|
|
import pickle |
|
|
|
|
|
import numpy as np |
|
|
from numpy.ma.core import ( |
|
|
MaskedArray, |
|
|
MaskType, |
|
|
add, |
|
|
allequal, |
|
|
divide, |
|
|
getmask, |
|
|
hypot, |
|
|
log, |
|
|
masked, |
|
|
masked_array, |
|
|
masked_values, |
|
|
nomask, |
|
|
) |
|
|
from numpy.ma.extras import mr_ |
|
|
from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_raises |
|
|
|
|
|
|
|
|
class MMatrix(MaskedArray, np.matrix,): |
|
|
|
|
|
def __new__(cls, data, mask=nomask): |
|
|
mat = np.matrix(data) |
|
|
_data = MaskedArray.__new__(cls, data=mat, mask=mask) |
|
|
return _data |
|
|
|
|
|
def __array_finalize__(self, obj): |
|
|
np.matrix.__array_finalize__(self, obj) |
|
|
MaskedArray.__array_finalize__(self, obj) |
|
|
|
|
|
@property |
|
|
def _series(self): |
|
|
_view = self.view(MaskedArray) |
|
|
_view._sharedmask = False |
|
|
return _view |
|
|
|
|
|
|
|
|
class TestMaskedMatrix: |
|
|
def test_matrix_indexing(self): |
|
|
|
|
|
x1 = np.matrix([[1, 2, 3], [4, 3, 2]]) |
|
|
x2 = masked_array(x1, mask=[[1, 0, 0], [0, 1, 0]]) |
|
|
x3 = masked_array(x1, mask=[[0, 1, 0], [1, 0, 0]]) |
|
|
x4 = masked_array(x1) |
|
|
|
|
|
str(x2) |
|
|
repr(x2) |
|
|
|
|
|
assert_(type(x2[1, 0]) is type(x1[1, 0])) |
|
|
assert_(x1[1, 0] == x2[1, 0]) |
|
|
assert_(x2[1, 1] is masked) |
|
|
assert_equal(x1[0, 2], x2[0, 2]) |
|
|
assert_equal(x1[0, 1:], x2[0, 1:]) |
|
|
assert_equal(x1[:, 2], x2[:, 2]) |
|
|
assert_equal(x1[:], x2[:]) |
|
|
assert_equal(x1[1:], x3[1:]) |
|
|
x1[0, 2] = 9 |
|
|
x2[0, 2] = 9 |
|
|
assert_equal(x1, x2) |
|
|
x1[0, 1:] = 99 |
|
|
x2[0, 1:] = 99 |
|
|
assert_equal(x1, x2) |
|
|
x2[0, 1] = masked |
|
|
assert_equal(x1, x2) |
|
|
x2[0, 1:] = masked |
|
|
assert_equal(x1, x2) |
|
|
x2[0, :] = x1[0, :] |
|
|
x2[0, 1] = masked |
|
|
assert_(allequal(getmask(x2), np.array([[0, 1, 0], [0, 1, 0]]))) |
|
|
x3[1, :] = masked_array([1, 2, 3], [1, 1, 0]) |
|
|
assert_(allequal(getmask(x3)[1], masked_array([1, 1, 0]))) |
|
|
assert_(allequal(getmask(x3[1]), masked_array([1, 1, 0]))) |
|
|
x4[1, :] = masked_array([1, 2, 3], [1, 1, 0]) |
|
|
assert_(allequal(getmask(x4[1]), masked_array([1, 1, 0]))) |
|
|
assert_(allequal(x4[1], masked_array([1, 2, 3]))) |
|
|
x1 = np.matrix(np.arange(5) * 1.0) |
|
|
x2 = masked_values(x1, 3.0) |
|
|
assert_equal(x1, x2) |
|
|
assert_(allequal(masked_array([0, 0, 0, 1, 0], dtype=MaskType), |
|
|
x2.mask)) |
|
|
assert_equal(3.0, x2.fill_value) |
|
|
|
|
|
def test_pickling_subbaseclass(self): |
|
|
|
|
|
a = masked_array(np.matrix(list(range(10))), mask=[1, 0, 1, 0, 0] * 2) |
|
|
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): |
|
|
a_pickled = pickle.loads(pickle.dumps(a, protocol=proto)) |
|
|
assert_equal(a_pickled._mask, a._mask) |
|
|
assert_equal(a_pickled, a) |
|
|
assert_(isinstance(a_pickled._data, np.matrix)) |
|
|
|
|
|
def test_count_mean_with_matrix(self): |
|
|
m = masked_array(np.matrix([[1, 2], [3, 4]]), mask=np.zeros((2, 2))) |
|
|
|
|
|
assert_equal(m.count(axis=0).shape, (1, 2)) |
|
|
assert_equal(m.count(axis=1).shape, (2, 1)) |
|
|
|
|
|
|
|
|
assert_equal(m.mean(axis=0), [[2., 3.]]) |
|
|
assert_equal(m.mean(axis=1), [[1.5], [3.5]]) |
|
|
|
|
|
def test_flat(self): |
|
|
|
|
|
|
|
|
test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) |
|
|
assert_equal(test.flat[1], 2) |
|
|
assert_equal(test.flat[2], masked) |
|
|
assert_(np.all(test.flat[0:2] == test[0, 0:2])) |
|
|
|
|
|
test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) |
|
|
test.flat = masked_array([3, 2, 1], mask=[1, 0, 0]) |
|
|
control = masked_array(np.matrix([[3, 2, 1]]), mask=[1, 0, 0]) |
|
|
assert_equal(test, control) |
|
|
|
|
|
test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) |
|
|
testflat = test.flat |
|
|
testflat[:] = testflat[[2, 1, 0]] |
|
|
assert_equal(test, control) |
|
|
testflat[0] = 9 |
|
|
|
|
|
a = masked_array(np.matrix(np.eye(2)), mask=0) |
|
|
b = a.flat |
|
|
b01 = b[:2] |
|
|
assert_equal(b01.data, np.array([[1., 0.]])) |
|
|
assert_equal(b01.mask, np.array([[False, False]])) |
|
|
|
|
|
def test_allany_onmatrices(self): |
|
|
x = np.array([[0.13, 0.26, 0.90], |
|
|
[0.28, 0.33, 0.63], |
|
|
[0.31, 0.87, 0.70]]) |
|
|
X = np.matrix(x) |
|
|
m = np.array([[True, False, False], |
|
|
[False, False, False], |
|
|
[True, True, False]], dtype=np.bool) |
|
|
mX = masked_array(X, mask=m) |
|
|
mXbig = (mX > 0.5) |
|
|
mXsmall = (mX < 0.5) |
|
|
|
|
|
assert_(not mXbig.all()) |
|
|
assert_(mXbig.any()) |
|
|
assert_equal(mXbig.all(0), np.matrix([False, False, True])) |
|
|
assert_equal(mXbig.all(1), np.matrix([False, False, True]).T) |
|
|
assert_equal(mXbig.any(0), np.matrix([False, False, True])) |
|
|
assert_equal(mXbig.any(1), np.matrix([True, True, True]).T) |
|
|
|
|
|
assert_(not mXsmall.all()) |
|
|
assert_(mXsmall.any()) |
|
|
assert_equal(mXsmall.all(0), np.matrix([True, True, False])) |
|
|
assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T) |
|
|
assert_equal(mXsmall.any(0), np.matrix([True, True, False])) |
|
|
assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T) |
|
|
|
|
|
def test_compressed(self): |
|
|
a = masked_array(np.matrix([1, 2, 3, 4]), mask=[0, 0, 0, 0]) |
|
|
b = a.compressed() |
|
|
assert_equal(b, a) |
|
|
assert_(isinstance(b, np.matrix)) |
|
|
a[0, 0] = masked |
|
|
b = a.compressed() |
|
|
assert_equal(b, [[2, 3, 4]]) |
|
|
|
|
|
def test_ravel(self): |
|
|
a = masked_array(np.matrix([1, 2, 3, 4, 5]), mask=[[0, 1, 0, 0, 0]]) |
|
|
aravel = a.ravel() |
|
|
assert_equal(aravel.shape, (1, 5)) |
|
|
assert_equal(aravel._mask.shape, a.shape) |
|
|
|
|
|
def test_view(self): |
|
|
|
|
|
iterator = list(zip(np.arange(10), np.random.rand(10))) |
|
|
data = np.array(iterator) |
|
|
a = masked_array(iterator, dtype=[('a', float), ('b', float)]) |
|
|
a.mask[0] = (1, 0) |
|
|
test = a.view((float, 2), np.matrix) |
|
|
assert_equal(test, data) |
|
|
assert_(isinstance(test, np.matrix)) |
|
|
assert_(not isinstance(test, MaskedArray)) |
|
|
|
|
|
|
|
|
class TestSubclassing: |
|
|
|
|
|
|
|
|
def setup_method(self): |
|
|
x = np.arange(5, dtype='float') |
|
|
mx = MMatrix(x, mask=[0, 1, 0, 0, 0]) |
|
|
self.data = (x, mx) |
|
|
|
|
|
def test_maskedarray_subclassing(self): |
|
|
|
|
|
(x, mx) = self.data |
|
|
assert_(isinstance(mx._data, np.matrix)) |
|
|
|
|
|
def test_masked_unary_operations(self): |
|
|
|
|
|
(x, mx) = self.data |
|
|
with np.errstate(divide='ignore'): |
|
|
assert_(isinstance(log(mx), MMatrix)) |
|
|
assert_equal(log(x), np.log(x)) |
|
|
|
|
|
def test_masked_binary_operations(self): |
|
|
|
|
|
(x, mx) = self.data |
|
|
|
|
|
assert_(isinstance(add(mx, mx), MMatrix)) |
|
|
assert_(isinstance(add(mx, x), MMatrix)) |
|
|
|
|
|
assert_equal(add(mx, x), mx + x) |
|
|
assert_(isinstance(add(mx, mx)._data, np.matrix)) |
|
|
with assert_raises(TypeError): |
|
|
add.outer(mx, mx) |
|
|
assert_(isinstance(hypot(mx, mx), MMatrix)) |
|
|
assert_(isinstance(hypot(mx, x), MMatrix)) |
|
|
|
|
|
def test_masked_binary_operations2(self): |
|
|
|
|
|
(x, mx) = self.data |
|
|
xmx = masked_array(mx.data.__array__(), mask=mx.mask) |
|
|
assert_(isinstance(divide(mx, mx), MMatrix)) |
|
|
assert_(isinstance(divide(mx, x), MMatrix)) |
|
|
assert_equal(divide(mx, mx), divide(xmx, xmx)) |
|
|
|
|
|
class TestConcatenator: |
|
|
|
|
|
|
|
|
def test_matrix_builder(self): |
|
|
assert_raises(np.ma.MAError, lambda: mr_['1, 2; 3, 4']) |
|
|
|
|
|
def test_matrix(self): |
|
|
|
|
|
|
|
|
|
|
|
actual = mr_['r', 1, 2, 3] |
|
|
expected = np.ma.array(np.r_['r', 1, 2, 3]) |
|
|
assert_array_equal(actual, expected) |
|
|
|
|
|
|
|
|
assert_equal(type(actual), type(expected)) |
|
|
assert_equal(type(actual.data), type(expected.data)) |
|
|
|