fbohorquez commited on
Commit
dd2058b
1 Parent(s): 6ee4d1c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -99
README.md CHANGED
@@ -1,125 +1,47 @@
1
  ---
2
  license: apache-2.0
3
- datasets:
4
- - dev2bit/es2bash
5
- language:
6
- - es
7
- pipeline_tag: text2text-generation
8
  tags:
9
- - code
10
- - bash
11
- widget:
12
- - text: Muestra el contenido de file.py que se encuentra en ~/project/
13
- example_title: cat
14
- - text: Lista los 3 primeros archivos en /bin
15
- example_title: ls
16
- - text: Por favor, cambia al directorio /home/user/project/
17
- example_title: cd
18
- - text: Lista todos los átomos del universo
19
- example_title: noCommand
20
- - text: ls -lh
21
- example_title: literal
22
- - text: file.txt
23
- example_title: simple
24
  ---
25
 
26
- # es2bash-mt5: Spanish to Bash Model
27
-
28
- <p align="center">
29
- <img width="460" height="300" src="https://dev2bit.com/wp-content/themes/lovecraft_child/assets/icons/dev2bit_monitor2.svg">
30
- </p>
31
-
32
- Developed by dev2bit, es2bash-mt5 is a language transformer model that is capable of predicting the optimal Bash command given a natural language request in Spanish. This model represents a major advancement in human-computer interaction, providing a natural language interface for Unix operating system commands.
33
-
34
- ## About the Model
35
-
36
- es2bash-mt5 is a fine-tuning model based on mt5-small. It has been trained on the dev2bit/es2bash dataset, which specializes in translating natural language in Spanish into Bash commands.
37
-
38
- This model is optimized for processing requests related to the commands:
39
-
40
- * `cat`
41
- * `ls`
42
- * `cd`
43
-
44
- ## Usage
45
-
46
- Below is an example of how to use es2bash-mt5 with the Hugging Face Transformers library:
47
-
48
- ```python
49
- from transformers import pipeline
50
-
51
- translator = pipeline('translation', model='dev2bit/es2bash-mt5')
52
-
53
- request = "listar los archivos en el directorio actual"
54
- translated = translator(request, max_length=512)
55
- print(translated[0]['translation_text'])
56
- ```
57
- This will print the Bash command corresponding to the given Spanish request.
58
-
59
- ## Contributions
60
- We appreciate your contributions! You can help improve es2bash-mt5 in various ways, including:
61
 
62
- * Testing the model and reporting any issues or suggestions in the Issues section.
63
- * Improving the documentation.
64
- * Providing usage examples.
65
 
66
- ---
67
-
68
- # es2bash-mt5: Modelo de español a Bash
69
-
70
- Desarrollado por dev2bit, `es2bash-mt5` es un modelo transformador de lenguaje que tiene la capacidad de predecir el comando Bash óptimo dada una solicitud en lenguaje natural en español. Este modelo representa un gran avance en la interacción humano-computadora, proporcionando una interfaz de lenguaje natural para los comandos del sistema operativo Unix.
71
-
72
- ## Sobre el modelo
73
-
74
- `es2bash-mt5` es un modelo de ajuste fino basado en `mt5-small`. Ha sido entrenado en el conjunto de datos `dev2bit/es2bash`, especializado en la traducción de lenguaje natural en español a comandos Bash.
75
-
76
- Este modelo está optimizado para procesar solicitudes relacionadas con los comandos:
77
- * `cat`
78
- * `ls`
79
- * `cd`
80
-
81
- ## Uso
82
-
83
- A continuación, se muestra un ejemplo de cómo usar `es2bash-mt5` con la biblioteca Hugging Face Transformers:
84
-
85
- ```python
86
- from transformers import pipeline
87
-
88
- translator = pipeline('translation', model='dev2bit/es2bash-mt5')
89
-
90
- request = "listar los archivos en el directorio actual"
91
- translated = translator(request, max_length=512)
92
- print(translated[0]['translation_text'])
93
- ```
94
 
95
- Esto imprimirá el comando Bash correspondiente a la solicitud dada en español.
96
 
97
- ## Contribuciones
98
 
99
- Agradecemos sus contribuciones! Puede ayudar a mejorar es2bash-mt5 de varias formas, incluyendo:
100
 
101
- * Probar el modelo y reportar cualquier problema o sugerencia en la sección de Issues.
102
- * Mejorando la documentación.
103
- * Proporcionando ejemplos de uso.
104
 
105
- ---
106
 
107
- This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the es2bash dataset.
108
- It achieves the following results on the evaluation set:
109
- - Loss: 0.0928
110
 
111
  ## Training procedure
112
 
113
  ### Training hyperparameters
114
 
115
  The following hyperparameters were used during training:
116
- - learning_rate: 0.0001
117
  - train_batch_size: 8
118
  - eval_batch_size: 1
119
  - seed: 42
120
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
121
  - lr_scheduler_type: linear
122
- - num_epochs: 25
123
 
124
  ### Training results
125
 
@@ -149,7 +71,10 @@ The following hyperparameters were used during training:
149
  | 0.123 | 22.0 | 14784 | 0.0938 |
150
  | 0.113 | 23.0 | 15456 | 0.0931 |
151
  | 0.1185 | 24.0 | 16128 | 0.0929 |
152
- | 0.1125 | 25.0 | 16800 | 0.0928 |
 
 
 
153
 
154
 
155
  ### Framework versions
 
1
  ---
2
  license: apache-2.0
 
 
 
 
 
3
  tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - es2bash
7
+ model-index:
8
+ - name: es2bash-mt5
9
+ results: []
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
+ # es2bash-mt5
 
 
16
 
17
+ This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the es2bash dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ ## Model description
22
 
23
+ More information needed
24
 
25
+ ## Intended uses & limitations
26
 
27
+ More information needed
 
 
28
 
29
+ ## Training and evaluation data
30
 
31
+ More information needed
 
 
32
 
33
  ## Training procedure
34
 
35
  ### Training hyperparameters
36
 
37
  The following hyperparameters were used during training:
38
+ - learning_rate: 0.1
39
  - train_batch_size: 8
40
  - eval_batch_size: 1
41
  - seed: 42
42
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
  - lr_scheduler_type: linear
44
+ - num_epochs: 28
45
 
46
  ### Training results
47
 
 
71
  | 0.123 | 22.0 | 14784 | 0.0938 |
72
  | 0.113 | 23.0 | 15456 | 0.0931 |
73
  | 0.1185 | 24.0 | 16128 | 0.0929 |
74
+ | 0.1125 | 25.0 | 16800 | 0.0927 |
75
+ | 0.1213 | 26.0 | 17472 | 0.0925 |
76
+ | 0.1153 | 27.0 | 18144 | 0.0921 |
77
+ | 0.1134 | 28.0 | 18816 | 0.0919 |
78
 
79
 
80
  ### Framework versions