fbohorquez commited on
Commit
bf85432
1 Parent(s): ac50019

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -97
README.md CHANGED
@@ -1,102 +1,82 @@
1
  ---
2
  license: apache-2.0
3
- datasets:
4
- - dev2bit/es2bash
5
- language:
6
- - es
7
- pipeline_tag: text2text-generation
8
  tags:
9
- - code
10
- - bash
11
- widget:
12
- - text: Muestra el contenido de file.py que se encuentra en ~/project/
13
- example_title: cat
14
- - text: Lista los 3 primeros archivos en /bin
15
- example_title: ls
16
- - text: Por favor, cambia al directorio /home/user/project/
17
- example_title: cd
18
- - text: Lista todos los átomos del universo
19
- example_title: noCommand
20
- - text: ls -lh
21
- example_title: literal
22
- - text: file.txt
23
- example_title: simple
24
  ---
25
 
26
- # es2bash-mt5: Modelo de traducción de español a Bashcd
27
-
28
- <p align="center">
29
- <img width="460" height="300" src="https://dev2bit.com/wp-content/themes/lovecraft_child/assets/icons/dev2bit_monitor2.svg">
30
- </p>
31
-
32
- Developed by dev2bit, es2bash-mt5 is a language transformer model that is capable of predicting the optimal Bash command given a natural language request in Spanish. This model represents a major advancement in human-computer interaction, providing a natural language interface for Unix operating system commands.
33
-
34
- ## About the Model
35
-
36
- es2bash-mt5 is a fine-tuning model based on mt5-small. It has been trained on the dev2bit/es2bash dataset, which specializes in translating natural language in Spanish into Bash commands.
37
-
38
- This model is optimized for processing requests related to the commands:
39
-
40
- * `cat`
41
- * `ls`
42
- * `cd`
43
-
44
- ## Usage
45
-
46
- Below is an example of how to use es2bash-mt5 with the Hugging Face Transformers library:
47
-
48
- ```python
49
- from transformers import pipeline
50
-
51
- translator = pipeline('translation', model='dev2bit/es2bash-mt5')
52
-
53
- request = "listar los archivos en el directorio actual"
54
- translated = translator(request, max_length=512)
55
- print(translated[0]['translation_text'])
56
- ```
57
- This will print the Bash command corresponding to the given Spanish request.
58
-
59
- ## Contributions
60
- We appreciate your contributions! You can help improve es2bash-mt5 in various ways, including:
61
-
62
- * Testing the model and reporting any issues or suggestions in the Issues section.
63
- * Improving the documentation.
64
- * Providing usage examples.
65
-
66
- ---
67
-
68
-
69
- Desarrollado por dev2bit, `es2bash-mt5` es un modelo transformador de lenguaje que tiene la capacidad de predecir el comando Bash óptimo dada una solicitud en lenguaje natural en español. Este modelo representa un gran avance en la interacción humano-computadora, proporcionando una interfaz de lenguaje natural para los comandos del sistema operativo Unix.
70
-
71
- ## Sobre el modelo
72
-
73
- `es2bash-mt5` es un modelo de ajuste fino basado en `mt5-small`. Ha sido entrenado en el conjunto de datos `dev2bit/es2bash`, especializado en la traducción de lenguaje natural en español a comandos Bash.
74
-
75
- Este modelo está optimizado para procesar solicitudes relacionadas con los comandos:
76
- * `cat`
77
- * `ls`
78
- * `cd`
79
-
80
- ## Uso
81
-
82
- A continuación, se muestra un ejemplo de cómo usar `es2bash-mt5` con la biblioteca Hugging Face Transformers:
83
-
84
- ```python
85
- from transformers import pipeline
86
-
87
- translator = pipeline('translation', model='dev2bit/es2bash-mt5')
88
-
89
- request = "listar los archivos en el directorio actual"
90
- translated = translator(request, max_length=512)
91
- print(translated[0]['translation_text'])
92
- ```
93
-
94
- Esto imprimirá el comando Bash correspondiente a la solicitud dada en español.
95
-
96
- ## Contribuciones
97
-
98
- Agradecemos sus contribuciones! Puede ayudar a mejorar es2bash-mt5 de varias formas, incluyendo:
99
-
100
- * Probar el modelo y reportar cualquier problema o sugerencia en la sección de Issues.
101
- * Mejorando la documentación.
102
- * Proporcionando ejemplos de uso.
 
1
  ---
2
  license: apache-2.0
 
 
 
 
 
3
  tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - es2bash
7
+ model-index:
8
+ - name: es2bash-mt5
9
+ results: []
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # es2bash-mt5
16
+
17
+ This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the es2bash dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0928
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0001
39
+ - train_batch_size: 8
40
+ - eval_batch_size: 1
41
+ - seed: 42
42
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
+ - lr_scheduler_type: linear
44
+ - num_epochs: 25
45
+
46
+ ### Training results
47
+
48
+ | Training Loss | Epoch | Step | Validation Loss |
49
+ |:-------------:|:-----:|:-----:|:---------------:|
50
+ | 21.394 | 1.0 | 672 | 1.7470 |
51
+ | 2.5294 | 2.0 | 1344 | 0.6350 |
52
+ | 0.5873 | 3.0 | 2016 | 0.2996 |
53
+ | 0.3802 | 4.0 | 2688 | 0.2142 |
54
+ | 0.2951 | 5.0 | 3360 | 0.1806 |
55
+ | 0.225 | 6.0 | 4032 | 0.1565 |
56
+ | 0.2065 | 7.0 | 4704 | 0.1461 |
57
+ | 0.1944 | 8.0 | 5376 | 0.1343 |
58
+ | 0.174 | 9.0 | 6048 | 0.1281 |
59
+ | 0.1647 | 10.0 | 6720 | 0.1207 |
60
+ | 0.1566 | 11.0 | 7392 | 0.1140 |
61
+ | 0.1498 | 12.0 | 8064 | 0.1106 |
62
+ | 0.1382 | 13.0 | 8736 | 0.1076 |
63
+ | 0.1393 | 14.0 | 9408 | 0.1042 |
64
+ | 0.1351 | 15.0 | 10080 | 0.1019 |
65
+ | 0.13 | 16.0 | 10752 | 0.0998 |
66
+ | 0.1292 | 17.0 | 11424 | 0.0983 |
67
+ | 0.1265 | 18.0 | 12096 | 0.0973 |
68
+ | 0.1255 | 19.0 | 12768 | 0.0969 |
69
+ | 0.1216 | 20.0 | 13440 | 0.0956 |
70
+ | 0.1216 | 21.0 | 14112 | 0.0946 |
71
+ | 0.123 | 22.0 | 14784 | 0.0938 |
72
+ | 0.113 | 23.0 | 15456 | 0.0931 |
73
+ | 0.1185 | 24.0 | 16128 | 0.0929 |
74
+ | 0.1125 | 25.0 | 16800 | 0.0928 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.29.2
80
+ - Pytorch 2.0.1+cu117
81
+ - Datasets 2.12.0
82
+ - Tokenizers 0.13.3