|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__version__ = "4.57.2" |
|
|
|
|
|
from pathlib import Path |
|
|
from typing import TYPE_CHECKING |
|
|
|
|
|
|
|
|
from . import dependency_versions_check |
|
|
from .utils import ( |
|
|
OptionalDependencyNotAvailable, |
|
|
_LazyModule, |
|
|
is_essentia_available, |
|
|
is_g2p_en_available, |
|
|
is_librosa_available, |
|
|
is_mistral_common_available, |
|
|
is_mlx_available, |
|
|
is_pretty_midi_available, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from .utils import is_bitsandbytes_available as is_bitsandbytes_available |
|
|
from .utils import is_flax_available as is_flax_available |
|
|
from .utils import is_keras_nlp_available as is_keras_nlp_available |
|
|
from .utils import is_scipy_available as is_scipy_available |
|
|
from .utils import is_sentencepiece_available as is_sentencepiece_available |
|
|
from .utils import is_speech_available as is_speech_available |
|
|
from .utils import is_tensorflow_text_available as is_tensorflow_text_available |
|
|
from .utils import is_tf_available as is_tf_available |
|
|
from .utils import is_timm_available as is_timm_available |
|
|
from .utils import is_tokenizers_available as is_tokenizers_available |
|
|
from .utils import is_torch_available as is_torch_available |
|
|
from .utils import is_torchaudio_available as is_torchaudio_available |
|
|
from .utils import is_torchvision_available as is_torchvision_available |
|
|
from .utils import is_vision_available as is_vision_available |
|
|
from .utils import logging as logging |
|
|
from .utils.import_utils import define_import_structure |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
_import_structure = { |
|
|
"audio_utils": [], |
|
|
"commands": [], |
|
|
"configuration_utils": ["PretrainedConfig"], |
|
|
"convert_graph_to_onnx": [], |
|
|
"convert_slow_tokenizers_checkpoints_to_fast": [], |
|
|
"convert_tf_hub_seq_to_seq_bert_to_pytorch": [], |
|
|
"data": [ |
|
|
"DataProcessor", |
|
|
"InputExample", |
|
|
"InputFeatures", |
|
|
"SingleSentenceClassificationProcessor", |
|
|
"SquadExample", |
|
|
"SquadFeatures", |
|
|
"SquadV1Processor", |
|
|
"SquadV2Processor", |
|
|
"glue_compute_metrics", |
|
|
"glue_convert_examples_to_features", |
|
|
"glue_output_modes", |
|
|
"glue_processors", |
|
|
"glue_tasks_num_labels", |
|
|
"squad_convert_examples_to_features", |
|
|
"xnli_compute_metrics", |
|
|
"xnli_output_modes", |
|
|
"xnli_processors", |
|
|
"xnli_tasks_num_labels", |
|
|
], |
|
|
"data.data_collator": [ |
|
|
"DataCollator", |
|
|
"DataCollatorForLanguageModeling", |
|
|
"DataCollatorForMultipleChoice", |
|
|
"DataCollatorForPermutationLanguageModeling", |
|
|
"DataCollatorForSeq2Seq", |
|
|
"DataCollatorForSOP", |
|
|
"DataCollatorForTokenClassification", |
|
|
"DataCollatorForWholeWordMask", |
|
|
"DataCollatorWithFlattening", |
|
|
"DataCollatorWithPadding", |
|
|
"DefaultDataCollator", |
|
|
"default_data_collator", |
|
|
], |
|
|
"data.metrics": [], |
|
|
"data.processors": [], |
|
|
"debug_utils": [], |
|
|
"dependency_versions_check": [], |
|
|
"dependency_versions_table": [], |
|
|
"dynamic_module_utils": [], |
|
|
"feature_extraction_sequence_utils": ["SequenceFeatureExtractor"], |
|
|
"feature_extraction_utils": ["BatchFeature", "FeatureExtractionMixin"], |
|
|
"file_utils": [], |
|
|
"generation": [ |
|
|
"AsyncTextIteratorStreamer", |
|
|
"CompileConfig", |
|
|
"GenerationConfig", |
|
|
"TextIteratorStreamer", |
|
|
"TextStreamer", |
|
|
"WatermarkingConfig", |
|
|
], |
|
|
"hf_argparser": ["HfArgumentParser"], |
|
|
"hyperparameter_search": [], |
|
|
"image_transforms": [], |
|
|
"integrations": [ |
|
|
"is_clearml_available", |
|
|
"is_comet_available", |
|
|
"is_dvclive_available", |
|
|
"is_neptune_available", |
|
|
"is_optuna_available", |
|
|
"is_ray_available", |
|
|
"is_ray_tune_available", |
|
|
"is_sigopt_available", |
|
|
"is_swanlab_available", |
|
|
"is_tensorboard_available", |
|
|
"is_trackio_available", |
|
|
"is_wandb_available", |
|
|
], |
|
|
"loss": [], |
|
|
"modelcard": ["ModelCard"], |
|
|
|
|
|
"modeling_tf_pytorch_utils": [ |
|
|
"convert_tf_weight_name_to_pt_weight_name", |
|
|
"load_pytorch_checkpoint_in_tf2_model", |
|
|
"load_pytorch_model_in_tf2_model", |
|
|
"load_pytorch_weights_in_tf2_model", |
|
|
"load_tf2_checkpoint_in_pytorch_model", |
|
|
"load_tf2_model_in_pytorch_model", |
|
|
"load_tf2_weights_in_pytorch_model", |
|
|
], |
|
|
|
|
|
"onnx": [], |
|
|
"pipelines": [ |
|
|
"AudioClassificationPipeline", |
|
|
"AutomaticSpeechRecognitionPipeline", |
|
|
"CsvPipelineDataFormat", |
|
|
"DepthEstimationPipeline", |
|
|
"DocumentQuestionAnsweringPipeline", |
|
|
"FeatureExtractionPipeline", |
|
|
"FillMaskPipeline", |
|
|
"ImageClassificationPipeline", |
|
|
"ImageFeatureExtractionPipeline", |
|
|
"ImageSegmentationPipeline", |
|
|
"ImageTextToTextPipeline", |
|
|
"ImageToImagePipeline", |
|
|
"ImageToTextPipeline", |
|
|
"JsonPipelineDataFormat", |
|
|
"KeypointMatchingPipeline", |
|
|
"MaskGenerationPipeline", |
|
|
"NerPipeline", |
|
|
"ObjectDetectionPipeline", |
|
|
"PipedPipelineDataFormat", |
|
|
"Pipeline", |
|
|
"PipelineDataFormat", |
|
|
"QuestionAnsweringPipeline", |
|
|
"SummarizationPipeline", |
|
|
"TableQuestionAnsweringPipeline", |
|
|
"Text2TextGenerationPipeline", |
|
|
"TextClassificationPipeline", |
|
|
"TextGenerationPipeline", |
|
|
"TextToAudioPipeline", |
|
|
"TokenClassificationPipeline", |
|
|
"TranslationPipeline", |
|
|
"VideoClassificationPipeline", |
|
|
"VisualQuestionAnsweringPipeline", |
|
|
"ZeroShotAudioClassificationPipeline", |
|
|
"ZeroShotClassificationPipeline", |
|
|
"ZeroShotImageClassificationPipeline", |
|
|
"ZeroShotObjectDetectionPipeline", |
|
|
"pipeline", |
|
|
], |
|
|
"processing_utils": ["ProcessorMixin"], |
|
|
"quantizers": [], |
|
|
"testing_utils": [], |
|
|
"tokenization_utils": ["PreTrainedTokenizer"], |
|
|
"tokenization_utils_base": [ |
|
|
"AddedToken", |
|
|
"BatchEncoding", |
|
|
"CharSpan", |
|
|
"PreTrainedTokenizerBase", |
|
|
"SpecialTokensMixin", |
|
|
"TokenSpan", |
|
|
], |
|
|
"trainer_callback": [ |
|
|
"DefaultFlowCallback", |
|
|
"EarlyStoppingCallback", |
|
|
"PrinterCallback", |
|
|
"ProgressCallback", |
|
|
"TrainerCallback", |
|
|
"TrainerControl", |
|
|
"TrainerState", |
|
|
], |
|
|
"trainer_utils": [ |
|
|
"EvalPrediction", |
|
|
"IntervalStrategy", |
|
|
"SchedulerType", |
|
|
"enable_full_determinism", |
|
|
"set_seed", |
|
|
], |
|
|
"training_args": ["TrainingArguments"], |
|
|
"training_args_seq2seq": ["Seq2SeqTrainingArguments"], |
|
|
"training_args_tf": ["TFTrainingArguments"], |
|
|
"utils": [ |
|
|
"CONFIG_NAME", |
|
|
"MODEL_CARD_NAME", |
|
|
"PYTORCH_PRETRAINED_BERT_CACHE", |
|
|
"PYTORCH_TRANSFORMERS_CACHE", |
|
|
"SPIECE_UNDERLINE", |
|
|
"TF2_WEIGHTS_NAME", |
|
|
"TF_WEIGHTS_NAME", |
|
|
"TRANSFORMERS_CACHE", |
|
|
"WEIGHTS_NAME", |
|
|
"TensorType", |
|
|
"add_end_docstrings", |
|
|
"add_start_docstrings", |
|
|
"is_apex_available", |
|
|
"is_av_available", |
|
|
"is_bitsandbytes_available", |
|
|
"is_datasets_available", |
|
|
"is_faiss_available", |
|
|
"is_flax_available", |
|
|
"is_keras_nlp_available", |
|
|
"is_matplotlib_available", |
|
|
"is_mlx_available", |
|
|
"is_phonemizer_available", |
|
|
"is_psutil_available", |
|
|
"is_py3nvml_available", |
|
|
"is_pyctcdecode_available", |
|
|
"is_sacremoses_available", |
|
|
"is_safetensors_available", |
|
|
"is_scipy_available", |
|
|
"is_sentencepiece_available", |
|
|
"is_sklearn_available", |
|
|
"is_speech_available", |
|
|
"is_tensorflow_text_available", |
|
|
"is_tf_available", |
|
|
"is_timm_available", |
|
|
"is_tokenizers_available", |
|
|
"is_torch_available", |
|
|
"is_torch_hpu_available", |
|
|
"is_torch_mlu_available", |
|
|
"is_torch_musa_available", |
|
|
"is_torch_neuroncore_available", |
|
|
"is_torch_npu_available", |
|
|
"is_torchvision_available", |
|
|
"is_torch_xla_available", |
|
|
"is_torch_xpu_available", |
|
|
"is_vision_available", |
|
|
"logging", |
|
|
], |
|
|
"utils.quantization_config": [ |
|
|
"AqlmConfig", |
|
|
"AutoRoundConfig", |
|
|
"AwqConfig", |
|
|
"BitNetQuantConfig", |
|
|
"BitsAndBytesConfig", |
|
|
"CompressedTensorsConfig", |
|
|
"EetqConfig", |
|
|
"FbgemmFp8Config", |
|
|
"FineGrainedFP8Config", |
|
|
"GPTQConfig", |
|
|
"HiggsConfig", |
|
|
"HqqConfig", |
|
|
"Mxfp4Config", |
|
|
"QuantoConfig", |
|
|
"QuarkConfig", |
|
|
"FPQuantConfig", |
|
|
"SpQRConfig", |
|
|
"TorchAoConfig", |
|
|
"VptqConfig", |
|
|
], |
|
|
"video_utils": [], |
|
|
} |
|
|
|
|
|
|
|
|
try: |
|
|
if not is_tokenizers_available(): |
|
|
raise OptionalDependencyNotAvailable() |
|
|
except OptionalDependencyNotAvailable: |
|
|
from .utils import dummy_tokenizers_objects |
|
|
|
|
|
_import_structure["utils.dummy_tokenizers_objects"] = [ |
|
|
name for name in dir(dummy_tokenizers_objects) if not name.startswith("_") |
|
|
] |
|
|
else: |
|
|
|
|
|
_import_structure["tokenization_utils_fast"] = ["PreTrainedTokenizerFast"] |
|
|
|
|
|
|
|
|
try: |
|
|
if not (is_sentencepiece_available() and is_tokenizers_available()): |
|
|
raise OptionalDependencyNotAvailable() |
|
|
except OptionalDependencyNotAvailable: |
|
|
from .utils import dummy_sentencepiece_and_tokenizers_objects |
|
|
|
|
|
_import_structure["utils.dummy_sentencepiece_and_tokenizers_objects"] = [ |
|
|
name for name in dir(dummy_sentencepiece_and_tokenizers_objects) if not name.startswith("_") |
|
|
] |
|
|
else: |
|
|
_import_structure["convert_slow_tokenizer"] = [ |
|
|
"SLOW_TO_FAST_CONVERTERS", |
|
|
"convert_slow_tokenizer", |
|
|
] |
|
|
|
|
|
try: |
|
|
if not (is_mistral_common_available()): |
|
|
raise OptionalDependencyNotAvailable() |
|
|
except OptionalDependencyNotAvailable: |
|
|
from .utils import dummy_mistral_common_objects |
|
|
|
|
|
_import_structure["utils.dummy_mistral_common_objects"] = [ |
|
|
name for name in dir(dummy_mistral_common_objects) if not name.startswith("_") |
|
|
] |
|
|
else: |
|
|
_import_structure["tokenization_mistral_common"] = ["MistralCommonTokenizer"] |
|
|
|
|
|
|
|
|
try: |
|
|
if not is_vision_available(): |
|
|
raise OptionalDependencyNotAvailable() |
|
|
except OptionalDependencyNotAvailable: |
|
|
from .utils import dummy_vision_objects |
|
|
|
|
|
_import_structure["utils.dummy_vision_objects"] = [ |
|
|
name for name in dir(dummy_vision_objects) if not name.startswith("_") |
|
|
] |
|
|
else: |
|
|
_import_structure["image_processing_base"] = ["ImageProcessingMixin"] |
|
|
_import_structure["image_processing_utils"] = ["BaseImageProcessor"] |
|
|
_import_structure["image_utils"] = ["ImageFeatureExtractionMixin"] |
|
|
|
|
|
try: |
|
|
if not is_torchvision_available(): |
|
|
raise OptionalDependencyNotAvailable() |
|
|
except OptionalDependencyNotAvailable: |
|
|
from .utils import dummy_torchvision_objects |
|
|
|
|
|
_import_structure["utils.dummy_torchvision_objects"] = [ |
|
|
name for name in dir(dummy_torchvision_objects) if not name.startswith("_") |
|
|
] |
|
|
else: |
|
|
_import_structure["image_processing_utils_fast"] = ["BaseImageProcessorFast"] |
|
|
_import_structure["video_processing_utils"] = ["BaseVideoProcessor"] |
|
|
|
|
|
|
|
|
try: |
|
|
if not is_torch_available(): |
|
|
raise OptionalDependencyNotAvailable() |
|
|
except OptionalDependencyNotAvailable: |
|
|
from .utils import dummy_pt_objects |
|
|
|
|
|
_import_structure["utils.dummy_pt_objects"] = [name for name in dir(dummy_pt_objects) if not name.startswith("_")] |
|
|
else: |
|
|
_import_structure["model_debugging_utils"] = [ |
|
|
"model_addition_debugger_context", |
|
|
] |
|
|
_import_structure["activations"] = [] |
|
|
_import_structure["cache_utils"] = [ |
|
|
"CacheLayerMixin", |
|
|
"DynamicLayer", |
|
|
"StaticLayer", |
|
|
"StaticSlidingWindowLayer", |
|
|
"SlidingWindowLayer", |
|
|
"ChunkedSlidingLayer", |
|
|
"QuantoQuantizedLayer", |
|
|
"HQQQuantizedLayer", |
|
|
"Cache", |
|
|
"DynamicCache", |
|
|
"EncoderDecoderCache", |
|
|
"HQQQuantizedCache", |
|
|
"HybridCache", |
|
|
"HybridChunkedCache", |
|
|
"OffloadedCache", |
|
|
"OffloadedStaticCache", |
|
|
"QuantizedCache", |
|
|
"QuantoQuantizedCache", |
|
|
"SinkCache", |
|
|
"SlidingWindowCache", |
|
|
"StaticCache", |
|
|
] |
|
|
_import_structure["data.datasets"] = [ |
|
|
"GlueDataset", |
|
|
"GlueDataTrainingArguments", |
|
|
"LineByLineTextDataset", |
|
|
"LineByLineWithRefDataset", |
|
|
"LineByLineWithSOPTextDataset", |
|
|
"SquadDataset", |
|
|
"SquadDataTrainingArguments", |
|
|
"TextDataset", |
|
|
"TextDatasetForNextSentencePrediction", |
|
|
] |
|
|
_import_structure["generation"].extend( |
|
|
[ |
|
|
"AlternatingCodebooksLogitsProcessor", |
|
|
"BayesianDetectorConfig", |
|
|
"BayesianDetectorModel", |
|
|
"BeamScorer", |
|
|
"ClassifierFreeGuidanceLogitsProcessor", |
|
|
"ConstrainedBeamSearchScorer", |
|
|
"Constraint", |
|
|
"ConstraintListState", |
|
|
"DisjunctiveConstraint", |
|
|
"EncoderNoRepeatNGramLogitsProcessor", |
|
|
"EncoderRepetitionPenaltyLogitsProcessor", |
|
|
"EosTokenCriteria", |
|
|
"EpsilonLogitsWarper", |
|
|
"EtaLogitsWarper", |
|
|
"ExponentialDecayLengthPenalty", |
|
|
"ForcedBOSTokenLogitsProcessor", |
|
|
"ForcedEOSTokenLogitsProcessor", |
|
|
"GenerationMixin", |
|
|
"InfNanRemoveLogitsProcessor", |
|
|
"LogitNormalization", |
|
|
"LogitsProcessor", |
|
|
"LogitsProcessorList", |
|
|
"MaxLengthCriteria", |
|
|
"MaxTimeCriteria", |
|
|
"MinLengthLogitsProcessor", |
|
|
"MinNewTokensLengthLogitsProcessor", |
|
|
"MinPLogitsWarper", |
|
|
"NoBadWordsLogitsProcessor", |
|
|
"NoRepeatNGramLogitsProcessor", |
|
|
"PhrasalConstraint", |
|
|
"PrefixConstrainedLogitsProcessor", |
|
|
"RepetitionPenaltyLogitsProcessor", |
|
|
"SequenceBiasLogitsProcessor", |
|
|
"StoppingCriteria", |
|
|
"StoppingCriteriaList", |
|
|
"StopStringCriteria", |
|
|
"SuppressTokensAtBeginLogitsProcessor", |
|
|
"SuppressTokensLogitsProcessor", |
|
|
"SynthIDTextWatermarkDetector", |
|
|
"SynthIDTextWatermarkingConfig", |
|
|
"SynthIDTextWatermarkLogitsProcessor", |
|
|
"TemperatureLogitsWarper", |
|
|
"TopKLogitsWarper", |
|
|
"TopPLogitsWarper", |
|
|
"TypicalLogitsWarper", |
|
|
"UnbatchedClassifierFreeGuidanceLogitsProcessor", |
|
|
"WatermarkDetector", |
|
|
"WatermarkLogitsProcessor", |
|
|
"WhisperTimeStampLogitsProcessor", |
|
|
] |
|
|
) |
|
|
|
|
|
|
|
|
_import_structure["integrations.executorch"] = [ |
|
|
"TorchExportableModuleWithStaticCache", |
|
|
"convert_and_export_with_cache", |
|
|
] |
|
|
|
|
|
_import_structure["modeling_flash_attention_utils"] = [] |
|
|
_import_structure["modeling_layers"] = ["GradientCheckpointingLayer"] |
|
|
_import_structure["modeling_outputs"] = [] |
|
|
_import_structure["modeling_rope_utils"] = ["ROPE_INIT_FUNCTIONS", "dynamic_rope_update"] |
|
|
_import_structure["modeling_utils"] = ["PreTrainedModel", "AttentionInterface"] |
|
|
_import_structure["masking_utils"] = ["AttentionMaskInterface"] |
|
|
_import_structure["optimization"] = [ |
|
|
"Adafactor", |
|
|
"get_constant_schedule", |
|
|
"get_constant_schedule_with_warmup", |
|
|
"get_cosine_schedule_with_warmup", |
|
|
"get_cosine_with_hard_restarts_schedule_with_warmup", |
|
|
"get_cosine_with_min_lr_schedule_with_warmup", |
|
|
"get_cosine_with_min_lr_schedule_with_warmup_lr_rate", |
|
|
"get_inverse_sqrt_schedule", |
|
|
"get_linear_schedule_with_warmup", |
|
|
"get_polynomial_decay_schedule_with_warmup", |
|
|
"get_scheduler", |
|
|
"get_wsd_schedule", |
|
|
"get_reduce_on_plateau_schedule", |
|
|
] |
|
|
_import_structure["pytorch_utils"] = [ |
|
|
"Conv1D", |
|
|
"apply_chunking_to_forward", |
|
|
"prune_layer", |
|
|
"infer_device", |
|
|
] |
|
|
_import_structure["sagemaker"] = [] |
|
|
_import_structure["time_series_utils"] = [] |
|
|
_import_structure["trainer"] = ["Trainer"] |
|
|
_import_structure["trainer_pt_utils"] = ["torch_distributed_zero_first"] |
|
|
_import_structure["trainer_seq2seq"] = ["Seq2SeqTrainer"] |
|
|
|
|
|
|
|
|
try: |
|
|
if not is_tf_available(): |
|
|
raise OptionalDependencyNotAvailable() |
|
|
except OptionalDependencyNotAvailable: |
|
|
from .utils import dummy_tf_objects |
|
|
|
|
|
_import_structure["utils.dummy_tf_objects"] = [name for name in dir(dummy_tf_objects) if not name.startswith("_")] |
|
|
else: |
|
|
_import_structure["activations_tf"] = [] |
|
|
_import_structure["generation"].extend( |
|
|
[ |
|
|
"TFForcedBOSTokenLogitsProcessor", |
|
|
"TFForcedEOSTokenLogitsProcessor", |
|
|
"TFForceTokensLogitsProcessor", |
|
|
"TFGenerationMixin", |
|
|
"TFLogitsProcessor", |
|
|
"TFLogitsProcessorList", |
|
|
"TFLogitsWarper", |
|
|
"TFMinLengthLogitsProcessor", |
|
|
"TFNoBadWordsLogitsProcessor", |
|
|
"TFNoRepeatNGramLogitsProcessor", |
|
|
"TFRepetitionPenaltyLogitsProcessor", |
|
|
"TFSuppressTokensAtBeginLogitsProcessor", |
|
|
"TFSuppressTokensLogitsProcessor", |
|
|
"TFTemperatureLogitsWarper", |
|
|
"TFTopKLogitsWarper", |
|
|
"TFTopPLogitsWarper", |
|
|
] |
|
|
) |
|
|
_import_structure["keras_callbacks"] = ["KerasMetricCallback", "PushToHubCallback"] |
|
|
_import_structure["modeling_tf_outputs"] = [] |
|
|
_import_structure["modeling_tf_utils"] = [ |
|
|
"TFPreTrainedModel", |
|
|
"TFSequenceSummary", |
|
|
"TFSharedEmbeddings", |
|
|
"shape_list", |
|
|
] |
|
|
_import_structure["optimization_tf"] = [ |
|
|
"AdamWeightDecay", |
|
|
"GradientAccumulator", |
|
|
"WarmUp", |
|
|
"create_optimizer", |
|
|
] |
|
|
_import_structure["tf_utils"] = [] |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
if not is_flax_available(): |
|
|
raise OptionalDependencyNotAvailable() |
|
|
except OptionalDependencyNotAvailable: |
|
|
from .utils import dummy_flax_objects |
|
|
|
|
|
_import_structure["utils.dummy_flax_objects"] = [ |
|
|
name for name in dir(dummy_flax_objects) if not name.startswith("_") |
|
|
] |
|
|
else: |
|
|
_import_structure["generation"].extend( |
|
|
[ |
|
|
"FlaxForcedBOSTokenLogitsProcessor", |
|
|
"FlaxForcedEOSTokenLogitsProcessor", |
|
|
"FlaxForceTokensLogitsProcessor", |
|
|
"FlaxGenerationMixin", |
|
|
"FlaxLogitsProcessor", |
|
|
"FlaxLogitsProcessorList", |
|
|
"FlaxLogitsWarper", |
|
|
"FlaxMinLengthLogitsProcessor", |
|
|
"FlaxTemperatureLogitsWarper", |
|
|
"FlaxSuppressTokensAtBeginLogitsProcessor", |
|
|
"FlaxSuppressTokensLogitsProcessor", |
|
|
"FlaxTopKLogitsWarper", |
|
|
"FlaxTopPLogitsWarper", |
|
|
"FlaxWhisperTimeStampLogitsProcessor", |
|
|
] |
|
|
) |
|
|
_import_structure["modeling_flax_outputs"] = [] |
|
|
_import_structure["modeling_flax_utils"] = ["FlaxPreTrainedModel"] |
|
|
|
|
|
|
|
|
if TYPE_CHECKING: |
|
|
|
|
|
from .cache_utils import Cache as Cache |
|
|
from .cache_utils import ChunkedSlidingLayer as ChunkedSlidingLayer |
|
|
from .cache_utils import DynamicCache as DynamicCache |
|
|
from .cache_utils import DynamicLayer as DynamicLayer |
|
|
from .cache_utils import EncoderDecoderCache as EncoderDecoderCache |
|
|
from .cache_utils import HQQQuantizedCache as HQQQuantizedCache |
|
|
from .cache_utils import HQQQuantizedLayer as HQQQuantizedLayer |
|
|
from .cache_utils import HybridCache as HybridCache |
|
|
from .cache_utils import OffloadedCache as OffloadedCache |
|
|
from .cache_utils import OffloadedStaticCache as OffloadedStaticCache |
|
|
from .cache_utils import QuantizedCache as QuantizedCache |
|
|
from .cache_utils import QuantoQuantizedCache as QuantoQuantizedCache |
|
|
from .cache_utils import QuantoQuantizedLayer as QuantoQuantizedLayer |
|
|
from .cache_utils import SinkCache as SinkCache |
|
|
from .cache_utils import SlidingWindowCache as SlidingWindowCache |
|
|
from .cache_utils import SlidingWindowLayer as SlidingWindowLayer |
|
|
from .cache_utils import StaticCache as StaticCache |
|
|
from .cache_utils import StaticLayer as StaticLayer |
|
|
from .cache_utils import StaticSlidingWindowLayer as StaticSlidingWindowLayer |
|
|
from .configuration_utils import PretrainedConfig as PretrainedConfig |
|
|
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS as SLOW_TO_FAST_CONVERTERS |
|
|
from .convert_slow_tokenizer import convert_slow_tokenizer as convert_slow_tokenizer |
|
|
|
|
|
|
|
|
from .data import DataProcessor as DataProcessor |
|
|
from .data import InputExample as InputExample |
|
|
from .data import InputFeatures as InputFeatures |
|
|
from .data import SingleSentenceClassificationProcessor as SingleSentenceClassificationProcessor |
|
|
from .data import SquadExample as SquadExample |
|
|
from .data import SquadFeatures as SquadFeatures |
|
|
from .data import SquadV1Processor as SquadV1Processor |
|
|
from .data import SquadV2Processor as SquadV2Processor |
|
|
from .data import glue_compute_metrics as glue_compute_metrics |
|
|
from .data import glue_convert_examples_to_features as glue_convert_examples_to_features |
|
|
from .data import glue_output_modes as glue_output_modes |
|
|
from .data import glue_processors as glue_processors |
|
|
from .data import glue_tasks_num_labels as glue_tasks_num_labels |
|
|
from .data import squad_convert_examples_to_features as squad_convert_examples_to_features |
|
|
from .data import xnli_compute_metrics as xnli_compute_metrics |
|
|
from .data import xnli_output_modes as xnli_output_modes |
|
|
from .data import xnli_processors as xnli_processors |
|
|
from .data import xnli_tasks_num_labels as xnli_tasks_num_labels |
|
|
from .data.data_collator import DataCollator as DataCollator |
|
|
from .data.data_collator import DataCollatorForLanguageModeling as DataCollatorForLanguageModeling |
|
|
from .data.data_collator import DataCollatorForMultipleChoice as DataCollatorForMultipleChoice |
|
|
from .data.data_collator import ( |
|
|
DataCollatorForPermutationLanguageModeling as DataCollatorForPermutationLanguageModeling, |
|
|
) |
|
|
from .data.data_collator import DataCollatorForSeq2Seq as DataCollatorForSeq2Seq |
|
|
from .data.data_collator import DataCollatorForSOP as DataCollatorForSOP |
|
|
from .data.data_collator import DataCollatorForTokenClassification as DataCollatorForTokenClassification |
|
|
from .data.data_collator import DataCollatorForWholeWordMask as DataCollatorForWholeWordMask |
|
|
from .data.data_collator import DataCollatorWithFlattening as DataCollatorWithFlattening |
|
|
from .data.data_collator import DataCollatorWithPadding as DataCollatorWithPadding |
|
|
from .data.data_collator import DefaultDataCollator as DefaultDataCollator |
|
|
from .data.data_collator import default_data_collator as default_data_collator |
|
|
from .data.datasets import GlueDataset as GlueDataset |
|
|
from .data.datasets import GlueDataTrainingArguments as GlueDataTrainingArguments |
|
|
from .data.datasets import LineByLineTextDataset as LineByLineTextDataset |
|
|
from .data.datasets import LineByLineWithRefDataset as LineByLineWithRefDataset |
|
|
from .data.datasets import LineByLineWithSOPTextDataset as LineByLineWithSOPTextDataset |
|
|
from .data.datasets import SquadDataset as SquadDataset |
|
|
from .data.datasets import SquadDataTrainingArguments as SquadDataTrainingArguments |
|
|
from .data.datasets import TextDataset as TextDataset |
|
|
from .data.datasets import TextDatasetForNextSentencePrediction as TextDatasetForNextSentencePrediction |
|
|
from .feature_extraction_sequence_utils import SequenceFeatureExtractor as SequenceFeatureExtractor |
|
|
|
|
|
|
|
|
from .feature_extraction_utils import BatchFeature as BatchFeature |
|
|
from .feature_extraction_utils import FeatureExtractionMixin as FeatureExtractionMixin |
|
|
|
|
|
|
|
|
from .generation import AlternatingCodebooksLogitsProcessor as AlternatingCodebooksLogitsProcessor |
|
|
from .generation import AsyncTextIteratorStreamer as AsyncTextIteratorStreamer |
|
|
from .generation import BayesianDetectorConfig as BayesianDetectorConfig |
|
|
from .generation import BayesianDetectorModel as BayesianDetectorModel |
|
|
from .generation import BeamScorer as BeamScorer |
|
|
from .generation import ClassifierFreeGuidanceLogitsProcessor as ClassifierFreeGuidanceLogitsProcessor |
|
|
from .generation import CompileConfig as CompileConfig |
|
|
from .generation import ConstrainedBeamSearchScorer as ConstrainedBeamSearchScorer |
|
|
from .generation import Constraint as Constraint |
|
|
from .generation import ConstraintListState as ConstraintListState |
|
|
from .generation import DisjunctiveConstraint as DisjunctiveConstraint |
|
|
from .generation import EncoderNoRepeatNGramLogitsProcessor as EncoderNoRepeatNGramLogitsProcessor |
|
|
from .generation import EncoderRepetitionPenaltyLogitsProcessor as EncoderRepetitionPenaltyLogitsProcessor |
|
|
from .generation import EosTokenCriteria as EosTokenCriteria |
|
|
from .generation import EpsilonLogitsWarper as EpsilonLogitsWarper |
|
|
from .generation import EtaLogitsWarper as EtaLogitsWarper |
|
|
from .generation import ExponentialDecayLengthPenalty as ExponentialDecayLengthPenalty |
|
|
from .generation import FlaxForcedBOSTokenLogitsProcessor as FlaxForcedBOSTokenLogitsProcessor |
|
|
from .generation import FlaxForcedEOSTokenLogitsProcessor as FlaxForcedEOSTokenLogitsProcessor |
|
|
from .generation import FlaxForceTokensLogitsProcessor as FlaxForceTokensLogitsProcessor |
|
|
from .generation import FlaxGenerationMixin as FlaxGenerationMixin |
|
|
from .generation import FlaxLogitsProcessor as FlaxLogitsProcessor |
|
|
from .generation import FlaxLogitsProcessorList as FlaxLogitsProcessorList |
|
|
from .generation import FlaxLogitsWarper as FlaxLogitsWarper |
|
|
from .generation import FlaxMinLengthLogitsProcessor as FlaxMinLengthLogitsProcessor |
|
|
from .generation import FlaxSuppressTokensAtBeginLogitsProcessor as FlaxSuppressTokensAtBeginLogitsProcessor |
|
|
from .generation import FlaxSuppressTokensLogitsProcessor as FlaxSuppressTokensLogitsProcessor |
|
|
from .generation import FlaxTemperatureLogitsWarper as FlaxTemperatureLogitsWarper |
|
|
from .generation import FlaxTopKLogitsWarper as FlaxTopKLogitsWarper |
|
|
from .generation import FlaxTopPLogitsWarper as FlaxTopPLogitsWarper |
|
|
from .generation import FlaxWhisperTimeStampLogitsProcessor as FlaxWhisperTimeStampLogitsProcessor |
|
|
from .generation import ForcedBOSTokenLogitsProcessor as ForcedBOSTokenLogitsProcessor |
|
|
from .generation import ForcedEOSTokenLogitsProcessor as ForcedEOSTokenLogitsProcessor |
|
|
from .generation import GenerationConfig as GenerationConfig |
|
|
from .generation import GenerationMixin as GenerationMixin |
|
|
from .generation import InfNanRemoveLogitsProcessor as InfNanRemoveLogitsProcessor |
|
|
from .generation import LogitNormalization as LogitNormalization |
|
|
from .generation import LogitsProcessor as LogitsProcessor |
|
|
from .generation import LogitsProcessorList as LogitsProcessorList |
|
|
from .generation import MaxLengthCriteria as MaxLengthCriteria |
|
|
from .generation import MaxTimeCriteria as MaxTimeCriteria |
|
|
from .generation import MinLengthLogitsProcessor as MinLengthLogitsProcessor |
|
|
from .generation import MinNewTokensLengthLogitsProcessor as MinNewTokensLengthLogitsProcessor |
|
|
from .generation import MinPLogitsWarper as MinPLogitsWarper |
|
|
from .generation import NoBadWordsLogitsProcessor as NoBadWordsLogitsProcessor |
|
|
from .generation import NoRepeatNGramLogitsProcessor as NoRepeatNGramLogitsProcessor |
|
|
from .generation import PhrasalConstraint as PhrasalConstraint |
|
|
from .generation import PrefixConstrainedLogitsProcessor as PrefixConstrainedLogitsProcessor |
|
|
from .generation import RepetitionPenaltyLogitsProcessor as RepetitionPenaltyLogitsProcessor |
|
|
from .generation import SequenceBiasLogitsProcessor as SequenceBiasLogitsProcessor |
|
|
from .generation import StoppingCriteria as StoppingCriteria |
|
|
from .generation import StoppingCriteriaList as StoppingCriteriaList |
|
|
from .generation import StopStringCriteria as StopStringCriteria |
|
|
from .generation import SuppressTokensAtBeginLogitsProcessor as SuppressTokensAtBeginLogitsProcessor |
|
|
from .generation import SuppressTokensLogitsProcessor as SuppressTokensLogitsProcessor |
|
|
from .generation import SynthIDTextWatermarkDetector as SynthIDTextWatermarkDetector |
|
|
from .generation import SynthIDTextWatermarkingConfig as SynthIDTextWatermarkingConfig |
|
|
from .generation import SynthIDTextWatermarkLogitsProcessor as SynthIDTextWatermarkLogitsProcessor |
|
|
from .generation import TemperatureLogitsWarper as TemperatureLogitsWarper |
|
|
from .generation import TextIteratorStreamer as TextIteratorStreamer |
|
|
from .generation import TextStreamer as TextStreamer |
|
|
from .generation import TFForcedBOSTokenLogitsProcessor as TFForcedBOSTokenLogitsProcessor |
|
|
from .generation import TFForcedEOSTokenLogitsProcessor as TFForcedEOSTokenLogitsProcessor |
|
|
from .generation import TFForceTokensLogitsProcessor as TFForceTokensLogitsProcessor |
|
|
from .generation import TFGenerationMixin as TFGenerationMixin |
|
|
from .generation import TFLogitsProcessor as TFLogitsProcessor |
|
|
from .generation import TFLogitsProcessorList as TFLogitsProcessorList |
|
|
from .generation import TFLogitsWarper as TFLogitsWarper |
|
|
from .generation import TFMinLengthLogitsProcessor as TFMinLengthLogitsProcessor |
|
|
from .generation import TFNoBadWordsLogitsProcessor as TFNoBadWordsLogitsProcessor |
|
|
from .generation import TFNoRepeatNGramLogitsProcessor as TFNoRepeatNGramLogitsProcessor |
|
|
from .generation import TFRepetitionPenaltyLogitsProcessor as TFRepetitionPenaltyLogitsProcessor |
|
|
from .generation import TFSuppressTokensAtBeginLogitsProcessor as TFSuppressTokensAtBeginLogitsProcessor |
|
|
from .generation import TFSuppressTokensLogitsProcessor as TFSuppressTokensLogitsProcessor |
|
|
from .generation import TFTemperatureLogitsWarper as TFTemperatureLogitsWarper |
|
|
from .generation import TFTopKLogitsWarper as TFTopKLogitsWarper |
|
|
from .generation import TFTopPLogitsWarper as TFTopPLogitsWarper |
|
|
from .generation import TopKLogitsWarper as TopKLogitsWarper |
|
|
from .generation import TopPLogitsWarper as TopPLogitsWarper |
|
|
from .generation import TypicalLogitsWarper as TypicalLogitsWarper |
|
|
from .generation import ( |
|
|
UnbatchedClassifierFreeGuidanceLogitsProcessor as UnbatchedClassifierFreeGuidanceLogitsProcessor, |
|
|
) |
|
|
from .generation import WatermarkDetector as WatermarkDetector |
|
|
from .generation import WatermarkingConfig as WatermarkingConfig |
|
|
from .generation import WatermarkLogitsProcessor as WatermarkLogitsProcessor |
|
|
from .generation import WhisperTimeStampLogitsProcessor as WhisperTimeStampLogitsProcessor |
|
|
from .hf_argparser import HfArgumentParser as HfArgumentParser |
|
|
from .image_processing_base import ImageProcessingMixin as ImageProcessingMixin |
|
|
from .image_processing_utils import BaseImageProcessor as BaseImageProcessor |
|
|
from .image_processing_utils_fast import BaseImageProcessorFast as BaseImageProcessorFast |
|
|
from .image_utils import ImageFeatureExtractionMixin as ImageFeatureExtractionMixin |
|
|
|
|
|
|
|
|
from .integrations import is_clearml_available as is_clearml_available |
|
|
from .integrations import is_comet_available as is_comet_available |
|
|
from .integrations import is_dvclive_available as is_dvclive_available |
|
|
from .integrations import is_neptune_available as is_neptune_available |
|
|
from .integrations import is_optuna_available as is_optuna_available |
|
|
from .integrations import is_ray_available as is_ray_available |
|
|
from .integrations import is_ray_tune_available as is_ray_tune_available |
|
|
from .integrations import is_sigopt_available as is_sigopt_available |
|
|
from .integrations import is_swanlab_available as is_swanlab_available |
|
|
from .integrations import is_tensorboard_available as is_tensorboard_available |
|
|
from .integrations import is_trackio_available as is_trackio_available |
|
|
from .integrations import is_wandb_available as is_wandb_available |
|
|
from .integrations.executorch import TorchExportableModuleWithStaticCache as TorchExportableModuleWithStaticCache |
|
|
from .integrations.executorch import convert_and_export_with_cache as convert_and_export_with_cache |
|
|
from .keras_callbacks import KerasMetricCallback as KerasMetricCallback |
|
|
from .keras_callbacks import PushToHubCallback as PushToHubCallback |
|
|
from .masking_utils import AttentionMaskInterface as AttentionMaskInterface |
|
|
from .model_debugging_utils import model_addition_debugger_context as model_addition_debugger_context |
|
|
|
|
|
|
|
|
from .modelcard import ModelCard as ModelCard |
|
|
from .modeling_flax_utils import FlaxPreTrainedModel as FlaxPreTrainedModel |
|
|
from .modeling_layers import GradientCheckpointingLayer as GradientCheckpointingLayer |
|
|
from .modeling_rope_utils import ROPE_INIT_FUNCTIONS as ROPE_INIT_FUNCTIONS |
|
|
from .modeling_rope_utils import dynamic_rope_update as dynamic_rope_update |
|
|
|
|
|
|
|
|
from .modeling_tf_pytorch_utils import ( |
|
|
convert_tf_weight_name_to_pt_weight_name as convert_tf_weight_name_to_pt_weight_name, |
|
|
) |
|
|
from .modeling_tf_pytorch_utils import load_pytorch_checkpoint_in_tf2_model as load_pytorch_checkpoint_in_tf2_model |
|
|
from .modeling_tf_pytorch_utils import load_pytorch_model_in_tf2_model as load_pytorch_model_in_tf2_model |
|
|
from .modeling_tf_pytorch_utils import load_pytorch_weights_in_tf2_model as load_pytorch_weights_in_tf2_model |
|
|
from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model as load_tf2_checkpoint_in_pytorch_model |
|
|
from .modeling_tf_pytorch_utils import load_tf2_model_in_pytorch_model as load_tf2_model_in_pytorch_model |
|
|
from .modeling_tf_pytorch_utils import load_tf2_weights_in_pytorch_model as load_tf2_weights_in_pytorch_model |
|
|
from .modeling_tf_utils import TFPreTrainedModel as TFPreTrainedModel |
|
|
from .modeling_tf_utils import TFSequenceSummary as TFSequenceSummary |
|
|
from .modeling_tf_utils import TFSharedEmbeddings as TFSharedEmbeddings |
|
|
from .modeling_tf_utils import shape_list as shape_list |
|
|
from .modeling_utils import AttentionInterface as AttentionInterface |
|
|
from .modeling_utils import PreTrainedModel as PreTrainedModel |
|
|
from .models import * |
|
|
from .models.mamba.modeling_mamba import MambaCache as MambaCache |
|
|
from .models.timm_wrapper import TimmWrapperImageProcessor as TimmWrapperImageProcessor |
|
|
|
|
|
|
|
|
from .optimization import Adafactor as Adafactor |
|
|
from .optimization import get_constant_schedule as get_constant_schedule |
|
|
from .optimization import get_constant_schedule_with_warmup as get_constant_schedule_with_warmup |
|
|
from .optimization import get_cosine_schedule_with_warmup as get_cosine_schedule_with_warmup |
|
|
from .optimization import ( |
|
|
get_cosine_with_hard_restarts_schedule_with_warmup as get_cosine_with_hard_restarts_schedule_with_warmup, |
|
|
) |
|
|
from .optimization import ( |
|
|
get_cosine_with_min_lr_schedule_with_warmup as get_cosine_with_min_lr_schedule_with_warmup, |
|
|
) |
|
|
from .optimization import ( |
|
|
get_cosine_with_min_lr_schedule_with_warmup_lr_rate as get_cosine_with_min_lr_schedule_with_warmup_lr_rate, |
|
|
) |
|
|
from .optimization import get_inverse_sqrt_schedule as get_inverse_sqrt_schedule |
|
|
from .optimization import get_linear_schedule_with_warmup as get_linear_schedule_with_warmup |
|
|
from .optimization import get_polynomial_decay_schedule_with_warmup as get_polynomial_decay_schedule_with_warmup |
|
|
from .optimization import get_scheduler as get_scheduler |
|
|
from .optimization import get_wsd_schedule as get_wsd_schedule |
|
|
|
|
|
|
|
|
from .optimization_tf import AdamWeightDecay as AdamWeightDecay |
|
|
from .optimization_tf import GradientAccumulator as GradientAccumulator |
|
|
from .optimization_tf import WarmUp as WarmUp |
|
|
from .optimization_tf import create_optimizer as create_optimizer |
|
|
|
|
|
|
|
|
from .pipelines import AudioClassificationPipeline as AudioClassificationPipeline |
|
|
from .pipelines import AutomaticSpeechRecognitionPipeline as AutomaticSpeechRecognitionPipeline |
|
|
from .pipelines import CsvPipelineDataFormat as CsvPipelineDataFormat |
|
|
from .pipelines import DepthEstimationPipeline as DepthEstimationPipeline |
|
|
from .pipelines import DocumentQuestionAnsweringPipeline as DocumentQuestionAnsweringPipeline |
|
|
from .pipelines import FeatureExtractionPipeline as FeatureExtractionPipeline |
|
|
from .pipelines import FillMaskPipeline as FillMaskPipeline |
|
|
from .pipelines import ImageClassificationPipeline as ImageClassificationPipeline |
|
|
from .pipelines import ImageFeatureExtractionPipeline as ImageFeatureExtractionPipeline |
|
|
from .pipelines import ImageSegmentationPipeline as ImageSegmentationPipeline |
|
|
from .pipelines import ImageTextToTextPipeline as ImageTextToTextPipeline |
|
|
from .pipelines import ImageToImagePipeline as ImageToImagePipeline |
|
|
from .pipelines import ImageToTextPipeline as ImageToTextPipeline |
|
|
from .pipelines import JsonPipelineDataFormat as JsonPipelineDataFormat |
|
|
from .pipelines import KeypointMatchingPipeline as KeypointMatchingPipeline |
|
|
from .pipelines import MaskGenerationPipeline as MaskGenerationPipeline |
|
|
from .pipelines import NerPipeline as NerPipeline |
|
|
from .pipelines import ObjectDetectionPipeline as ObjectDetectionPipeline |
|
|
from .pipelines import PipedPipelineDataFormat as PipedPipelineDataFormat |
|
|
from .pipelines import Pipeline as Pipeline |
|
|
from .pipelines import PipelineDataFormat as PipelineDataFormat |
|
|
from .pipelines import QuestionAnsweringPipeline as QuestionAnsweringPipeline |
|
|
from .pipelines import SummarizationPipeline as SummarizationPipeline |
|
|
from .pipelines import TableQuestionAnsweringPipeline as TableQuestionAnsweringPipeline |
|
|
from .pipelines import Text2TextGenerationPipeline as Text2TextGenerationPipeline |
|
|
from .pipelines import TextClassificationPipeline as TextClassificationPipeline |
|
|
from .pipelines import TextGenerationPipeline as TextGenerationPipeline |
|
|
from .pipelines import TextToAudioPipeline as TextToAudioPipeline |
|
|
from .pipelines import TokenClassificationPipeline as TokenClassificationPipeline |
|
|
from .pipelines import TranslationPipeline as TranslationPipeline |
|
|
from .pipelines import VideoClassificationPipeline as VideoClassificationPipeline |
|
|
from .pipelines import VisualQuestionAnsweringPipeline as VisualQuestionAnsweringPipeline |
|
|
from .pipelines import ZeroShotAudioClassificationPipeline as ZeroShotAudioClassificationPipeline |
|
|
from .pipelines import ZeroShotClassificationPipeline as ZeroShotClassificationPipeline |
|
|
from .pipelines import ZeroShotImageClassificationPipeline as ZeroShotImageClassificationPipeline |
|
|
from .pipelines import ZeroShotObjectDetectionPipeline as ZeroShotObjectDetectionPipeline |
|
|
from .pipelines import pipeline as pipeline |
|
|
from .processing_utils import ProcessorMixin as ProcessorMixin |
|
|
from .pytorch_utils import Conv1D as Conv1D |
|
|
from .pytorch_utils import apply_chunking_to_forward as apply_chunking_to_forward |
|
|
from .pytorch_utils import prune_layer as prune_layer |
|
|
|
|
|
|
|
|
from .tokenization_utils import PreTrainedTokenizer as PreTrainedTokenizer |
|
|
from .tokenization_utils_base import AddedToken as AddedToken |
|
|
from .tokenization_utils_base import BatchEncoding as BatchEncoding |
|
|
from .tokenization_utils_base import CharSpan as CharSpan |
|
|
from .tokenization_utils_base import PreTrainedTokenizerBase as PreTrainedTokenizerBase |
|
|
from .tokenization_utils_base import SpecialTokensMixin as SpecialTokensMixin |
|
|
from .tokenization_utils_base import TokenSpan as TokenSpan |
|
|
from .tokenization_utils_fast import PreTrainedTokenizerFast as PreTrainedTokenizerFast |
|
|
|
|
|
|
|
|
from .trainer import Trainer as Trainer |
|
|
|
|
|
|
|
|
from .trainer_callback import DefaultFlowCallback as DefaultFlowCallback |
|
|
from .trainer_callback import EarlyStoppingCallback as EarlyStoppingCallback |
|
|
from .trainer_callback import PrinterCallback as PrinterCallback |
|
|
from .trainer_callback import ProgressCallback as ProgressCallback |
|
|
from .trainer_callback import TrainerCallback as TrainerCallback |
|
|
from .trainer_callback import TrainerControl as TrainerControl |
|
|
from .trainer_callback import TrainerState as TrainerState |
|
|
from .trainer_pt_utils import torch_distributed_zero_first as torch_distributed_zero_first |
|
|
from .trainer_seq2seq import Seq2SeqTrainer as Seq2SeqTrainer |
|
|
from .trainer_utils import EvalPrediction as EvalPrediction |
|
|
from .trainer_utils import IntervalStrategy as IntervalStrategy |
|
|
from .trainer_utils import SchedulerType as SchedulerType |
|
|
from .trainer_utils import enable_full_determinism as enable_full_determinism |
|
|
from .trainer_utils import set_seed as set_seed |
|
|
from .training_args import TrainingArguments as TrainingArguments |
|
|
from .training_args_seq2seq import Seq2SeqTrainingArguments as Seq2SeqTrainingArguments |
|
|
from .training_args_tf import TFTrainingArguments as TFTrainingArguments |
|
|
|
|
|
|
|
|
from .utils import CONFIG_NAME as CONFIG_NAME |
|
|
from .utils import MODEL_CARD_NAME as MODEL_CARD_NAME |
|
|
from .utils import PYTORCH_PRETRAINED_BERT_CACHE as PYTORCH_PRETRAINED_BERT_CACHE |
|
|
from .utils import PYTORCH_TRANSFORMERS_CACHE as PYTORCH_TRANSFORMERS_CACHE |
|
|
from .utils import SPIECE_UNDERLINE as SPIECE_UNDERLINE |
|
|
from .utils import TF2_WEIGHTS_NAME as TF2_WEIGHTS_NAME |
|
|
from .utils import TF_WEIGHTS_NAME as TF_WEIGHTS_NAME |
|
|
from .utils import TRANSFORMERS_CACHE as TRANSFORMERS_CACHE |
|
|
from .utils import WEIGHTS_NAME as WEIGHTS_NAME |
|
|
from .utils import TensorType as TensorType |
|
|
from .utils import add_end_docstrings as add_end_docstrings |
|
|
from .utils import add_start_docstrings as add_start_docstrings |
|
|
from .utils import is_apex_available as is_apex_available |
|
|
from .utils import is_av_available as is_av_available |
|
|
from .utils import is_datasets_available as is_datasets_available |
|
|
from .utils import is_faiss_available as is_faiss_available |
|
|
from .utils import is_matplotlib_available as is_matplotlib_available |
|
|
from .utils import is_phonemizer_available as is_phonemizer_available |
|
|
from .utils import is_psutil_available as is_psutil_available |
|
|
from .utils import is_py3nvml_available as is_py3nvml_available |
|
|
from .utils import is_pyctcdecode_available as is_pyctcdecode_available |
|
|
from .utils import is_sacremoses_available as is_sacremoses_available |
|
|
from .utils import is_safetensors_available as is_safetensors_available |
|
|
from .utils import is_sklearn_available as is_sklearn_available |
|
|
from .utils import is_torch_hpu_available as is_torch_hpu_available |
|
|
from .utils import is_torch_mlu_available as is_torch_mlu_available |
|
|
from .utils import is_torch_musa_available as is_torch_musa_available |
|
|
from .utils import is_torch_neuroncore_available as is_torch_neuroncore_available |
|
|
from .utils import is_torch_npu_available as is_torch_npu_available |
|
|
from .utils import is_torch_xla_available as is_torch_xla_available |
|
|
from .utils import is_torch_xpu_available as is_torch_xpu_available |
|
|
|
|
|
|
|
|
from .utils.quantization_config import AqlmConfig as AqlmConfig |
|
|
from .utils.quantization_config import AutoRoundConfig as AutoRoundConfig |
|
|
from .utils.quantization_config import AwqConfig as AwqConfig |
|
|
from .utils.quantization_config import BitNetQuantConfig as BitNetQuantConfig |
|
|
from .utils.quantization_config import BitsAndBytesConfig as BitsAndBytesConfig |
|
|
from .utils.quantization_config import CompressedTensorsConfig as CompressedTensorsConfig |
|
|
from .utils.quantization_config import EetqConfig as EetqConfig |
|
|
from .utils.quantization_config import FbgemmFp8Config as FbgemmFp8Config |
|
|
from .utils.quantization_config import FineGrainedFP8Config as FineGrainedFP8Config |
|
|
from .utils.quantization_config import FPQuantConfig as FPQuantConfig |
|
|
from .utils.quantization_config import GPTQConfig as GPTQConfig |
|
|
from .utils.quantization_config import HiggsConfig as HiggsConfig |
|
|
from .utils.quantization_config import HqqConfig as HqqConfig |
|
|
from .utils.quantization_config import QuantoConfig as QuantoConfig |
|
|
from .utils.quantization_config import QuarkConfig as QuarkConfig |
|
|
from .utils.quantization_config import SpQRConfig as SpQRConfig |
|
|
from .utils.quantization_config import TorchAoConfig as TorchAoConfig |
|
|
from .utils.quantization_config import VptqConfig as VptqConfig |
|
|
from .video_processing_utils import BaseVideoProcessor as BaseVideoProcessor |
|
|
|
|
|
else: |
|
|
import sys |
|
|
|
|
|
_import_structure = {k: set(v) for k, v in _import_structure.items()} |
|
|
|
|
|
import_structure = define_import_structure(Path(__file__).parent / "models", prefix="models") |
|
|
import_structure[frozenset({})].update(_import_structure) |
|
|
|
|
|
sys.modules[__name__] = _LazyModule( |
|
|
__name__, |
|
|
globals()["__file__"], |
|
|
import_structure, |
|
|
module_spec=__spec__, |
|
|
extra_objects={"__version__": __version__}, |
|
|
) |
|
|
|
|
|
|
|
|
if not is_tf_available() and not is_torch_available() and not is_flax_available(): |
|
|
logger.warning_advice( |
|
|
"None of PyTorch, TensorFlow >= 2.0, or Flax have been found. " |
|
|
"Models won't be available and only tokenizers, configuration " |
|
|
"and file/data utilities can be used." |
|
|
) |
|
|
|