
|
78 |
+
- `train` → Model training.
|
79 |
+
- `validation` → General task evaluation.
|
80 |
+
- `test` → Specific task evaluation.
|
81 |
+
|
82 |
+
### Tokenization
|
83 |
+
- **Tokenizer**: Hugging Face `AutoTokenizer`.
|
84 |
+
- **Max Token Length**: 128 tokens.
|
85 |
+
- **Padding**: Fixed to `"max_length"`.
|
86 |
+
|
87 |
+
---
|
88 |
+
|
89 |
+
## Results
|
90 |
+
|
91 |
+
### Summary
|
92 |
+
- **Total Generations**: 10
|
93 |
+
- **Best Fitness Achieved**: 0.4772
|
94 |
+
- **Final Population Diversity**: 0.0011
|
95 |
+
|
96 |
+
### Evolution History (Highlights)
|
97 |
+
| Generation | Best Fitness | Avg Fitness | Diversity | Best Specialization |
|
98 |
+
|------------|--------------|-------------|-----------|---------------------|
|
99 |
+
| 1 | 0.4096 | 0.4023 | 0.00097 | 0.9967 |
|
100 |
+
| 5 | 0.4727 | 0.4722 | 0.00099 | 0.9968 |
|
101 |
+
| 10 | 0.4772 | 0.4768 | 0.00106 | 0.9972 |
|
102 |
+
|
103 |
+
---
|
104 |
+
|
105 |
+
## Hardware & Framework
|
106 |
+
|
107 |
+
### Hardware
|
108 |
+
- Multi-GPU support with `torch.nn.parallel.DistributedDataParallel` or `Accelerator`.
|
109 |
+
- Logs GPU/CPU usage with `psutil` and `torch.cuda`.
|
110 |
+
|
111 |
+
### Frameworks & Libraries
|
112 |
+
- **Transformers**: Hugging Face model and tokenizer handling.
|
113 |
+
- **Datasets**: Data loading and processing.
|
114 |
+
- **WandB**: Experiment tracking and visualization.
|
115 |
+
- **BitsAndBytes**: 4-bit quantization.
|
116 |
+
- **PEFT**: LoRA-based fine-tuning.
|
117 |
+
|
118 |
+
---
|
119 |
+
|
120 |
+
## Future Work
|
121 |
+
- Explore larger population sizes and more generations for enhanced diversity.
|
122 |
+
- Experiment with other datasets to generalize findings.
|
123 |
+
- Integrate additional mutation strategies for broader exploration.
|
124 |
+
|
125 |
+
---
|
126 |
+
|
127 |
+
## Citation
|
128 |
+
Remaining
|
129 |
+
|
130 |
+
---
|
131 |
+
> Code to run locally
|
132 |
+
|
133 |
+
```python
|
134 |
+
from peft import PeftModel
|
135 |
+
from transformers import AutoModelForCausalLM
|
136 |
+
|
137 |
+
base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B")
|
138 |
+
model = PeftModel.from_pretrained(base_model, "diabolic6045/ELN-AOC-CAIN")
|
139 |
+
```
|
140 |
+
### Framework versions
|
141 |
+
|
142 |
- PEFT 0.14.0
|