dhorbach commited on
Commit
c726142
·
1 Parent(s): ed64411

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1531.45 +/- 57.29
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7fc52fdab0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7fc52fdb40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7fc52fdbd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7fc52fdc60>", "_build": "<function ActorCriticPolicy._build at 0x7f7fc52fdcf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7fc52fdd80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7fc52fde10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7fc52fdea0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7fc52fdf30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7fc52fdfc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7fc52fe050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7fc52fe0e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7fc52f9d40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685526068200043836, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABevsD9XMY2/SREwv81eBkCKI4C/4r65vxD7Xz6YtPW+KiOEP9kbAD4Qe28/ZK1nP2TUQ75/MdI+Ln4Yv7MM2b575oy/ZeWZP+9Aar6O7CRAgguEvgrRjj8F7jU+v3TwP9Ep6z76rZU+yJ0VP5NJeL9L57g/zxOGv+DrD7/jeg1AIGCwv0SAlL+49Zc+kWvMvyh4pj/WQhw/aMbbP6CTMD+kyMO+Qf6rP996CD56R32/DrSfv7HMfj9KEDI/XTvDP1ClKb9EbgBAUDCGPqJD0z/RKes++q2VPsidFT+TSXi/tcoEP6LezL6fpJU+hnSxPzsMD7/S4L49iVTpPrEOlb+5dDa8HW0iP1N3tT/vAsw+8Z98v9buFT4/+4Q+MjKGve0KC78M5bu+J39GP+KdNj+Ic4m/y5/TPhJriL4MVfS+0SnrPvqtlT7InRU/k0l4vy1irj7VlJC/QQ1BvzrawT9S/Qg/yLmivw08+L73TuW94Kt6vyDFZMB70rC+UQnbv8vR2T2KY6S/fjKKPo3RSb7dRpw/YSlCQHETPj49pjLAqiyOv+4GOr+sveM/d3sLP2hXC8D6rZU+dQPbv+H5gz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA10sQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAId8RvgAAAACfyO2/AAAAAFlSujwAAAAA4g/zPwAAAAAV3kA9AAAAAKWn+z8AAAAAywcWvQAAAAAZnADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIU8HNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCG0DL4AAAAAZwrbvwAAAAD+8Ye9AAAAAP7y8D8AAAAAM/bOvQAAAAA/Gf4/AAAAALw3770AAAAAYW3qvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALQFtTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA3PTO9AAAAABwW+r8AAAAAGX3rPQAAAAD1L/I/AAAAAIMID70AAAAAldXcPwAAAAA8Z969AAAAAPvr4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwzyy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAVAudPQAAAACVLN2/AAAAAIt2lb0AAAAAkbzyPwAAAAAkHLy9AAAAAA1m/T8AAAAA950LvgAAAACNIua/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI4wZMYdhiOMAWyUTegDjAF0lEdAq6RexyGSIXV9lChoBkdAViYHGCI1tWgHS4hoCEdAq6YUGkep43V9lChoBkdAjkRZid8Rc2gHTegDaAhHQKunP4s3AEd1fZQoaAZHQIzcT1XeWOZoB03oA2gIR0Crro79AHE/dX2UKGgGR0CQHcun/DLsaAdN6ANoCEdAq7DWHWSU1XV9lChoBkdAg6O974SHumgHTegDaAhHQKuzA8cMmWt1fZQoaAZHQIStQmJFb3ZoB03oA2gIR0CrtDdC3PRidX2UKGgGR0CO6zD4QBgeaAdN6ANoCEdAq74tfLLZBnV9lChoBkdAhrHncUM5O2gHTegDaAhHQKvBsw22oeh1fZQoaAZHQITep17pmmNoB03oA2gIR0Crw8dPUKAsdX2UKGgGR0CRcAgpz90jaAdN6ANoCEdAq8TsLBsQ/XV9lChoBkdAkir2EK3NLWgHTegDaAhHQKvMGq4H5ah1fZQoaAZHQJHcAEkjX4FoB03oA2gIR0Crzkhky1u0dX2UKGgGR0CT3W1qFh5PaAdN6ANoCEdAq9Bb2g398HV9lChoBkdAk07eXRgJC2gHTegDaAhHQKvRiMS9M9N1fZQoaAZHQJS8/6VMVUNoB03oA2gIR0Cr2eQdS2pidX2UKGgGR0CMYrMRHww1aAdN6ANoCEdAq904bKifx3V9lChoBkdAkaF/wd8zAWgHTegDaAhHQKvgSx1PnCB1fZQoaAZHQJLBokpqh11oB03oA2gIR0Cr4XyE+PildX2UKGgGR0CTieu4gA6uaAdN6ANoCEdAq+hszGgi/3V9lChoBkdAk4wTyFwkxGgHTegDaAhHQKvqgRHww0x1fZQoaAZHQI3hFANXo1VoB03oA2gIR0Cr7H43WFvidX2UKGgGR0CRo51schkiaAdN6ANoCEdAq+2hbY9PlHV9lChoBkdAhwCx8UmD2GgHTegDaAhHQKv0//e+Eh91fZQoaAZHQIr6ZXdTHbRoB03oA2gIR0Cr+B5Jsfq5dX2UKGgGR0CMyoejEehgaAdN6ANoCEdAq/tG/k/8mHV9lChoBkdAjF+ZsCT2WmgHTegDaAhHQKv9E5vtMPB1fZQoaAZHQJBn8F6iTMdoB03oA2gIR0CsBMXfhuO0dX2UKGgGR0CRvgtEofCAaAdN6ANoCEdArAbk+u/1x3V9lChoBkdAlBYMKXv6TGgHTegDaAhHQKwI3shxHXp1fZQoaAZHQIzZdbkfcN9oB03oA2gIR0CsCgFxOtW/dX2UKGgGR0CT3jASWZ7YaAdN6ANoCEdArBD6jafzz3V9lChoBkdAlJSf8hs672gHTegDaAhHQKwTLW4EwFl1fZQoaAZHQIJJgk9lmOFoB03oA2gIR0CsFhtGus90dX2UKGgGR0CUI1KyOaOQaAdN6ANoCEdArBfIppeu3nV9lChoBkdAk1MQWepXIWgHTegDaAhHQKwguxGlQ/J1fZQoaAZHQJNwLIeYD1ZoB03oA2gIR0CsItfe1rqMdX2UKGgGR0CUJWkadc0MaAdN6ANoCEdArCTUWTHKfXV9lChoBkdAk7uh3/xUemgHTegDaAhHQKwl/KdQO4J1fZQoaAZHQJJQxLcsUZhoB03oA2gIR0CsLOlenhsJdX2UKGgGR0CUCi6V+qioaAdN6ANoCEdArC8NZDArQXV9lChoBkdAlF33WOIZZWgHTegDaAhHQKwxHy1/lQx1fZQoaAZHQJQLlHG0eEJoB03oA2gIR0CsMp1FH8TBdX2UKGgGR0CV2S5Ke05VaAdN6ANoCEdArDy/lS0jT3V9lChoBkdAlNeCvcJtzmgHTegDaAhHQKw+2HRCx/x1fZQoaAZHQJPMHeEZiuxoB03oA2gIR0CsQO9fTkQxdX2UKGgGR0CWD5QiiZfEaAdN6ANoCEdArEIOUD+zdHV9lChoBkdAlmK1FDv3J2gHTegDaAhHQKxJBDwYtQN1fZQoaAZHQJWpASZjQRhoB03oA2gIR0CsSxuafBepdX2UKGgGR0CT3RNT987ZaAdN6ANoCEdArE0ncN6PbXV9lChoBkdAi8IaPjn3c2gHTegDaAhHQKxOWSeRPoF1fZQoaAZHQI/96k0rK/5oB03oA2gIR0CsV/RI8QqadX2UKGgGR0CUvbbQC0WuaAdN6ANoCEdArFtHHYHxBnV9lChoBkdAlTxiIUJv52gHTegDaAhHQKxdUvZAY511fZQoaAZHQJND2iN83MpoB03oA2gIR0CsXoAq3EyddX2UKGgGR0CVlRzXjENwaAdN6ANoCEdArGVgiC8OC3V9lChoBkdAk+EInWrfcmgHTegDaAhHQKxndd69kBl1fZQoaAZHQJbUX1RLsa9oB03oA2gIR0CsaXNe2NNrdX2UKGgGR0CXfDlTWGypaAdN6ANoCEdArGqb8iwB53V9lChoBkdAmZG+hf0Eo2gHTegDaAhHQKxyp6C17Y11fZQoaAZHQJhWZh8YyftoB03oA2gIR0Csdd0m+j/NdX2UKGgGR0CZNhIfKZDzaAdN6ANoCEdArHj6PfbblHV9lChoBkdAmL2HuRcNY2gHTegDaAhHQKx6aL4vexh1fZQoaAZHQJmFzCcf/3poB03oA2gIR0CsgURL0z0pdX2UKGgGR0CU1Q4SHuZ1aAdN6ANoCEdArINft6X0G3V9lChoBkdAlbU7TUiIL2gHTegDaAhHQKyFWrOqvNh1fZQoaAZHQJewv30wrUdoB03oA2gIR0CshoVf3N9qdX2UKGgGR0CZSq5VOsT4aAdN6ANoCEdArI1fHvMKTnV9lChoBkdAlk7UwrUb1mgHTegDaAhHQKyQSKVpsXV1fZQoaAZHQJjxhWmxdIJoB03oA2gIR0Csk1AU+LWJdX2UKGgGR0CXkVDklu3uaAdN6ANoCEdArJUOHk92YHV9lChoBkdAlgM+yRjjJmgHTegDaAhHQKydHMLWqcV1fZQoaAZHQJMKlUuL741oB03oA2gIR0Csny0g8r7PdX2UKGgGR0CTO92RJVbSaAdN6ANoCEdArKEum51/2HV9lChoBkdAkWkErTYukGgHTegDaAhHQKyiSFA3T/h1fZQoaAZHQJhga/XXiBJoB03oA2gIR0CsqQzQu27WdX2UKGgGR0CVzrIKMNtqaAdN6ANoCEdArKscGu9vj3V9lChoBkdAlS29xuKoAGgHTegDaAhHQKytSlOXVsl1fZQoaAZHQJXY+8Hv+fhoB03oA2gIR0CsrvTodMkAdX2UKGgGR0CUZQqm0mdBaAdN6ANoCEdArLjjwQUYbnV9lChoBkdAlRT3QpnYhGgHTegDaAhHQKy7BlJ6IFh1fZQoaAZHQJgOWUwBYFJoB03oA2gIR0CsvQMBZIQOdX2UKGgGR0CXVSGIsRQKaAdN6ANoCEdArL4dYhdMTXV9lChoBkdAlSiekgwGnmgHTegDaAhHQKzExQSBbwB1fZQoaAZHQJWVwr6LwWpoB03oA2gIR0Csxt52pyZKdX2UKGgGR0CZH4wt8NQTaAdN6ANoCEdArMjchvBJqnV9lChoBkdAknUxNZeRgmgHTegDaAhHQKzJ9GdZq211fZQoaAZHQJEPkxKxs2xoB03oA2gIR0Cs01T1bqyGdX2UKGgGR0CX0oAHE/B4aAdN6ANoCEdArNZshJRO13V9lChoBkdAl4Rpf+jubGgHTegDaAhHQKzYYRNATqV1fZQoaAZHQJlKeMrEtNBoB03oA2gIR0Cs2XtIsiB5dX2UKGgGR0CWP83Kji4saAdN6ANoCEdArOAeAy2x6nV9lChoBkdAl5jnM+u/12gHTegDaAhHQKziMTPBzmx1fZQoaAZHQJj2QYHgP3BoB03oA2gIR0Cs5Ead+XqrdX2UKGgGR0CVoqM8HObBaAdN6ANoCEdArOVgZhrnDHV9lChoBkdAlXSqPjn3c2gHTegDaAhHQKztCP07KaJ1fZQoaAZHQJnkyJN0vGpoB03oA2gIR0Cs8Ctzr/sFdX2UKGgGR0CTjLZ88cMmaAdN6ANoCEdArPM0IX0oSnV9lChoBkdAlu21HFxXGWgHTegDaAhHQKz03V6u4gB1fZQoaAZHQJeAZ/2Cdz5oB03oA2gIR0Cs+5+2/i5vdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
hfc_a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e1d20f01310332d2d747e098e7ebeaa932b628af8403d0e7a7b5a23569f9616
3
+ size 129244
hfc_a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
hfc_a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7fc52fdab0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7fc52fdb40>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7fc52fdbd0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7fc52fdc60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7fc52fdcf0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7fc52fdd80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7fc52fde10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7fc52fdea0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7fc52fdf30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7fc52fdfc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7fc52fe050>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7fc52fe0e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f7fc52f9d40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1685526068200043836,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABevsD9XMY2/SREwv81eBkCKI4C/4r65vxD7Xz6YtPW+KiOEP9kbAD4Qe28/ZK1nP2TUQ75/MdI+Ln4Yv7MM2b575oy/ZeWZP+9Aar6O7CRAgguEvgrRjj8F7jU+v3TwP9Ep6z76rZU+yJ0VP5NJeL9L57g/zxOGv+DrD7/jeg1AIGCwv0SAlL+49Zc+kWvMvyh4pj/WQhw/aMbbP6CTMD+kyMO+Qf6rP996CD56R32/DrSfv7HMfj9KEDI/XTvDP1ClKb9EbgBAUDCGPqJD0z/RKes++q2VPsidFT+TSXi/tcoEP6LezL6fpJU+hnSxPzsMD7/S4L49iVTpPrEOlb+5dDa8HW0iP1N3tT/vAsw+8Z98v9buFT4/+4Q+MjKGve0KC78M5bu+J39GP+KdNj+Ic4m/y5/TPhJriL4MVfS+0SnrPvqtlT7InRU/k0l4vy1irj7VlJC/QQ1BvzrawT9S/Qg/yLmivw08+L73TuW94Kt6vyDFZMB70rC+UQnbv8vR2T2KY6S/fjKKPo3RSb7dRpw/YSlCQHETPj49pjLAqiyOv+4GOr+sveM/d3sLP2hXC8D6rZU+dQPbv+H5gz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA10sQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAId8RvgAAAACfyO2/AAAAAFlSujwAAAAA4g/zPwAAAAAV3kA9AAAAAKWn+z8AAAAAywcWvQAAAAAZnADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIU8HNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCG0DL4AAAAAZwrbvwAAAAD+8Ye9AAAAAP7y8D8AAAAAM/bOvQAAAAA/Gf4/AAAAALw3770AAAAAYW3qvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALQFtTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA3PTO9AAAAABwW+r8AAAAAGX3rPQAAAAD1L/I/AAAAAIMID70AAAAAldXcPwAAAAA8Z969AAAAAPvr4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwzyy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAVAudPQAAAACVLN2/AAAAAIt2lb0AAAAAkbzyPwAAAAAkHLy9AAAAAA1m/T8AAAAA950LvgAAAACNIua/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI4wZMYdhiOMAWyUTegDjAF0lEdAq6RexyGSIXV9lChoBkdAViYHGCI1tWgHS4hoCEdAq6YUGkep43V9lChoBkdAjkRZid8Rc2gHTegDaAhHQKunP4s3AEd1fZQoaAZHQIzcT1XeWOZoB03oA2gIR0Crro79AHE/dX2UKGgGR0CQHcun/DLsaAdN6ANoCEdAq7DWHWSU1XV9lChoBkdAg6O974SHumgHTegDaAhHQKuzA8cMmWt1fZQoaAZHQIStQmJFb3ZoB03oA2gIR0CrtDdC3PRidX2UKGgGR0CO6zD4QBgeaAdN6ANoCEdAq74tfLLZBnV9lChoBkdAhrHncUM5O2gHTegDaAhHQKvBsw22oeh1fZQoaAZHQITep17pmmNoB03oA2gIR0Crw8dPUKAsdX2UKGgGR0CRcAgpz90jaAdN6ANoCEdAq8TsLBsQ/XV9lChoBkdAkir2EK3NLWgHTegDaAhHQKvMGq4H5ah1fZQoaAZHQJHcAEkjX4FoB03oA2gIR0Crzkhky1u0dX2UKGgGR0CT3W1qFh5PaAdN6ANoCEdAq9Bb2g398HV9lChoBkdAk07eXRgJC2gHTegDaAhHQKvRiMS9M9N1fZQoaAZHQJS8/6VMVUNoB03oA2gIR0Cr2eQdS2pidX2UKGgGR0CMYrMRHww1aAdN6ANoCEdAq904bKifx3V9lChoBkdAkaF/wd8zAWgHTegDaAhHQKvgSx1PnCB1fZQoaAZHQJLBokpqh11oB03oA2gIR0Cr4XyE+PildX2UKGgGR0CTieu4gA6uaAdN6ANoCEdAq+hszGgi/3V9lChoBkdAk4wTyFwkxGgHTegDaAhHQKvqgRHww0x1fZQoaAZHQI3hFANXo1VoB03oA2gIR0Cr7H43WFvidX2UKGgGR0CRo51schkiaAdN6ANoCEdAq+2hbY9PlHV9lChoBkdAhwCx8UmD2GgHTegDaAhHQKv0//e+Eh91fZQoaAZHQIr6ZXdTHbRoB03oA2gIR0Cr+B5Jsfq5dX2UKGgGR0CMyoejEehgaAdN6ANoCEdAq/tG/k/8mHV9lChoBkdAjF+ZsCT2WmgHTegDaAhHQKv9E5vtMPB1fZQoaAZHQJBn8F6iTMdoB03oA2gIR0CsBMXfhuO0dX2UKGgGR0CRvgtEofCAaAdN6ANoCEdArAbk+u/1x3V9lChoBkdAlBYMKXv6TGgHTegDaAhHQKwI3shxHXp1fZQoaAZHQIzZdbkfcN9oB03oA2gIR0CsCgFxOtW/dX2UKGgGR0CT3jASWZ7YaAdN6ANoCEdArBD6jafzz3V9lChoBkdAlJSf8hs672gHTegDaAhHQKwTLW4EwFl1fZQoaAZHQIJJgk9lmOFoB03oA2gIR0CsFhtGus90dX2UKGgGR0CUI1KyOaOQaAdN6ANoCEdArBfIppeu3nV9lChoBkdAk1MQWepXIWgHTegDaAhHQKwguxGlQ/J1fZQoaAZHQJNwLIeYD1ZoB03oA2gIR0CsItfe1rqMdX2UKGgGR0CUJWkadc0MaAdN6ANoCEdArCTUWTHKfXV9lChoBkdAk7uh3/xUemgHTegDaAhHQKwl/KdQO4J1fZQoaAZHQJJQxLcsUZhoB03oA2gIR0CsLOlenhsJdX2UKGgGR0CUCi6V+qioaAdN6ANoCEdArC8NZDArQXV9lChoBkdAlF33WOIZZWgHTegDaAhHQKwxHy1/lQx1fZQoaAZHQJQLlHG0eEJoB03oA2gIR0CsMp1FH8TBdX2UKGgGR0CV2S5Ke05VaAdN6ANoCEdArDy/lS0jT3V9lChoBkdAlNeCvcJtzmgHTegDaAhHQKw+2HRCx/x1fZQoaAZHQJPMHeEZiuxoB03oA2gIR0CsQO9fTkQxdX2UKGgGR0CWD5QiiZfEaAdN6ANoCEdArEIOUD+zdHV9lChoBkdAlmK1FDv3J2gHTegDaAhHQKxJBDwYtQN1fZQoaAZHQJWpASZjQRhoB03oA2gIR0CsSxuafBepdX2UKGgGR0CT3RNT987ZaAdN6ANoCEdArE0ncN6PbXV9lChoBkdAi8IaPjn3c2gHTegDaAhHQKxOWSeRPoF1fZQoaAZHQI/96k0rK/5oB03oA2gIR0CsV/RI8QqadX2UKGgGR0CUvbbQC0WuaAdN6ANoCEdArFtHHYHxBnV9lChoBkdAlTxiIUJv52gHTegDaAhHQKxdUvZAY511fZQoaAZHQJND2iN83MpoB03oA2gIR0CsXoAq3EyddX2UKGgGR0CVlRzXjENwaAdN6ANoCEdArGVgiC8OC3V9lChoBkdAk+EInWrfcmgHTegDaAhHQKxndd69kBl1fZQoaAZHQJbUX1RLsa9oB03oA2gIR0CsaXNe2NNrdX2UKGgGR0CXfDlTWGypaAdN6ANoCEdArGqb8iwB53V9lChoBkdAmZG+hf0Eo2gHTegDaAhHQKxyp6C17Y11fZQoaAZHQJhWZh8YyftoB03oA2gIR0Csdd0m+j/NdX2UKGgGR0CZNhIfKZDzaAdN6ANoCEdArHj6PfbblHV9lChoBkdAmL2HuRcNY2gHTegDaAhHQKx6aL4vexh1fZQoaAZHQJmFzCcf/3poB03oA2gIR0CsgURL0z0pdX2UKGgGR0CU1Q4SHuZ1aAdN6ANoCEdArINft6X0G3V9lChoBkdAlbU7TUiIL2gHTegDaAhHQKyFWrOqvNh1fZQoaAZHQJewv30wrUdoB03oA2gIR0CshoVf3N9qdX2UKGgGR0CZSq5VOsT4aAdN6ANoCEdArI1fHvMKTnV9lChoBkdAlk7UwrUb1mgHTegDaAhHQKyQSKVpsXV1fZQoaAZHQJjxhWmxdIJoB03oA2gIR0Csk1AU+LWJdX2UKGgGR0CXkVDklu3uaAdN6ANoCEdArJUOHk92YHV9lChoBkdAlgM+yRjjJmgHTegDaAhHQKydHMLWqcV1fZQoaAZHQJMKlUuL741oB03oA2gIR0Csny0g8r7PdX2UKGgGR0CTO92RJVbSaAdN6ANoCEdArKEum51/2HV9lChoBkdAkWkErTYukGgHTegDaAhHQKyiSFA3T/h1fZQoaAZHQJhga/XXiBJoB03oA2gIR0CsqQzQu27WdX2UKGgGR0CVzrIKMNtqaAdN6ANoCEdArKscGu9vj3V9lChoBkdAlS29xuKoAGgHTegDaAhHQKytSlOXVsl1fZQoaAZHQJXY+8Hv+fhoB03oA2gIR0CsrvTodMkAdX2UKGgGR0CUZQqm0mdBaAdN6ANoCEdArLjjwQUYbnV9lChoBkdAlRT3QpnYhGgHTegDaAhHQKy7BlJ6IFh1fZQoaAZHQJgOWUwBYFJoB03oA2gIR0CsvQMBZIQOdX2UKGgGR0CXVSGIsRQKaAdN6ANoCEdArL4dYhdMTXV9lChoBkdAlSiekgwGnmgHTegDaAhHQKzExQSBbwB1fZQoaAZHQJWVwr6LwWpoB03oA2gIR0Csxt52pyZKdX2UKGgGR0CZH4wt8NQTaAdN6ANoCEdArMjchvBJqnV9lChoBkdAknUxNZeRgmgHTegDaAhHQKzJ9GdZq211fZQoaAZHQJEPkxKxs2xoB03oA2gIR0Cs01T1bqyGdX2UKGgGR0CX0oAHE/B4aAdN6ANoCEdArNZshJRO13V9lChoBkdAl4Rpf+jubGgHTegDaAhHQKzYYRNATqV1fZQoaAZHQJlKeMrEtNBoB03oA2gIR0Cs2XtIsiB5dX2UKGgGR0CWP83Kji4saAdN6ANoCEdArOAeAy2x6nV9lChoBkdAl5jnM+u/12gHTegDaAhHQKziMTPBzmx1fZQoaAZHQJj2QYHgP3BoB03oA2gIR0Cs5Ead+XqrdX2UKGgGR0CVoqM8HObBaAdN6ANoCEdArOVgZhrnDHV9lChoBkdAlXSqPjn3c2gHTegDaAhHQKztCP07KaJ1fZQoaAZHQJnkyJN0vGpoB03oA2gIR0Cs8Ctzr/sFdX2UKGgGR0CTjLZ88cMmaAdN6ANoCEdArPM0IX0oSnV9lChoBkdAlu21HFxXGWgHTegDaAhHQKz03V6u4gB1fZQoaAZHQJeAZ/2Cdz5oB03oA2gIR0Cs+5+2/i5vdWUu"
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
hfc_a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71aea795dd6229151301bd8ebf52c77908e9c46e67a32642d3c68ae2f7b2c36f
3
+ size 56190
hfc_a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf31aac595682887f52fcd14d005f0a872d3eeb79501cd6eede36f685d2b3cc2
3
+ size 56894
hfc_a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
hfc_a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4b7db76d09ec218f7c7b5683f8e907dcf428f2cb335a8058883c8fcc9192f52
3
+ size 1169057
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1531.4468487178906, "std_reward": 57.292831528297135, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-31T10:45:33.999515"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b1003d47eaa5bb5913d7644b3e3bf84b82e64468f96c2002b5ecf8dc7efb4b7
3
+ size 2176