dhmeltzer commited on
Commit
95d606f
·
1 Parent(s): 4e854d8

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -3.78 +/- 0.62
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -3.04 +/- 0.81
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dadc00a8199f78c65481e079c9566d0cde891a8bdeff007eadec55adf47fdce1
3
- size 108095
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:872338bc7a8150db372f032fef80fd45cf3ed880eb3410edcec4860f29eeec84
3
+ size 108980
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe922a5c280>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc_data object at 0x7fe922a538d0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -40,13 +40,13 @@
40
  "bounded_above": "[ True True True]",
41
  "_np_random": null
42
  },
43
- "n_envs": 4,
44
- "num_timesteps": 1000000,
45
- "_total_timesteps": 1000000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1675375659159759953,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
@@ -55,35 +55,35 @@
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAB5TVPpwpnTz2Xh8/B5TVPpwpnTz2Xh8/B5TVPpwpnTz2Xh8/B5TVPpwpnTz2Xh8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAq5fcPqxjW749tDK/9sfVPwtzyD7uCsG/4AFCvfW0Fj7ezG6/y/CSv03aVL+81Yy+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAHlNU+nCmdPPZeHz+J4C08SqIculI8FTwHlNU+nCmdPPZeHz+J4C08SqIculI8FTwHlNU+nCmdPPZeHz+J4C08SqIculI8FTwHlNU+nCmdPPZeHz+J4C08SqIculI8FTyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[0.41714498 0.01918488 0.62254274]\n [0.41714498 0.01918488 0.62254274]\n [0.41714498 0.01918488 0.62254274]\n [0.41714498 0.01918488 0.62254274]]",
60
- "desired_goal": "[[ 0.43084463 -0.2142474 -0.6980627 ]\n [ 1.6701648 0.3915027 -1.508146 ]\n [-0.04736507 0.14717467 -0.9328135 ]\n [-1.1479734 -0.831456 -0.27506816]]",
61
- "observation": "[[ 4.1714498e-01 1.9184880e-02 6.2254274e-01 1.0612615e-02\n -5.9751107e-04 9.1086198e-03]\n [ 4.1714498e-01 1.9184880e-02 6.2254274e-01 1.0612615e-02\n -5.9751107e-04 9.1086198e-03]\n [ 4.1714498e-01 1.9184880e-02 6.2254274e-01 1.0612615e-02\n -5.9751107e-04 9.1086198e-03]\n [ 4.1714498e-01 1.9184880e-02 6.2254274e-01 1.0612615e-02\n -5.9751107e-04 9.1086198e-03]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
65
- ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbC0zvUu9yzu5jSk+noTsvDwzuz0S+1k+0QUXPjI4Njx0STI8NrozPfcC9L3pvgM8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
- "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
- "desired_goal": "[[-0.04374449 0.00621763 0.16557969]\n [-0.02887183 0.09140632 0.21287182]\n [ 0.14748313 0.0111218 0.01088177]\n [ 0.04387876 -0.11914628 0.00804112]]",
72
- "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
75
  "use_sde": false,
76
  "sde_sample_freq": -1,
77
- "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIc0urIXE/E8CUhpRSlIwBbJRLMowBdJRHQKOTsUnogV51fZQoaAZoCWgPQwjJAiZw6y4KwJSGlFKUaBVLMmgWR0Cjk3ZzYEntdX2UKGgGaAloD0MIBDxp4bIKBMCUhpRSlGgVSzJoFkdAo5M8Z9/jKnV9lChoBmgJaA9DCG+70FynwRTAlIaUUpRoFUsyaBZHQKOS/upjtol1fZQoaAZoCWgPQwjbwvNSsXEZwJSGlFKUaBVLMmgWR0CjlJTjebd8dX2UKGgGaAloD0MIK4cW2c4XAsCUhpRSlGgVSzJoFkdAo5RaFfzBh3V9lChoBmgJaA9DCHicoiO5HAbAlIaUUpRoFUsyaBZHQKOUH8QZn+R1fZQoaAZoCWgPQwiSByKLNPETwJSGlFKUaBVLMmgWR0Cjk+JXIU8FdX2UKGgGaAloD0MIaCWt+IZCC8CUhpRSlGgVSzJoFkdAo5Vxun/DL3V9lChoBmgJaA9DCMy3Pqw36hLAlIaUUpRoFUsyaBZHQKOVNuAqd6N1fZQoaAZoCWgPQwjxSLw8nUsFwJSGlFKUaBVLMmgWR0CjlPyK3uuzdX2UKGgGaAloD0MItmrXhLSWGMCUhpRSlGgVSzJoFkdAo5S/FHavinV9lChoBmgJaA9DCGB15EhnsBHAlIaUUpRoFUsyaBZHQKOWV9bX6Ip1fZQoaAZoCWgPQwhmu0IfLHMSwJSGlFKUaBVLMmgWR0CjlhzuF6AwdX2UKGgGaAloD0MIDybFxydkGMCUhpRSlGgVSzJoFkdAo5Xih6By0nV9lChoBmgJaA9DCFtdTgmIGRPAlIaUUpRoFUsyaBZHQKOVpUYKpkx1fZQoaAZoCWgPQwjtt3aiJGQKwJSGlFKUaBVLMmgWR0CjlzJSrHU+dX2UKGgGaAloD0MIHQJHAg1mFcCUhpRSlGgVSzJoFkdAo5b3d2xIKHV9lChoBmgJaA9DCLFtUWaDbBLAlIaUUpRoFUsyaBZHQKOWvULlV951fZQoaAZoCWgPQwjusl93uhMUwJSGlFKUaBVLMmgWR0Cjln/MOf/WdX2UKGgGaAloD0MIJZS+EHIeD8CUhpRSlGgVSzJoFkdAo5gct03fh3V9lChoBmgJaA9DCLWkoxzMZgzAlIaUUpRoFUsyaBZHQKOX4cebNKR1fZQoaAZoCWgPQwjlCu9yEb8UwJSGlFKUaBVLMmgWR0Cjl6dd/rjYdX2UKGgGaAloD0MIs1w2OucHFMCUhpRSlGgVSzJoFkdAo5dp3X7LuHV9lChoBmgJaA9DCIuKOJ1kOxnAlIaUUpRoFUsyaBZHQKOY/eBQN1B1fZQoaAZoCWgPQwj/y7VoAboFwJSGlFKUaBVLMmgWR0CjmMNM495hdX2UKGgGaAloD0MIi8Iuih4IFsCUhpRSlGgVSzJoFkdAo5iI6r/823V9lChoBmgJaA9DCPhvXpz4GhTAlIaUUpRoFUsyaBZHQKOYS4TbnHN1fZQoaAZoCWgPQwipg7weTEoPwJSGlFKUaBVLMmgWR0CjmeX71qWUdX2UKGgGaAloD0MIgEQTKGIREcCUhpRSlGgVSzJoFkdAo5mrQ9ic5XV9lChoBmgJaA9DCH4ZjBGJYgbAlIaUUpRoFUsyaBZHQKOZcQU5+6R1fZQoaAZoCWgPQwiHo6t0dw0TwJSGlFKUaBVLMmgWR0CjmTPbO/tZdX2UKGgGaAloD0MIKnReY5eIDcCUhpRSlGgVSzJoFkdAo5raKYRdyHV9lChoBmgJaA9DCJKWytsRrg/AlIaUUpRoFUsyaBZHQKOan0DEFW51fZQoaAZoCWgPQwigbTXrjA8PwJSGlFKUaBVLMmgWR0CjmmTijtXxdX2UKGgGaAloD0MIgLirV5ERGsCUhpRSlGgVSzJoFkdAo5onqHGjsXV9lChoBmgJaA9DCJFHcCNlKxjAlIaUUpRoFUsyaBZHQKObuGgzxgB1fZQoaAZoCWgPQwgmjdE6qnoHwJSGlFKUaBVLMmgWR0Cjm32gnMMadX2UKGgGaAloD0MIxjGSPUItGsCUhpRSlGgVSzJoFkdAo5tDQTmGNHV9lChoBmgJaA9DCFzknq7uyBnAlIaUUpRoFUsyaBZHQKObBeTFERd1fZQoaAZoCWgPQwiiJCTSNn4BwJSGlFKUaBVLMmgWR0CjnK1ie/YbdX2UKGgGaAloD0MIM1AZ/z5DBsCUhpRSlGgVSzJoFkdAo5xyioKlYXV9lChoBmgJaA9DCOSeru5YDAfAlIaUUpRoFUsyaBZHQKOcOF23azx1fZQoaAZoCWgPQwgaUG9GzbcEwJSGlFKUaBVLMmgWR0Cjm/r1mJ3xdX2UKGgGaAloD0MIUhA8vr3LD8CUhpRSlGgVSzJoFkdAo52Rp1zQu3V9lChoBmgJaA9DCEVoBBvXfw3AlIaUUpRoFUsyaBZHQKOdVtXPqs51fZQoaAZoCWgPQwhU46WbxAASwJSGlFKUaBVLMmgWR0CjnRxtYSxrdX2UKGgGaAloD0MI3GgAb4FkBMCUhpRSlGgVSzJoFkdAo5ze912aD3V9lChoBmgJaA9DCJ1M3CqIAQnAlIaUUpRoFUsyaBZHQKOel6Q/5cl1fZQoaAZoCWgPQwgCSG3i5N4FwJSGlFKUaBVLMmgWR0Cjnl0Cq6vrdX2UKGgGaAloD0MIfv/mxYlvAsCUhpRSlGgVSzJoFkdAo54jvLHMlnV9lChoBmgJaA9DCHuhgO1g9BrAlIaUUpRoFUsyaBZHQKOd5lYEGJN1fZQoaAZoCWgPQwjM64hDNpADwJSGlFKUaBVLMmgWR0Cjn39uYQardX2UKGgGaAloD0MIMzMzMzNzBMCUhpRSlGgVSzJoFkdAo59En5SFXnV9lChoBmgJaA9DCAHbwYh9YgnAlIaUUpRoFUsyaBZHQKOfCnP3SKF1fZQoaAZoCWgPQwhzLsVVZT8GwJSGlFKUaBVLMmgWR0CjnszwMH8kdX2UKGgGaAloD0MIFa3cC8xqB8CUhpRSlGgVSzJoFkdAo6BieoUBXHV9lChoBmgJaA9DCJaxoZv9AQLAlIaUUpRoFUsyaBZHQKOgJ7PY4AF1fZQoaAZoCWgPQwjVlGQdji4LwJSGlFKUaBVLMmgWR0Cjn+2fChvjdX2UKGgGaAloD0MIcZLmj2ntCsCUhpRSlGgVSzJoFkdAo5+wKYzBRHV9lChoBmgJaA9DCCi6LvzgjB7AlIaUUpRoFUsyaBZHQKOhSQ4jrzJ1fZQoaAZoCWgPQwiQniKHiFsGwJSGlFKUaBVLMmgWR0CjoQ5XEIgOdX2UKGgGaAloD0MItfl/1ZFjEsCUhpRSlGgVSzJoFkdAo6DT9MsYmHV9lChoBmgJaA9DCB+5Nem2JBjAlIaUUpRoFUsyaBZHQKOglqMWGh51fZQoaAZoCWgPQwgl5llJK/4XwJSGlFKUaBVLMmgWR0CjoiimMwUQdX2UKGgGaAloD0MIs3xdhv+0FMCUhpRSlGgVSzJoFkdAo6HuBjFyaXV9lChoBmgJaA9DCDJ2wktwyhPAlIaUUpRoFUsyaBZHQKOhs7xusLh1fZQoaAZoCWgPQwiLcJNRZagbwJSGlFKUaBVLMmgWR0CjoXZlnRLLdX2UKGgGaAloD0MIG70aoDSUCsCUhpRSlGgVSzJoFkdAo6MXek56t3V9lChoBmgJaA9DCMIxy54Etg7AlIaUUpRoFUsyaBZHQKOi3NC7btZ1fZQoaAZoCWgPQwg8+l+uRQsIwJSGlFKUaBVLMmgWR0CjoqJtzjm0dX2UKGgGaAloD0MIJov7j0wHB8CUhpRSlGgVSzJoFkdAo6JlO45LiHV9lChoBmgJaA9DCBl0Quig6xDAlIaUUpRoFUsyaBZHQKOj9/bTMJR1fZQoaAZoCWgPQwiIS447pXMTwJSGlFKUaBVLMmgWR0Cjo70qpcX4dX2UKGgGaAloD0MIkXwlkBIbBcCUhpRSlGgVSzJoFkdAo6OCuuA7P3V9lChoBmgJaA9DCOuQm+EGHBTAlIaUUpRoFUsyaBZHQKOjRWVeKKp1fZQoaAZoCWgPQwgH6pRHN1IZwJSGlFKUaBVLMmgWR0CjpQP6TGHYdX2UKGgGaAloD0MIqRJlbylHCMCUhpRSlGgVSzJoFkdAo6TJWo3rEHV9lChoBmgJaA9DCLTpCOBm8QnAlIaUUpRoFUsyaBZHQKOkjt9hJAd1fZQoaAZoCWgPQwiKIM7DCewCwJSGlFKUaBVLMmgWR0CjpFF3yI56dX2UKGgGaAloD0MI5EwTtp8MDcCUhpRSlGgVSzJoFkdAo6XbMqz7dnV9lChoBmgJaA9DCKc9JefE/g/AlIaUUpRoFUsyaBZHQKOloJF9a2Z1fZQoaAZoCWgPQwgYeO49XFILwJSGlFKUaBVLMmgWR0CjpWYkNWludX2UKGgGaAloD0MIBKvq5XeqFsCUhpRSlGgVSzJoFkdAo6Uo5Jbt7nV9lChoBmgJaA9DCNNQo5BkNgnAlIaUUpRoFUsyaBZHQKOmu1hLGrF1fZQoaAZoCWgPQwg1Y9F0drILwJSGlFKUaBVLMmgWR0CjpoCkO7QLdX2UKGgGaAloD0MIW88QjllWDMCUhpRSlGgVSzJoFkdAo6ZGRoysS3V9lChoBmgJaA9DCNiarbzk3xLAlIaUUpRoFUsyaBZHQKOmCNIbwSd1fZQoaAZoCWgPQwi5T44CRKEJwJSGlFKUaBVLMmgWR0Cjp5UBwMpgdX2UKGgGaAloD0MI1h2LbVKxCcCUhpRSlGgVSzJoFkdAo6daJ2t+1HV9lChoBmgJaA9DCNVA8zl3WwrAlIaUUpRoFUsyaBZHQKOnH74SHuZ1fZQoaAZoCWgPQwgA5IQJozkRwJSGlFKUaBVLMmgWR0CjpuJJGvwFdX2UKGgGaAloD0MIZOjYQSXOB8CUhpRSlGgVSzJoFkdAo6hucawUxnV9lChoBmgJaA9DCDOjHw2nDBXAlIaUUpRoFUsyaBZHQKOoNAFgUlB1fZQoaAZoCWgPQwg+rg0V4wwTwJSGlFKUaBVLMmgWR0Cjp/pCa7VbdX2UKGgGaAloD0MIIcztXu4TCsCUhpRSlGgVSzJoFkdAo6e9kjHGTHV9lChoBmgJaA9DCOfDswQZgRPAlIaUUpRoFUsyaBZHQKOpX6i0v5B1fZQoaAZoCWgPQwj/eK9amTAGwJSGlFKUaBVLMmgWR0CjqSTYVZcLdX2UKGgGaAloD0MIqB3+mqwhEsCUhpRSlGgVSzJoFkdAo6jqdYnv2HV9lChoBmgJaA9DCJ9b6EoEKgbAlIaUUpRoFUsyaBZHQKOorRm9QGh1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
- "_n_updates": 50000,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f89f21490d0>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f89f21427b0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
40
  "bounded_above": "[ True True True]",
41
  "_np_random": null
42
  },
43
+ "n_envs": 6,
44
+ "num_timesteps": 500010,
45
+ "_total_timesteps": 500000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
+ "start_time": 1675392415669603961,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
 
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAAQGpiPyMTlj/SoO0/8NEcPwyiob9R1gi/5tCQPu1nqj9D/1w/z3GfP49V4j/pGFC+oACDP7sfuD8hT2u/4GoLP57qM75YO2g/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAA6UssP15AZz+gfM4/g1VsP0THTb8tqS6+wEgKvjqxiT/zfCI/wcbUP9Fe2j+zxvS9AfzEP8FquD9BLiW/n+qSPnGCGD5pzpA/lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAABAamI/IxOWP9Kg7T92ioM++rLHPQS4JT3w0Rw/DKKhv1HWCL/kvgE/gdQKQLWcSD3m0JA+7WeqP0P/XD/I1jU/f5snvIrCoz7PcZ8/j1XiP+kYUL5gIhI/amcfv88Bnz6gAIM/ux+4PyFPa7/suLc+wI+aP2sIKT7gags/nuozvlg7aD9DucK+vfDlvz4Jrz2UaA5LBksGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.88443375 1.172459 1.8564703 ]\n [ 0.6125784 -1.2627578 -0.5345202 ]\n [ 0.28284377 1.3312966 0.86327 ]\n [ 1.2456607 1.768236 -0.20322002]\n [ 1.0234566 1.4384683 -0.91917616]\n [ 0.54459953 -0.17569968 0.9071555 ]]",
60
+ "desired_goal": "[[ 0.6730333 0.9033259 1.6131783 ]\n [ 0.9231798 -0.8038218 -0.17056723]\n [-0.13504314 1.075721 0.6347191 ]\n [ 1.6623155 1.7060186 -0.11951961]\n [ 1.5389405 1.4407579 -0.645237 ]\n [ 0.28694627 0.1489351 1.1312991 ]]",
61
+ "observation": "[[ 0.88443375 1.172459 1.8564703 0.25691575 0.09750934 0.04045869]\n [ 0.6125784 -1.2627578 -0.5345202 0.506819 2.1692202 0.04897757]\n [ 0.28284377 1.3312966 0.86327 0.71030855 -0.01022994 0.3198436 ]\n [ 1.2456607 1.768236 -0.20322002 0.570837 -0.6226717 0.31056067]\n [ 1.0234566 1.4384683 -0.91917616 0.35883272 1.2075119 0.16507117]\n [ 0.54459953 -0.17569968 0.9071555 -0.38031968 -1.7964092 0.08546685]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYGAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpQu"
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAAHFC6vcvs0j1xs5Y+d2nJPQaVs70Kumc+3bHevHAlgz3506I9l8SAPXR3ET3aZV89yfAAvqgRrT3i/jg+2TgCPoUr7TyZsMc9lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBksGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.09097311 0.10299071 0.29433778]\n [ 0.09834569 -0.08768658 0.22629562]\n [-0.02718442 0.06403625 0.07950587]\n [ 0.06287497 0.03551431 0.05454049]\n [-0.12591852 0.08450633 0.1806598 ]\n [ 0.12716998 0.02895142 0.0975048 ]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
75
  "use_sde": false,
76
  "sde_sample_freq": -1,
77
+ "_current_progress_remaining": -1.999999999990898e-05,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4+MTsvMWAsCUhpRSlIwBbJRLMowBdJRHQJSP9Lzwtrd1fZQoaAZoCWgPQwiXqx+b5Mfyv5SGlFKUaBVLMmgWR0CUj1O9nK4hdX2UKGgGaAloD0MIERlW8UYmEsCUhpRSlGgVSzJoFkdAlI6/Dxb0OHV9lChoBmgJaA9DCG8PQkC+RAbAlIaUUpRoFUsyaBZHQJSOQh1Tzd11fZQoaAZoCWgPQwjuPsdHizMEwJSGlFKUaBVLMmgWR0CUlFPl+3H8dX2UKGgGaAloD0MIacnjafmB9b+UhpRSlGgVSzJoFkdAlJOe1SflIXV9lChoBmgJaA9DCH++LViqC++/lIaUUpRoFUsyaBZHQJSS+RigCfZ1fZQoaAZoCWgPQwj18jtNZkwWwJSGlFKUaBVLMmgWR0CUklhUzbeudX2UKGgGaAloD0MIJm2q7pEtAcCUhpRSlGgVSzJoFkdAlJHFar3j/HV9lChoBmgJaA9DCNB+pIgMCwPAlIaUUpRoFUsyaBZHQJSRSMS9M9N1fZQoaAZoCWgPQwiSskXSbjQBwJSGlFKUaBVLMmgWR0CUl45TZQHidX2UKGgGaAloD0MIa2XCL/XzDMCUhpRSlGgVSzJoFkdAlJbZmukk8nV9lChoBmgJaA9DCLGIYYcxqfu/lIaUUpRoFUsyaBZHQJSWNSxZ+x51fZQoaAZoCWgPQwgPKJtyhff6v5SGlFKUaBVLMmgWR0CUlZS6lLvkdX2UKGgGaAloD0MIEaYol8avHcCUhpRSlGgVSzJoFkdAlJUASnLq2XV9lChoBmgJaA9DCMfUXdkF0xnAlIaUUpRoFUsyaBZHQJSUhByCFsZ1fZQoaAZoCWgPQwhGXWvvU1UWwJSGlFKUaBVLMmgWR0CUmh92X9iudX2UKGgGaAloD0MIlfQwtDrZD8CUhpRSlGgVSzJoFkdAlJlqS9ugpXV9lChoBmgJaA9DCDgyj/zBAA/AlIaUUpRoFUsyaBZHQJSYw68xsVN1fZQoaAZoCWgPQwhvgQTFj8EVwJSGlFKUaBVLMmgWR0CUmCImw7kodX2UKGgGaAloD0MIkDAMWHIVA8CUhpRSlGgVSzJoFkdAlJeNv4ubqnV9lChoBmgJaA9DCFEyObUz7BTAlIaUUpRoFUsyaBZHQJSXEK2KEWZ1fZQoaAZoCWgPQwhMbhRZawgGwJSGlFKUaBVLMmgWR0CUnHlhgE2YdX2UKGgGaAloD0MI0/VE14VfDMCUhpRSlGgVSzJoFkdAlJvD/2kBS3V9lChoBmgJaA9DCOo/a378tRDAlIaUUpRoFUsyaBZHQJSbHSLIgeR1fZQoaAZoCWgPQwhtHLEWn6IQwJSGlFKUaBVLMmgWR0CUmnvG6wt8dX2UKGgGaAloD0MIwmuXNhwmFMCUhpRSlGgVSzJoFkdAlJnnCj1wpHV9lChoBmgJaA9DCK358ZcWFQnAlIaUUpRoFUsyaBZHQJSZal1r6+F1fZQoaAZoCWgPQwhClC9oIVEYwJSGlFKUaBVLMmgWR0CUnxN4JNTMdX2UKGgGaAloD0MIh4ibU8nAEcCUhpRSlGgVSzJoFkdAlJ5e6NEPUnV9lChoBmgJaA9DCDRMbamD/Py/lIaUUpRoFUsyaBZHQJSduFDfFaV1fZQoaAZoCWgPQwhvKeeLvXcFwJSGlFKUaBVLMmgWR0CUnRbJwKjSdX2UKGgGaAloD0MIJQSr6uVHEMCUhpRSlGgVSzJoFkdAlJyB0yP+43V9lChoBmgJaA9DCDlegehJWQfAlIaUUpRoFUsyaBZHQJScBOj7AL11fZQoaAZoCWgPQwjsoX2s4NcOwJSGlFKUaBVLMmgWR0CUoW6OYIBzdX2UKGgGaAloD0MIw0SDFDyFDcCUhpRSlGgVSzJoFkdAlKC5IDoyK3V9lChoBmgJaA9DCKzgtyHGKxHAlIaUUpRoFUsyaBZHQJSgEmiQDFJ1fZQoaAZoCWgPQwjmkxXD1YH/v5SGlFKUaBVLMmgWR0CUn3D1oQFtdX2UKGgGaAloD0MIx9rf2R5dBcCUhpRSlGgVSzJoFkdAlJ7b+98JD3V9lChoBmgJaA9DCIiCGVOwphDAlIaUUpRoFUsyaBZHQJSeX1dxAB11fZQoaAZoCWgPQwjJ5T+k3x4DwJSGlFKUaBVLMmgWR0CUo/00FbFCdX2UKGgGaAloD0MIwk6xahCmA8CUhpRSlGgVSzJoFkdAlKNH7DVH4HV9lChoBmgJaA9DCApLPKBsagjAlIaUUpRoFUsyaBZHQJSioVCXyAh1fZQoaAZoCWgPQwgk8Ief/+4RwJSGlFKUaBVLMmgWR0CUof/oJRfndX2UKGgGaAloD0MIa0dxjjoqGMCUhpRSlGgVSzJoFkdAlKFrGR3eN3V9lChoBmgJaA9DCN4dGavNPwPAlIaUUpRoFUsyaBZHQJSg7wOOKfp1fZQoaAZoCWgPQwhGmKJcGl8HwJSGlFKUaBVLMmgWR0CUpl9TxXnydX2UKGgGaAloD0MIhsjp6/kaBMCUhpRSlGgVSzJoFkdAlKWqD5CWvHV9lChoBmgJaA9DCHvBpzl5EQLAlIaUUpRoFUsyaBZHQJSlA3Kji4t1fZQoaAZoCWgPQwgUBI9v79oKwJSGlFKUaBVLMmgWR0CUpGHrQgLadX2UKGgGaAloD0MIMSdok8OHC8CUhpRSlGgVSzJoFkdAlKPNDYywfXV9lChoBmgJaA9DCK8GKA01KgXAlIaUUpRoFUsyaBZHQJSjUEfT1Ch1fZQoaAZoCWgPQwjfMxKhEawLwJSGlFKUaBVLMmgWR0CUqQ3ztkWidX2UKGgGaAloD0MIjuVd9YDZBsCUhpRSlGgVSzJoFkdAlKha77Kq43V9lChoBmgJaA9DCGywcJLmLwnAlIaUUpRoFUsyaBZHQJSntG6PKdR1fZQoaAZoCWgPQwjuPsdHi/MOwJSGlFKUaBVLMmgWR0CUpxNPgvUSdX2UKGgGaAloD0MIxEFClC/4EMCUhpRSlGgVSzJoFkdAlKZ+U+s5n3V9lChoBmgJaA9DCNkj1Aypov6/lIaUUpRoFUsyaBZHQJSmAUfxMFl1fZQoaAZoCWgPQwgqGQCquFEHwJSGlFKUaBVLMmgWR0CUq3znzQNTdX2UKGgGaAloD0MIlrIMcayrAsCUhpRSlGgVSzJoFkdAlKrHWFvhqHV9lChoBmgJaA9DCBFTIolephHAlIaUUpRoFUsyaBZHQJSqIJ+lTFV1fZQoaAZoCWgPQwj+mNamsb0HwJSGlFKUaBVLMmgWR0CUqX8iOeasdX2UKGgGaAloD0MIN8XjolrE9L+UhpRSlGgVSzJoFkdAlKjq0dBBzHV9lChoBmgJaA9DCGQEVDiC9AfAlIaUUpRoFUsyaBZHQJSobf+CK791fZQoaAZoCWgPQwioqWVrfZEEwJSGlFKUaBVLMmgWR0CUrwUOd5IIdX2UKGgGaAloD0MIrADfbd4YDsCUhpRSlGgVSzJoFkdAlK5RjriVB3V9lChoBmgJaA9DCKBtNeuMrxLAlIaUUpRoFUsyaBZHQJStrAvcrRV1fZQoaAZoCWgPQwiR1ELJ5FQEwJSGlFKUaBVLMmgWR0CUrQundfsvdX2UKGgGaAloD0MIvhdftMdLFcCUhpRSlGgVSzJoFkdAlKx4MfA9FHV9lChoBmgJaA9DCGk6OxkcZf2/lIaUUpRoFUsyaBZHQJSr/QgLZzx1fZQoaAZoCWgPQwhc/67PnJUCwJSGlFKUaBVLMmgWR0CUs37xd6cBdX2UKGgGaAloD0MIqHAEqRR7/L+UhpRSlGgVSzJoFkdAlLLK5Gz8g3V9lChoBmgJaA9DCBqH+l3YyhPAlIaUUpRoFUsyaBZHQJSyJSZSeiB1fZQoaAZoCWgPQwgxJ2iTwwcLwJSGlFKUaBVLMmgWR0CUsYVW0Z3tdX2UKGgGaAloD0MIBkg0gSK2AMCUhpRSlGgVSzJoFkdAlLD0elsP8XV9lChoBmgJaA9DCLlPjgJE0RLAlIaUUpRoFUsyaBZHQJSweKm8/Ux1fZQoaAZoCWgPQwibjZWYZwUJwJSGlFKUaBVLMmgWR0CUuFFxXGOudX2UKGgGaAloD0MI1xTI7CxaCcCUhpRSlGgVSzJoFkdAlLec/IKc/nV9lChoBmgJaA9DCEiJXdvbrQvAlIaUUpRoFUsyaBZHQJS298w5/9Z1fZQoaAZoCWgPQwieP21Up0MDwJSGlFKUaBVLMmgWR0CUtlgU1yeadX2UKGgGaAloD0MIlIlbBTFQDsCUhpRSlGgVSzJoFkdAlLXFAqur63V9lChoBmgJaA9DCH3mrE85xgjAlIaUUpRoFUsyaBZHQJS1SaPS2IB1fZQoaAZoCWgPQwg0D2CRX18FwJSGlFKUaBVLMmgWR0CUvrPbO/tZdX2UKGgGaAloD0MIWg9fJopQAMCUhpRSlGgVSzJoFkdAlL4Cpm29c3V9lChoBmgJaA9DCFq77UJzPQrAlIaUUpRoFUsyaBZHQJS9XY4ACGN1fZQoaAZoCWgPQwhmZ9E7FaATwJSGlFKUaBVLMmgWR0CUvL4VRDTjdX2UKGgGaAloD0MIcAuW6gL+AsCUhpRSlGgVSzJoFkdAlLwugctGu3V9lChoBmgJaA9DCAN64c6FkQTAlIaUUpRoFUsyaBZHQJS7s0CRwId1fZQoaAZoCWgPQwjPaoE9JjIKwJSGlFKUaBVLMmgWR0CUxHO+qR2bdX2UKGgGaAloD0MI9SwI5X3sE8CUhpRSlGgVSzJoFkdAlMPAGGEf1nV9lChoBmgJaA9DCApkdha9E/2/lIaUUpRoFUsyaBZHQJTDHlKbrkd1fZQoaAZoCWgPQwiyEB0CR7IUwJSGlFKUaBVLMmgWR0CUwoCSidrgdX2UKGgGaAloD0MIX5uNlZinCsCUhpRSlGgVSzJoFkdAlMHtGI9C/3V9lChoBmgJaA9DCGiVmdL6WxHAlIaUUpRoFUsyaBZHQJTBdNUOuq51fZQoaAZoCWgPQwhYchWL33QNwJSGlFKUaBVLMmgWR0CUyZo2n88+dX2UKGgGaAloD0MIvmvQl94+AsCUhpRSlGgVSzJoFkdAlMjl+iJwbXV9lChoBmgJaA9DCKwcWmQ7XwnAlIaUUpRoFUsyaBZHQJTIQ6r/82t1fZQoaAZoCWgPQwgBFCNL5ngTwJSGlFKUaBVLMmgWR0CUx6PIn0CjdX2UKGgGaAloD0MIPfGcLSDUFMCUhpRSlGgVSzJoFkdAlMcQgDA8CHV9lChoBmgJaA9DCLxbWaKzzA3AlIaUUpRoFUsyaBZHQJTGlOmBOHp1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
+ "_n_updates": 16667,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8bc010ea33429e63380c010de24284def3747cca3cc4624698bad6d653b28eff
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6324d5c2e5098f69ba583c266cacfd195583d62c202b425a5f3f02fbeaff4d4f
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e4ee81076ae6e43064e937271f2b9ebf95f73ea815aecccff805d858763800ce
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bad8d3865112c35ceabf712d343706d86293a91205ab2804ad275a25dc1919a
3
  size 46014
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe922a5c280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe922a538d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675375659159759953, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAB5TVPpwpnTz2Xh8/B5TVPpwpnTz2Xh8/B5TVPpwpnTz2Xh8/B5TVPpwpnTz2Xh8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAq5fcPqxjW749tDK/9sfVPwtzyD7uCsG/4AFCvfW0Fj7ezG6/y/CSv03aVL+81Yy+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAHlNU+nCmdPPZeHz+J4C08SqIculI8FTwHlNU+nCmdPPZeHz+J4C08SqIculI8FTwHlNU+nCmdPPZeHz+J4C08SqIculI8FTwHlNU+nCmdPPZeHz+J4C08SqIculI8FTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41714498 0.01918488 0.62254274]\n [0.41714498 0.01918488 0.62254274]\n [0.41714498 0.01918488 0.62254274]\n [0.41714498 0.01918488 0.62254274]]", "desired_goal": "[[ 0.43084463 -0.2142474 -0.6980627 ]\n [ 1.6701648 0.3915027 -1.508146 ]\n [-0.04736507 0.14717467 -0.9328135 ]\n [-1.1479734 -0.831456 -0.27506816]]", "observation": "[[ 4.1714498e-01 1.9184880e-02 6.2254274e-01 1.0612615e-02\n -5.9751107e-04 9.1086198e-03]\n [ 4.1714498e-01 1.9184880e-02 6.2254274e-01 1.0612615e-02\n -5.9751107e-04 9.1086198e-03]\n [ 4.1714498e-01 1.9184880e-02 6.2254274e-01 1.0612615e-02\n -5.9751107e-04 9.1086198e-03]\n [ 4.1714498e-01 1.9184880e-02 6.2254274e-01 1.0612615e-02\n -5.9751107e-04 9.1086198e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbC0zvUu9yzu5jSk+noTsvDwzuz0S+1k+0QUXPjI4Njx0STI8NrozPfcC9L3pvgM8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.04374449 0.00621763 0.16557969]\n [-0.02887183 0.09140632 0.21287182]\n [ 0.14748313 0.0111218 0.01088177]\n [ 0.04387876 -0.11914628 0.00804112]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIc0urIXE/E8CUhpRSlIwBbJRLMowBdJRHQKOTsUnogV51fZQoaAZoCWgPQwjJAiZw6y4KwJSGlFKUaBVLMmgWR0Cjk3ZzYEntdX2UKGgGaAloD0MIBDxp4bIKBMCUhpRSlGgVSzJoFkdAo5M8Z9/jKnV9lChoBmgJaA9DCG+70FynwRTAlIaUUpRoFUsyaBZHQKOS/upjtol1fZQoaAZoCWgPQwjbwvNSsXEZwJSGlFKUaBVLMmgWR0CjlJTjebd8dX2UKGgGaAloD0MIK4cW2c4XAsCUhpRSlGgVSzJoFkdAo5RaFfzBh3V9lChoBmgJaA9DCHicoiO5HAbAlIaUUpRoFUsyaBZHQKOUH8QZn+R1fZQoaAZoCWgPQwiSByKLNPETwJSGlFKUaBVLMmgWR0Cjk+JXIU8FdX2UKGgGaAloD0MIaCWt+IZCC8CUhpRSlGgVSzJoFkdAo5Vxun/DL3V9lChoBmgJaA9DCMy3Pqw36hLAlIaUUpRoFUsyaBZHQKOVNuAqd6N1fZQoaAZoCWgPQwjxSLw8nUsFwJSGlFKUaBVLMmgWR0CjlPyK3uuzdX2UKGgGaAloD0MItmrXhLSWGMCUhpRSlGgVSzJoFkdAo5S/FHavinV9lChoBmgJaA9DCGB15EhnsBHAlIaUUpRoFUsyaBZHQKOWV9bX6Ip1fZQoaAZoCWgPQwhmu0IfLHMSwJSGlFKUaBVLMmgWR0CjlhzuF6AwdX2UKGgGaAloD0MIDybFxydkGMCUhpRSlGgVSzJoFkdAo5Xih6By0nV9lChoBmgJaA9DCFtdTgmIGRPAlIaUUpRoFUsyaBZHQKOVpUYKpkx1fZQoaAZoCWgPQwjtt3aiJGQKwJSGlFKUaBVLMmgWR0CjlzJSrHU+dX2UKGgGaAloD0MIHQJHAg1mFcCUhpRSlGgVSzJoFkdAo5b3d2xIKHV9lChoBmgJaA9DCLFtUWaDbBLAlIaUUpRoFUsyaBZHQKOWvULlV951fZQoaAZoCWgPQwjusl93uhMUwJSGlFKUaBVLMmgWR0Cjln/MOf/WdX2UKGgGaAloD0MIJZS+EHIeD8CUhpRSlGgVSzJoFkdAo5gct03fh3V9lChoBmgJaA9DCLWkoxzMZgzAlIaUUpRoFUsyaBZHQKOX4cebNKR1fZQoaAZoCWgPQwjlCu9yEb8UwJSGlFKUaBVLMmgWR0Cjl6dd/rjYdX2UKGgGaAloD0MIs1w2OucHFMCUhpRSlGgVSzJoFkdAo5dp3X7LuHV9lChoBmgJaA9DCIuKOJ1kOxnAlIaUUpRoFUsyaBZHQKOY/eBQN1B1fZQoaAZoCWgPQwj/y7VoAboFwJSGlFKUaBVLMmgWR0CjmMNM495hdX2UKGgGaAloD0MIi8Iuih4IFsCUhpRSlGgVSzJoFkdAo5iI6r/823V9lChoBmgJaA9DCPhvXpz4GhTAlIaUUpRoFUsyaBZHQKOYS4TbnHN1fZQoaAZoCWgPQwipg7weTEoPwJSGlFKUaBVLMmgWR0CjmeX71qWUdX2UKGgGaAloD0MIgEQTKGIREcCUhpRSlGgVSzJoFkdAo5mrQ9ic5XV9lChoBmgJaA9DCH4ZjBGJYgbAlIaUUpRoFUsyaBZHQKOZcQU5+6R1fZQoaAZoCWgPQwiHo6t0dw0TwJSGlFKUaBVLMmgWR0CjmTPbO/tZdX2UKGgGaAloD0MIKnReY5eIDcCUhpRSlGgVSzJoFkdAo5raKYRdyHV9lChoBmgJaA9DCJKWytsRrg/AlIaUUpRoFUsyaBZHQKOan0DEFW51fZQoaAZoCWgPQwigbTXrjA8PwJSGlFKUaBVLMmgWR0CjmmTijtXxdX2UKGgGaAloD0MIgLirV5ERGsCUhpRSlGgVSzJoFkdAo5onqHGjsXV9lChoBmgJaA9DCJFHcCNlKxjAlIaUUpRoFUsyaBZHQKObuGgzxgB1fZQoaAZoCWgPQwgmjdE6qnoHwJSGlFKUaBVLMmgWR0Cjm32gnMMadX2UKGgGaAloD0MIxjGSPUItGsCUhpRSlGgVSzJoFkdAo5tDQTmGNHV9lChoBmgJaA9DCFzknq7uyBnAlIaUUpRoFUsyaBZHQKObBeTFERd1fZQoaAZoCWgPQwiiJCTSNn4BwJSGlFKUaBVLMmgWR0CjnK1ie/YbdX2UKGgGaAloD0MIM1AZ/z5DBsCUhpRSlGgVSzJoFkdAo5xyioKlYXV9lChoBmgJaA9DCOSeru5YDAfAlIaUUpRoFUsyaBZHQKOcOF23azx1fZQoaAZoCWgPQwgaUG9GzbcEwJSGlFKUaBVLMmgWR0Cjm/r1mJ3xdX2UKGgGaAloD0MIUhA8vr3LD8CUhpRSlGgVSzJoFkdAo52Rp1zQu3V9lChoBmgJaA9DCEVoBBvXfw3AlIaUUpRoFUsyaBZHQKOdVtXPqs51fZQoaAZoCWgPQwhU46WbxAASwJSGlFKUaBVLMmgWR0CjnRxtYSxrdX2UKGgGaAloD0MI3GgAb4FkBMCUhpRSlGgVSzJoFkdAo5ze912aD3V9lChoBmgJaA9DCJ1M3CqIAQnAlIaUUpRoFUsyaBZHQKOel6Q/5cl1fZQoaAZoCWgPQwgCSG3i5N4FwJSGlFKUaBVLMmgWR0Cjnl0Cq6vrdX2UKGgGaAloD0MIfv/mxYlvAsCUhpRSlGgVSzJoFkdAo54jvLHMlnV9lChoBmgJaA9DCHuhgO1g9BrAlIaUUpRoFUsyaBZHQKOd5lYEGJN1fZQoaAZoCWgPQwjM64hDNpADwJSGlFKUaBVLMmgWR0Cjn39uYQardX2UKGgGaAloD0MIMzMzMzNzBMCUhpRSlGgVSzJoFkdAo59En5SFXnV9lChoBmgJaA9DCAHbwYh9YgnAlIaUUpRoFUsyaBZHQKOfCnP3SKF1fZQoaAZoCWgPQwhzLsVVZT8GwJSGlFKUaBVLMmgWR0CjnszwMH8kdX2UKGgGaAloD0MIFa3cC8xqB8CUhpRSlGgVSzJoFkdAo6BieoUBXHV9lChoBmgJaA9DCJaxoZv9AQLAlIaUUpRoFUsyaBZHQKOgJ7PY4AF1fZQoaAZoCWgPQwjVlGQdji4LwJSGlFKUaBVLMmgWR0Cjn+2fChvjdX2UKGgGaAloD0MIcZLmj2ntCsCUhpRSlGgVSzJoFkdAo5+wKYzBRHV9lChoBmgJaA9DCCi6LvzgjB7AlIaUUpRoFUsyaBZHQKOhSQ4jrzJ1fZQoaAZoCWgPQwiQniKHiFsGwJSGlFKUaBVLMmgWR0CjoQ5XEIgOdX2UKGgGaAloD0MItfl/1ZFjEsCUhpRSlGgVSzJoFkdAo6DT9MsYmHV9lChoBmgJaA9DCB+5Nem2JBjAlIaUUpRoFUsyaBZHQKOglqMWGh51fZQoaAZoCWgPQwgl5llJK/4XwJSGlFKUaBVLMmgWR0CjoiimMwUQdX2UKGgGaAloD0MIs3xdhv+0FMCUhpRSlGgVSzJoFkdAo6HuBjFyaXV9lChoBmgJaA9DCDJ2wktwyhPAlIaUUpRoFUsyaBZHQKOhs7xusLh1fZQoaAZoCWgPQwiLcJNRZagbwJSGlFKUaBVLMmgWR0CjoXZlnRLLdX2UKGgGaAloD0MIG70aoDSUCsCUhpRSlGgVSzJoFkdAo6MXek56t3V9lChoBmgJaA9DCMIxy54Etg7AlIaUUpRoFUsyaBZHQKOi3NC7btZ1fZQoaAZoCWgPQwg8+l+uRQsIwJSGlFKUaBVLMmgWR0CjoqJtzjm0dX2UKGgGaAloD0MIJov7j0wHB8CUhpRSlGgVSzJoFkdAo6JlO45LiHV9lChoBmgJaA9DCBl0Quig6xDAlIaUUpRoFUsyaBZHQKOj9/bTMJR1fZQoaAZoCWgPQwiIS447pXMTwJSGlFKUaBVLMmgWR0Cjo70qpcX4dX2UKGgGaAloD0MIkXwlkBIbBcCUhpRSlGgVSzJoFkdAo6OCuuA7P3V9lChoBmgJaA9DCOuQm+EGHBTAlIaUUpRoFUsyaBZHQKOjRWVeKKp1fZQoaAZoCWgPQwgH6pRHN1IZwJSGlFKUaBVLMmgWR0CjpQP6TGHYdX2UKGgGaAloD0MIqRJlbylHCMCUhpRSlGgVSzJoFkdAo6TJWo3rEHV9lChoBmgJaA9DCLTpCOBm8QnAlIaUUpRoFUsyaBZHQKOkjt9hJAd1fZQoaAZoCWgPQwiKIM7DCewCwJSGlFKUaBVLMmgWR0CjpFF3yI56dX2UKGgGaAloD0MI5EwTtp8MDcCUhpRSlGgVSzJoFkdAo6XbMqz7dnV9lChoBmgJaA9DCKc9JefE/g/AlIaUUpRoFUsyaBZHQKOloJF9a2Z1fZQoaAZoCWgPQwgYeO49XFILwJSGlFKUaBVLMmgWR0CjpWYkNWludX2UKGgGaAloD0MIBKvq5XeqFsCUhpRSlGgVSzJoFkdAo6Uo5Jbt7nV9lChoBmgJaA9DCNNQo5BkNgnAlIaUUpRoFUsyaBZHQKOmu1hLGrF1fZQoaAZoCWgPQwg1Y9F0drILwJSGlFKUaBVLMmgWR0CjpoCkO7QLdX2UKGgGaAloD0MIW88QjllWDMCUhpRSlGgVSzJoFkdAo6ZGRoysS3V9lChoBmgJaA9DCNiarbzk3xLAlIaUUpRoFUsyaBZHQKOmCNIbwSd1fZQoaAZoCWgPQwi5T44CRKEJwJSGlFKUaBVLMmgWR0Cjp5UBwMpgdX2UKGgGaAloD0MI1h2LbVKxCcCUhpRSlGgVSzJoFkdAo6daJ2t+1HV9lChoBmgJaA9DCNVA8zl3WwrAlIaUUpRoFUsyaBZHQKOnH74SHuZ1fZQoaAZoCWgPQwgA5IQJozkRwJSGlFKUaBVLMmgWR0CjpuJJGvwFdX2UKGgGaAloD0MIZOjYQSXOB8CUhpRSlGgVSzJoFkdAo6hucawUxnV9lChoBmgJaA9DCDOjHw2nDBXAlIaUUpRoFUsyaBZHQKOoNAFgUlB1fZQoaAZoCWgPQwg+rg0V4wwTwJSGlFKUaBVLMmgWR0Cjp/pCa7VbdX2UKGgGaAloD0MIIcztXu4TCsCUhpRSlGgVSzJoFkdAo6e9kjHGTHV9lChoBmgJaA9DCOfDswQZgRPAlIaUUpRoFUsyaBZHQKOpX6i0v5B1fZQoaAZoCWgPQwj/eK9amTAGwJSGlFKUaBVLMmgWR0CjqSTYVZcLdX2UKGgGaAloD0MIqB3+mqwhEsCUhpRSlGgVSzJoFkdAo6jqdYnv2HV9lChoBmgJaA9DCJ9b6EoEKgbAlIaUUpRoFUsyaBZHQKOorRm9QGh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f89f21490d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f89f21427b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 6, "num_timesteps": 500010, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675392415669603961, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAAQGpiPyMTlj/SoO0/8NEcPwyiob9R1gi/5tCQPu1nqj9D/1w/z3GfP49V4j/pGFC+oACDP7sfuD8hT2u/4GoLP57qM75YO2g/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAA6UssP15AZz+gfM4/g1VsP0THTb8tqS6+wEgKvjqxiT/zfCI/wcbUP9Fe2j+zxvS9AfzEP8FquD9BLiW/n+qSPnGCGD5pzpA/lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAABAamI/IxOWP9Kg7T92ioM++rLHPQS4JT3w0Rw/DKKhv1HWCL/kvgE/gdQKQLWcSD3m0JA+7WeqP0P/XD/I1jU/f5snvIrCoz7PcZ8/j1XiP+kYUL5gIhI/amcfv88Bnz6gAIM/ux+4PyFPa7/suLc+wI+aP2sIKT7gags/nuozvlg7aD9DucK+vfDlvz4Jrz2UaA5LBksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.88443375 1.172459 1.8564703 ]\n [ 0.6125784 -1.2627578 -0.5345202 ]\n [ 0.28284377 1.3312966 0.86327 ]\n [ 1.2456607 1.768236 -0.20322002]\n [ 1.0234566 1.4384683 -0.91917616]\n [ 0.54459953 -0.17569968 0.9071555 ]]", "desired_goal": "[[ 0.6730333 0.9033259 1.6131783 ]\n [ 0.9231798 -0.8038218 -0.17056723]\n [-0.13504314 1.075721 0.6347191 ]\n [ 1.6623155 1.7060186 -0.11951961]\n [ 1.5389405 1.4407579 -0.645237 ]\n [ 0.28694627 0.1489351 1.1312991 ]]", "observation": "[[ 0.88443375 1.172459 1.8564703 0.25691575 0.09750934 0.04045869]\n [ 0.6125784 -1.2627578 -0.5345202 0.506819 2.1692202 0.04897757]\n [ 0.28284377 1.3312966 0.86327 0.71030855 -0.01022994 0.3198436 ]\n [ 1.2456607 1.768236 -0.20322002 0.570837 -0.6226717 0.31056067]\n [ 1.0234566 1.4384683 -0.91917616 0.35883272 1.2075119 0.16507117]\n [ 0.54459953 -0.17569968 0.9071555 -0.38031968 -1.7964092 0.08546685]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYGAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpQu"}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAAHFC6vcvs0j1xs5Y+d2nJPQaVs70Kumc+3bHevHAlgz3506I9l8SAPXR3ET3aZV89yfAAvqgRrT3i/jg+2TgCPoUr7TyZsMc9lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09097311 0.10299071 0.29433778]\n [ 0.09834569 -0.08768658 0.22629562]\n [-0.02718442 0.06403625 0.07950587]\n [ 0.06287497 0.03551431 0.05454049]\n [-0.12591852 0.08450633 0.1806598 ]\n [ 0.12716998 0.02895142 0.0975048 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -1.999999999990898e-05, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4+MTsvMWAsCUhpRSlIwBbJRLMowBdJRHQJSP9Lzwtrd1fZQoaAZoCWgPQwiXqx+b5Mfyv5SGlFKUaBVLMmgWR0CUj1O9nK4hdX2UKGgGaAloD0MIERlW8UYmEsCUhpRSlGgVSzJoFkdAlI6/Dxb0OHV9lChoBmgJaA9DCG8PQkC+RAbAlIaUUpRoFUsyaBZHQJSOQh1Tzd11fZQoaAZoCWgPQwjuPsdHizMEwJSGlFKUaBVLMmgWR0CUlFPl+3H8dX2UKGgGaAloD0MIacnjafmB9b+UhpRSlGgVSzJoFkdAlJOe1SflIXV9lChoBmgJaA9DCH++LViqC++/lIaUUpRoFUsyaBZHQJSS+RigCfZ1fZQoaAZoCWgPQwj18jtNZkwWwJSGlFKUaBVLMmgWR0CUklhUzbeudX2UKGgGaAloD0MIJm2q7pEtAcCUhpRSlGgVSzJoFkdAlJHFar3j/HV9lChoBmgJaA9DCNB+pIgMCwPAlIaUUpRoFUsyaBZHQJSRSMS9M9N1fZQoaAZoCWgPQwiSskXSbjQBwJSGlFKUaBVLMmgWR0CUl45TZQHidX2UKGgGaAloD0MIa2XCL/XzDMCUhpRSlGgVSzJoFkdAlJbZmukk8nV9lChoBmgJaA9DCLGIYYcxqfu/lIaUUpRoFUsyaBZHQJSWNSxZ+x51fZQoaAZoCWgPQwgPKJtyhff6v5SGlFKUaBVLMmgWR0CUlZS6lLvkdX2UKGgGaAloD0MIEaYol8avHcCUhpRSlGgVSzJoFkdAlJUASnLq2XV9lChoBmgJaA9DCMfUXdkF0xnAlIaUUpRoFUsyaBZHQJSUhByCFsZ1fZQoaAZoCWgPQwhGXWvvU1UWwJSGlFKUaBVLMmgWR0CUmh92X9iudX2UKGgGaAloD0MIlfQwtDrZD8CUhpRSlGgVSzJoFkdAlJlqS9ugpXV9lChoBmgJaA9DCDgyj/zBAA/AlIaUUpRoFUsyaBZHQJSYw68xsVN1fZQoaAZoCWgPQwhvgQTFj8EVwJSGlFKUaBVLMmgWR0CUmCImw7kodX2UKGgGaAloD0MIkDAMWHIVA8CUhpRSlGgVSzJoFkdAlJeNv4ubqnV9lChoBmgJaA9DCFEyObUz7BTAlIaUUpRoFUsyaBZHQJSXEK2KEWZ1fZQoaAZoCWgPQwhMbhRZawgGwJSGlFKUaBVLMmgWR0CUnHlhgE2YdX2UKGgGaAloD0MI0/VE14VfDMCUhpRSlGgVSzJoFkdAlJvD/2kBS3V9lChoBmgJaA9DCOo/a378tRDAlIaUUpRoFUsyaBZHQJSbHSLIgeR1fZQoaAZoCWgPQwhtHLEWn6IQwJSGlFKUaBVLMmgWR0CUmnvG6wt8dX2UKGgGaAloD0MIwmuXNhwmFMCUhpRSlGgVSzJoFkdAlJnnCj1wpHV9lChoBmgJaA9DCK358ZcWFQnAlIaUUpRoFUsyaBZHQJSZal1r6+F1fZQoaAZoCWgPQwhClC9oIVEYwJSGlFKUaBVLMmgWR0CUnxN4JNTMdX2UKGgGaAloD0MIh4ibU8nAEcCUhpRSlGgVSzJoFkdAlJ5e6NEPUnV9lChoBmgJaA9DCDRMbamD/Py/lIaUUpRoFUsyaBZHQJSduFDfFaV1fZQoaAZoCWgPQwhvKeeLvXcFwJSGlFKUaBVLMmgWR0CUnRbJwKjSdX2UKGgGaAloD0MIJQSr6uVHEMCUhpRSlGgVSzJoFkdAlJyB0yP+43V9lChoBmgJaA9DCDlegehJWQfAlIaUUpRoFUsyaBZHQJScBOj7AL11fZQoaAZoCWgPQwjsoX2s4NcOwJSGlFKUaBVLMmgWR0CUoW6OYIBzdX2UKGgGaAloD0MIw0SDFDyFDcCUhpRSlGgVSzJoFkdAlKC5IDoyK3V9lChoBmgJaA9DCKzgtyHGKxHAlIaUUpRoFUsyaBZHQJSgEmiQDFJ1fZQoaAZoCWgPQwjmkxXD1YH/v5SGlFKUaBVLMmgWR0CUn3D1oQFtdX2UKGgGaAloD0MIx9rf2R5dBcCUhpRSlGgVSzJoFkdAlJ7b+98JD3V9lChoBmgJaA9DCIiCGVOwphDAlIaUUpRoFUsyaBZHQJSeX1dxAB11fZQoaAZoCWgPQwjJ5T+k3x4DwJSGlFKUaBVLMmgWR0CUo/00FbFCdX2UKGgGaAloD0MIwk6xahCmA8CUhpRSlGgVSzJoFkdAlKNH7DVH4HV9lChoBmgJaA9DCApLPKBsagjAlIaUUpRoFUsyaBZHQJSioVCXyAh1fZQoaAZoCWgPQwgk8Ief/+4RwJSGlFKUaBVLMmgWR0CUof/oJRfndX2UKGgGaAloD0MIa0dxjjoqGMCUhpRSlGgVSzJoFkdAlKFrGR3eN3V9lChoBmgJaA9DCN4dGavNPwPAlIaUUpRoFUsyaBZHQJSg7wOOKfp1fZQoaAZoCWgPQwhGmKJcGl8HwJSGlFKUaBVLMmgWR0CUpl9TxXnydX2UKGgGaAloD0MIhsjp6/kaBMCUhpRSlGgVSzJoFkdAlKWqD5CWvHV9lChoBmgJaA9DCHvBpzl5EQLAlIaUUpRoFUsyaBZHQJSlA3Kji4t1fZQoaAZoCWgPQwgUBI9v79oKwJSGlFKUaBVLMmgWR0CUpGHrQgLadX2UKGgGaAloD0MIMSdok8OHC8CUhpRSlGgVSzJoFkdAlKPNDYywfXV9lChoBmgJaA9DCK8GKA01KgXAlIaUUpRoFUsyaBZHQJSjUEfT1Ch1fZQoaAZoCWgPQwjfMxKhEawLwJSGlFKUaBVLMmgWR0CUqQ3ztkWidX2UKGgGaAloD0MIjuVd9YDZBsCUhpRSlGgVSzJoFkdAlKha77Kq43V9lChoBmgJaA9DCGywcJLmLwnAlIaUUpRoFUsyaBZHQJSntG6PKdR1fZQoaAZoCWgPQwjuPsdHi/MOwJSGlFKUaBVLMmgWR0CUpxNPgvUSdX2UKGgGaAloD0MIxEFClC/4EMCUhpRSlGgVSzJoFkdAlKZ+U+s5n3V9lChoBmgJaA9DCNkj1Aypov6/lIaUUpRoFUsyaBZHQJSmAUfxMFl1fZQoaAZoCWgPQwgqGQCquFEHwJSGlFKUaBVLMmgWR0CUq3znzQNTdX2UKGgGaAloD0MIlrIMcayrAsCUhpRSlGgVSzJoFkdAlKrHWFvhqHV9lChoBmgJaA9DCBFTIolephHAlIaUUpRoFUsyaBZHQJSqIJ+lTFV1fZQoaAZoCWgPQwj+mNamsb0HwJSGlFKUaBVLMmgWR0CUqX8iOeasdX2UKGgGaAloD0MIN8XjolrE9L+UhpRSlGgVSzJoFkdAlKjq0dBBzHV9lChoBmgJaA9DCGQEVDiC9AfAlIaUUpRoFUsyaBZHQJSobf+CK791fZQoaAZoCWgPQwioqWVrfZEEwJSGlFKUaBVLMmgWR0CUrwUOd5IIdX2UKGgGaAloD0MIrADfbd4YDsCUhpRSlGgVSzJoFkdAlK5RjriVB3V9lChoBmgJaA9DCKBtNeuMrxLAlIaUUpRoFUsyaBZHQJStrAvcrRV1fZQoaAZoCWgPQwiR1ELJ5FQEwJSGlFKUaBVLMmgWR0CUrQundfsvdX2UKGgGaAloD0MIvhdftMdLFcCUhpRSlGgVSzJoFkdAlKx4MfA9FHV9lChoBmgJaA9DCGk6OxkcZf2/lIaUUpRoFUsyaBZHQJSr/QgLZzx1fZQoaAZoCWgPQwhc/67PnJUCwJSGlFKUaBVLMmgWR0CUs37xd6cBdX2UKGgGaAloD0MIqHAEqRR7/L+UhpRSlGgVSzJoFkdAlLLK5Gz8g3V9lChoBmgJaA9DCBqH+l3YyhPAlIaUUpRoFUsyaBZHQJSyJSZSeiB1fZQoaAZoCWgPQwgxJ2iTwwcLwJSGlFKUaBVLMmgWR0CUsYVW0Z3tdX2UKGgGaAloD0MIBkg0gSK2AMCUhpRSlGgVSzJoFkdAlLD0elsP8XV9lChoBmgJaA9DCLlPjgJE0RLAlIaUUpRoFUsyaBZHQJSweKm8/Ux1fZQoaAZoCWgPQwibjZWYZwUJwJSGlFKUaBVLMmgWR0CUuFFxXGOudX2UKGgGaAloD0MI1xTI7CxaCcCUhpRSlGgVSzJoFkdAlLec/IKc/nV9lChoBmgJaA9DCEiJXdvbrQvAlIaUUpRoFUsyaBZHQJS298w5/9Z1fZQoaAZoCWgPQwieP21Up0MDwJSGlFKUaBVLMmgWR0CUtlgU1yeadX2UKGgGaAloD0MIlIlbBTFQDsCUhpRSlGgVSzJoFkdAlLXFAqur63V9lChoBmgJaA9DCH3mrE85xgjAlIaUUpRoFUsyaBZHQJS1SaPS2IB1fZQoaAZoCWgPQwg0D2CRX18FwJSGlFKUaBVLMmgWR0CUvrPbO/tZdX2UKGgGaAloD0MIWg9fJopQAMCUhpRSlGgVSzJoFkdAlL4Cpm29c3V9lChoBmgJaA9DCFq77UJzPQrAlIaUUpRoFUsyaBZHQJS9XY4ACGN1fZQoaAZoCWgPQwhmZ9E7FaATwJSGlFKUaBVLMmgWR0CUvL4VRDTjdX2UKGgGaAloD0MIcAuW6gL+AsCUhpRSlGgVSzJoFkdAlLwugctGu3V9lChoBmgJaA9DCAN64c6FkQTAlIaUUpRoFUsyaBZHQJS7s0CRwId1fZQoaAZoCWgPQwjPaoE9JjIKwJSGlFKUaBVLMmgWR0CUxHO+qR2bdX2UKGgGaAloD0MI9SwI5X3sE8CUhpRSlGgVSzJoFkdAlMPAGGEf1nV9lChoBmgJaA9DCApkdha9E/2/lIaUUpRoFUsyaBZHQJTDHlKbrkd1fZQoaAZoCWgPQwiyEB0CR7IUwJSGlFKUaBVLMmgWR0CUwoCSidrgdX2UKGgGaAloD0MIX5uNlZinCsCUhpRSlGgVSzJoFkdAlMHtGI9C/3V9lChoBmgJaA9DCGiVmdL6WxHAlIaUUpRoFUsyaBZHQJTBdNUOuq51fZQoaAZoCWgPQwhYchWL33QNwJSGlFKUaBVLMmgWR0CUyZo2n88+dX2UKGgGaAloD0MIvmvQl94+AsCUhpRSlGgVSzJoFkdAlMjl+iJwbXV9lChoBmgJaA9DCKwcWmQ7XwnAlIaUUpRoFUsyaBZHQJTIQ6r/82t1fZQoaAZoCWgPQwgBFCNL5ngTwJSGlFKUaBVLMmgWR0CUx6PIn0CjdX2UKGgGaAloD0MIPfGcLSDUFMCUhpRSlGgVSzJoFkdAlMcQgDA8CHV9lChoBmgJaA9DCLxbWaKzzA3AlIaUUpRoFUsyaBZHQJTGlOmBOHp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16667, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -3.7801465818658473, "std_reward": 0.6186476457163846, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-02T22:55:49.487774"}
 
1
+ {"mean_reward": -3.0365413296967745, "std_reward": 0.8103662211700734, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-03T03:10:16.092921"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:937245b4b4368ff2988e2801b5c9a1302db5a15a3021fb90070fb13924dc8450
3
  size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e702dc6706864ed1eb13b7c5198439fcd4dc7557baa67bb8cb71a874981ccb8a
3
  size 3056