initial commit for zipformer_ctc
Browse files- data/lang_bpe_500/HLG.pt +3 -0
- data/lang_bpe_500/L.pt +3 -0
- data/lang_bpe_500/L_disambig.pt +3 -0
- data/lang_bpe_500/Linv.pt +3 -0
- data/lang_bpe_500/bpe.model +3 -0
- data/lang_bpe_500/lexicon.txt +0 -0
- data/lang_bpe_500/tokens.txt +502 -0
- data/lang_bpe_500/words.txt +0 -0
- exp/cpu_jit.pt +3 -0
- exp/pretrained.pt +3 -0
- exp/tensorboard/events.out.tfevents.1678202076.r8n04.343595.0 +3 -0
- log/attention_decoder/log-decode-2023-03-10-09-58-58 +11 -0
- log/attention_decoder/log-decode-2023-03-10-10-10-13 +11 -0
- log/attention_decoder/log-decode-2023-03-10-10-20-00 +11 -0
- log/attention_decoder/log-decode-2023-03-10-10-56-28 +11 -0
- log/attention_decoder/log-decode-2023-03-10-11-58-59 +11 -0
- log/attention_decoder/log-decode-2023-03-10-16-18-14 +1184 -0
- log/ctc_decoding/log-decode-2023-03-09-01-20-40 +74 -0
- log/ctc_decoding/log-decode-2023-03-09-04-23-24 +89 -0
- log/ctc_decoding/log-decode-2023-03-09-16-35-15 +20 -0
- log/ctc_decoding/log-decode-2023-03-09-16-37-47 +54 -0
- log/log-train-2023-03-07-10-14-36-0 +0 -0
- log/log-train-2023-03-07-10-14-36-1 +0 -0
- log/log-train-2023-03-07-10-14-36-2 +0 -0
- log/log-train-2023-03-07-10-14-36-3 +0 -0
- log/whole_lattice_rescoring/log-decode-2023-03-09-16-44-16 +11 -0
- log/whole_lattice_rescoring/log-decode-2023-03-10-09-28-13 +11 -0
- log/whole_lattice_rescoring/log-decode-2023-03-10-09-44-58 +213 -0
- test_wavs/1089-134686-0001.wav +0 -0
- test_wavs/1221-135766-0001.wav +0 -0
- test_wavs/1221-135766-0002.wav +0 -0
- test_wavs/trans.txt +3 -0
data/lang_bpe_500/HLG.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66d43dc28206a4ef33fc8ed5272abc6dc4b064c78cafc67f9f8a5b88f94be0fc
|
3 |
+
size 695095775
|
data/lang_bpe_500/L.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29b6b298ec932414dedc38e1971893c6d0c710fc0766dc0c495e387702c2e71f
|
3 |
+
size 19025793
|
data/lang_bpe_500/L_disambig.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33745fbef2e2957f39fbb8a563b3735c7204f8398bbed3b59eb43edb1dfce388
|
3 |
+
size 20013121
|
data/lang_bpe_500/Linv.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d76053824dca246b4ac37882f3e96bc8a8ed76038c0b100bba1f57d00246cee9
|
3 |
+
size 19025793
|
data/lang_bpe_500/bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c53433de083c4a6ad12d034550ef22de68cec62c4f58932a7b6b8b2f1e743fa5
|
3 |
+
size 244865
|
data/lang_bpe_500/lexicon.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/lang_bpe_500/tokens.txt
ADDED
@@ -0,0 +1,502 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<blk> 0
|
2 |
+
<sos/eos> 1
|
3 |
+
<unk> 2
|
4 |
+
S 3
|
5 |
+
▁THE 4
|
6 |
+
▁A 5
|
7 |
+
T 6
|
8 |
+
▁AND 7
|
9 |
+
ED 8
|
10 |
+
▁OF 9
|
11 |
+
▁TO 10
|
12 |
+
E 11
|
13 |
+
D 12
|
14 |
+
N 13
|
15 |
+
ING 14
|
16 |
+
▁IN 15
|
17 |
+
Y 16
|
18 |
+
M 17
|
19 |
+
C 18
|
20 |
+
▁I 19
|
21 |
+
A 20
|
22 |
+
P 21
|
23 |
+
▁HE 22
|
24 |
+
R 23
|
25 |
+
O 24
|
26 |
+
L 25
|
27 |
+
RE 26
|
28 |
+
I 27
|
29 |
+
U 28
|
30 |
+
ER 29
|
31 |
+
▁IT 30
|
32 |
+
LY 31
|
33 |
+
▁THAT 32
|
34 |
+
▁WAS 33
|
35 |
+
▁ 34
|
36 |
+
▁S 35
|
37 |
+
AR 36
|
38 |
+
▁BE 37
|
39 |
+
F 38
|
40 |
+
▁C 39
|
41 |
+
IN 40
|
42 |
+
B 41
|
43 |
+
▁FOR 42
|
44 |
+
OR 43
|
45 |
+
LE 44
|
46 |
+
' 45
|
47 |
+
▁HIS 46
|
48 |
+
▁YOU 47
|
49 |
+
AL 48
|
50 |
+
▁RE 49
|
51 |
+
V 50
|
52 |
+
▁B 51
|
53 |
+
G 52
|
54 |
+
RI 53
|
55 |
+
▁E 54
|
56 |
+
▁WITH 55
|
57 |
+
▁T 56
|
58 |
+
▁AS 57
|
59 |
+
LL 58
|
60 |
+
▁P 59
|
61 |
+
▁HER 60
|
62 |
+
ST 61
|
63 |
+
▁HAD 62
|
64 |
+
▁SO 63
|
65 |
+
▁F 64
|
66 |
+
W 65
|
67 |
+
CE 66
|
68 |
+
▁IS 67
|
69 |
+
ND 68
|
70 |
+
▁NOT 69
|
71 |
+
TH 70
|
72 |
+
▁BUT 71
|
73 |
+
EN 72
|
74 |
+
▁SHE 73
|
75 |
+
▁ON 74
|
76 |
+
VE 75
|
77 |
+
ON 76
|
78 |
+
SE 77
|
79 |
+
▁DE 78
|
80 |
+
UR 79
|
81 |
+
▁G 80
|
82 |
+
CH 81
|
83 |
+
K 82
|
84 |
+
TER 83
|
85 |
+
▁AT 84
|
86 |
+
IT 85
|
87 |
+
▁ME 86
|
88 |
+
RO 87
|
89 |
+
NE 88
|
90 |
+
RA 89
|
91 |
+
ES 90
|
92 |
+
IL 91
|
93 |
+
NG 92
|
94 |
+
IC 93
|
95 |
+
▁NO 94
|
96 |
+
▁HIM 95
|
97 |
+
ENT 96
|
98 |
+
IR 97
|
99 |
+
▁WE 98
|
100 |
+
H 99
|
101 |
+
▁DO 100
|
102 |
+
▁ALL 101
|
103 |
+
▁HAVE 102
|
104 |
+
LO 103
|
105 |
+
▁BY 104
|
106 |
+
▁MY 105
|
107 |
+
▁MO 106
|
108 |
+
▁THIS 107
|
109 |
+
LA 108
|
110 |
+
▁ST 109
|
111 |
+
▁WHICH 110
|
112 |
+
▁CON 111
|
113 |
+
▁THEY 112
|
114 |
+
CK 113
|
115 |
+
TE 114
|
116 |
+
▁SAID 115
|
117 |
+
▁FROM 116
|
118 |
+
▁GO 117
|
119 |
+
▁WHO 118
|
120 |
+
▁TH 119
|
121 |
+
▁OR 120
|
122 |
+
▁D 121
|
123 |
+
▁W 122
|
124 |
+
VER 123
|
125 |
+
LI 124
|
126 |
+
▁SE 125
|
127 |
+
▁ONE 126
|
128 |
+
▁CA 127
|
129 |
+
▁AN 128
|
130 |
+
▁LA 129
|
131 |
+
▁WERE 130
|
132 |
+
EL 131
|
133 |
+
▁HA 132
|
134 |
+
▁MAN 133
|
135 |
+
▁FA 134
|
136 |
+
▁EX 135
|
137 |
+
AD 136
|
138 |
+
▁SU 137
|
139 |
+
RY 138
|
140 |
+
▁MI 139
|
141 |
+
AT 140
|
142 |
+
▁BO 141
|
143 |
+
▁WHEN 142
|
144 |
+
AN 143
|
145 |
+
THER 144
|
146 |
+
PP 145
|
147 |
+
ATION 146
|
148 |
+
▁FI 147
|
149 |
+
▁WOULD 148
|
150 |
+
▁PRO 149
|
151 |
+
OW 150
|
152 |
+
ET 151
|
153 |
+
▁O 152
|
154 |
+
▁THERE 153
|
155 |
+
▁HO 154
|
156 |
+
ION 155
|
157 |
+
▁WHAT 156
|
158 |
+
▁FE 157
|
159 |
+
▁PA 158
|
160 |
+
US 159
|
161 |
+
MENT 160
|
162 |
+
▁MA 161
|
163 |
+
UT 162
|
164 |
+
▁OUT 163
|
165 |
+
▁THEIR 164
|
166 |
+
▁IF 165
|
167 |
+
▁LI 166
|
168 |
+
▁K 167
|
169 |
+
▁WILL 168
|
170 |
+
▁ARE 169
|
171 |
+
ID 170
|
172 |
+
▁RO 171
|
173 |
+
DE 172
|
174 |
+
TION 173
|
175 |
+
▁WA 174
|
176 |
+
PE 175
|
177 |
+
▁UP 176
|
178 |
+
▁SP 177
|
179 |
+
▁PO 178
|
180 |
+
IGHT 179
|
181 |
+
▁UN 180
|
182 |
+
RU 181
|
183 |
+
▁LO 182
|
184 |
+
AS 183
|
185 |
+
OL 184
|
186 |
+
▁LE 185
|
187 |
+
▁BEEN 186
|
188 |
+
▁SH 187
|
189 |
+
▁RA 188
|
190 |
+
▁SEE 189
|
191 |
+
KE 190
|
192 |
+
UL 191
|
193 |
+
TED 192
|
194 |
+
▁SA 193
|
195 |
+
UN 194
|
196 |
+
UND 195
|
197 |
+
ANT 196
|
198 |
+
▁NE 197
|
199 |
+
IS 198
|
200 |
+
▁THEM 199
|
201 |
+
CI 200
|
202 |
+
GE 201
|
203 |
+
▁COULD 202
|
204 |
+
▁DIS 203
|
205 |
+
OM 204
|
206 |
+
ISH 205
|
207 |
+
HE 206
|
208 |
+
EST 207
|
209 |
+
▁SOME 208
|
210 |
+
ENCE 209
|
211 |
+
ITY 210
|
212 |
+
IVE 211
|
213 |
+
▁US 212
|
214 |
+
▁MORE 213
|
215 |
+
▁EN 214
|
216 |
+
ARD 215
|
217 |
+
ATE 216
|
218 |
+
▁YOUR 217
|
219 |
+
▁INTO 218
|
220 |
+
▁KNOW 219
|
221 |
+
▁CO 220
|
222 |
+
ANCE 221
|
223 |
+
▁TIME 222
|
224 |
+
▁WI 223
|
225 |
+
▁YE 224
|
226 |
+
AGE 225
|
227 |
+
▁NOW 226
|
228 |
+
TI 227
|
229 |
+
FF 228
|
230 |
+
ABLE 229
|
231 |
+
▁VERY 230
|
232 |
+
▁LIKE 231
|
233 |
+
AM 232
|
234 |
+
HI 233
|
235 |
+
Z 234
|
236 |
+
▁OTHER 235
|
237 |
+
▁THAN 236
|
238 |
+
▁LITTLE 237
|
239 |
+
▁DID 238
|
240 |
+
▁LOOK 239
|
241 |
+
TY 240
|
242 |
+
ERS 241
|
243 |
+
▁CAN 242
|
244 |
+
▁CHA 243
|
245 |
+
▁AR 244
|
246 |
+
X 245
|
247 |
+
FUL 246
|
248 |
+
UGH 247
|
249 |
+
▁BA 248
|
250 |
+
▁DAY 249
|
251 |
+
▁ABOUT 250
|
252 |
+
TEN 251
|
253 |
+
IM 252
|
254 |
+
▁ANY 253
|
255 |
+
▁PRE 254
|
256 |
+
▁OVER 255
|
257 |
+
IES 256
|
258 |
+
NESS 257
|
259 |
+
ME 258
|
260 |
+
BLE 259
|
261 |
+
▁M 260
|
262 |
+
ROW 261
|
263 |
+
▁HAS 262
|
264 |
+
▁GREAT 263
|
265 |
+
▁VI 264
|
266 |
+
TA 265
|
267 |
+
▁AFTER 266
|
268 |
+
PER 267
|
269 |
+
▁AGAIN 268
|
270 |
+
HO 269
|
271 |
+
SH 270
|
272 |
+
▁UPON 271
|
273 |
+
▁DI 272
|
274 |
+
▁HAND 273
|
275 |
+
▁COM 274
|
276 |
+
IST 275
|
277 |
+
TURE 276
|
278 |
+
▁STA 277
|
279 |
+
▁THEN 278
|
280 |
+
▁SHOULD 279
|
281 |
+
▁GA 280
|
282 |
+
OUS 281
|
283 |
+
OUR 282
|
284 |
+
▁WELL 283
|
285 |
+
▁ONLY 284
|
286 |
+
MAN 285
|
287 |
+
▁GOOD 286
|
288 |
+
▁TWO 287
|
289 |
+
▁MAR 288
|
290 |
+
▁SAY 289
|
291 |
+
▁HU 290
|
292 |
+
TING 291
|
293 |
+
▁OUR 292
|
294 |
+
RESS 293
|
295 |
+
▁DOWN 294
|
296 |
+
IOUS 295
|
297 |
+
▁BEFORE 296
|
298 |
+
▁DA 297
|
299 |
+
▁NA 298
|
300 |
+
QUI 299
|
301 |
+
▁MADE 300
|
302 |
+
▁EVERY 301
|
303 |
+
▁OLD 302
|
304 |
+
▁EVEN 303
|
305 |
+
IG 304
|
306 |
+
▁COME 305
|
307 |
+
▁GRA 306
|
308 |
+
▁RI 307
|
309 |
+
▁LONG 308
|
310 |
+
OT 309
|
311 |
+
SIDE 310
|
312 |
+
WARD 311
|
313 |
+
▁FO 312
|
314 |
+
▁WHERE 313
|
315 |
+
MO 314
|
316 |
+
LESS 315
|
317 |
+
▁SC 316
|
318 |
+
▁MUST 317
|
319 |
+
▁NEVER 318
|
320 |
+
▁HOW 319
|
321 |
+
▁CAME 320
|
322 |
+
▁SUCH 321
|
323 |
+
▁RU 322
|
324 |
+
▁TAKE 323
|
325 |
+
▁WO 324
|
326 |
+
▁CAR 325
|
327 |
+
UM 326
|
328 |
+
AK 327
|
329 |
+
▁THINK 328
|
330 |
+
▁MUCH 329
|
331 |
+
▁MISTER 330
|
332 |
+
▁MAY 331
|
333 |
+
▁JO 332
|
334 |
+
▁WAY 333
|
335 |
+
▁COMP 334
|
336 |
+
▁THOUGHT 335
|
337 |
+
▁STO 336
|
338 |
+
▁MEN 337
|
339 |
+
▁BACK 338
|
340 |
+
▁DON 339
|
341 |
+
J 340
|
342 |
+
▁LET 341
|
343 |
+
▁TRA 342
|
344 |
+
▁FIRST 343
|
345 |
+
▁JUST 344
|
346 |
+
▁VA 345
|
347 |
+
▁OWN 346
|
348 |
+
▁PLA 347
|
349 |
+
▁MAKE 348
|
350 |
+
ATED 349
|
351 |
+
▁HIMSELF 350
|
352 |
+
▁WENT 351
|
353 |
+
▁PI 352
|
354 |
+
GG 353
|
355 |
+
RING 354
|
356 |
+
▁DU 355
|
357 |
+
▁MIGHT 356
|
358 |
+
▁PART 357
|
359 |
+
▁GIVE 358
|
360 |
+
▁IMP 359
|
361 |
+
▁BU 360
|
362 |
+
▁PER 361
|
363 |
+
▁PLACE 362
|
364 |
+
▁HOUSE 363
|
365 |
+
▁THROUGH 364
|
366 |
+
IAN 365
|
367 |
+
▁SW 366
|
368 |
+
▁UNDER 367
|
369 |
+
QUE 368
|
370 |
+
▁AWAY 369
|
371 |
+
▁LOVE 370
|
372 |
+
QUA 371
|
373 |
+
▁LIFE 372
|
374 |
+
▁GET 373
|
375 |
+
▁WITHOUT 374
|
376 |
+
▁PASS 375
|
377 |
+
▁TURN 376
|
378 |
+
IGN 377
|
379 |
+
▁HEAD 378
|
380 |
+
▁MOST 379
|
381 |
+
▁THOSE 380
|
382 |
+
▁SHALL 381
|
383 |
+
▁EYES 382
|
384 |
+
▁COL 383
|
385 |
+
▁STILL 384
|
386 |
+
▁NIGHT 385
|
387 |
+
▁NOTHING 386
|
388 |
+
ITION 387
|
389 |
+
HA 388
|
390 |
+
▁TELL 389
|
391 |
+
▁WORK 390
|
392 |
+
▁LAST 391
|
393 |
+
▁NEW 392
|
394 |
+
▁FACE 393
|
395 |
+
▁HI 394
|
396 |
+
▁WORD 395
|
397 |
+
▁FOUND 396
|
398 |
+
▁COUNT 397
|
399 |
+
▁OB 398
|
400 |
+
▁WHILE 399
|
401 |
+
▁SHA 400
|
402 |
+
▁MEAN 401
|
403 |
+
▁SAW 402
|
404 |
+
▁PEOPLE 403
|
405 |
+
▁FRIEND 404
|
406 |
+
▁THREE 405
|
407 |
+
▁ROOM 406
|
408 |
+
▁SAME 407
|
409 |
+
▁THOUGH 408
|
410 |
+
▁RIGHT 409
|
411 |
+
▁CHILD 410
|
412 |
+
▁FATHER 411
|
413 |
+
▁ANOTHER 412
|
414 |
+
▁HEART 413
|
415 |
+
▁WANT 414
|
416 |
+
▁TOOK 415
|
417 |
+
OOK 416
|
418 |
+
▁LIGHT 417
|
419 |
+
▁MISSUS 418
|
420 |
+
▁OPEN 419
|
421 |
+
▁JU 420
|
422 |
+
▁ASKED 421
|
423 |
+
PORT 422
|
424 |
+
▁LEFT 423
|
425 |
+
▁JA 424
|
426 |
+
▁WORLD 425
|
427 |
+
▁HOME 426
|
428 |
+
▁WHY 427
|
429 |
+
▁ALWAYS 428
|
430 |
+
▁ANSWER 429
|
431 |
+
▁SEEMED 430
|
432 |
+
▁SOMETHING 431
|
433 |
+
▁GIRL 432
|
434 |
+
▁BECAUSE 433
|
435 |
+
▁NAME 434
|
436 |
+
▁TOLD 435
|
437 |
+
▁NI 436
|
438 |
+
▁HIGH 437
|
439 |
+
IZE 438
|
440 |
+
▁WOMAN 439
|
441 |
+
▁FOLLOW 440
|
442 |
+
▁RETURN 441
|
443 |
+
▁KNEW 442
|
444 |
+
▁EACH 443
|
445 |
+
▁KIND 444
|
446 |
+
▁JE 445
|
447 |
+
▁ACT 446
|
448 |
+
▁LU 447
|
449 |
+
▁CERTAIN 448
|
450 |
+
▁YEARS 449
|
451 |
+
▁QUITE 450
|
452 |
+
▁APPEAR 451
|
453 |
+
▁BETTER 452
|
454 |
+
▁HALF 453
|
455 |
+
▁PRESENT 454
|
456 |
+
▁PRINCE 455
|
457 |
+
SHIP 456
|
458 |
+
▁ALSO 457
|
459 |
+
▁BEGAN 458
|
460 |
+
▁HAVING 459
|
461 |
+
▁ENOUGH 460
|
462 |
+
▁PERSON 461
|
463 |
+
▁LADY 462
|
464 |
+
▁WHITE 463
|
465 |
+
▁COURSE 464
|
466 |
+
▁VOICE 465
|
467 |
+
▁SPEAK 466
|
468 |
+
▁POWER 467
|
469 |
+
▁MORNING 468
|
470 |
+
▁BETWEEN 469
|
471 |
+
▁AMONG 470
|
472 |
+
▁KEEP 471
|
473 |
+
▁WALK 472
|
474 |
+
▁MATTER 473
|
475 |
+
▁TEA 474
|
476 |
+
▁BELIEVE 475
|
477 |
+
▁SMALL 476
|
478 |
+
▁TALK 477
|
479 |
+
▁FELT 478
|
480 |
+
▁HORSE 479
|
481 |
+
▁MYSELF 480
|
482 |
+
▁SIX 481
|
483 |
+
▁HOWEVER 482
|
484 |
+
▁FULL 483
|
485 |
+
▁HERSELF 484
|
486 |
+
▁POINT 485
|
487 |
+
▁STOOD 486
|
488 |
+
▁HUNDRED 487
|
489 |
+
▁ALMOST 488
|
490 |
+
▁SINCE 489
|
491 |
+
▁LARGE 490
|
492 |
+
▁LEAVE 491
|
493 |
+
▁PERHAPS 492
|
494 |
+
▁DARK 493
|
495 |
+
▁SUDDEN 494
|
496 |
+
▁REPLIED 495
|
497 |
+
▁ANYTHING 496
|
498 |
+
▁WONDER 497
|
499 |
+
▁UNTIL 498
|
500 |
+
Q 499
|
501 |
+
#0 500
|
502 |
+
#1 501
|
data/lang_bpe_500/words.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
exp/cpu_jit.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4931cd1eff010cb3d8757b0dd2be404333429f2b7bbbe11c637f9d87de10553c
|
3 |
+
size 421440904
|
exp/pretrained.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9efff0d24646202e3b5506fa3bb0d32e90076d84c28bfa50af294ee96015d2d
|
3 |
+
size 344661407
|
exp/tensorboard/events.out.tfevents.1678202076.r8n04.343595.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fef35df8e5d5f0f32043396ba6ee06e513e9354545ea95d64ea2cf3a4d2ebfdf
|
3 |
+
size 1780128
|
log/attention_decoder/log-decode-2023-03-10-09-58-58
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-10 09:58:58,924 INFO [decode.py:641] Decoding started
|
2 |
+
2023-03-10 09:58:58,925 INFO [decode.py:642] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_ctc', 'icefall-git-sha1': '11e21f3-dirty', 'icefall-git-date': 'Thu Mar 9 19:58:30 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n03', 'IP address': '10.1.7.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'method': 'attention-decoder', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'num_decoder_layers': 6, 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
|
3 |
+
2023-03-10 09:58:59,170 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
|
4 |
+
2023-03-10 09:58:59,289 INFO [decode.py:653] device: cuda:0
|
5 |
+
2023-03-10 09:59:04,720 INFO [decode.py:720] Loading pre-compiled G_4_gram.pt
|
6 |
+
2023-03-10 09:59:08,342 INFO [decode.py:741] About to create model
|
7 |
+
2023-03-10 09:59:08,810 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
8 |
+
2023-03-10 09:59:08,866 INFO [checkpoint.py:112] Loading checkpoint from zipformer_ctc/exp/v0/epoch-99.pt
|
9 |
+
2023-03-10 09:59:09,414 INFO [decode.py:824] Number of model parameters: 86083707
|
10 |
+
2023-03-10 09:59:09,415 INFO [asr_datamodule.py:443] About to get test-clean cuts
|
11 |
+
2023-03-10 09:59:09,504 INFO [asr_datamodule.py:450] About to get test-other cuts
|
log/attention_decoder/log-decode-2023-03-10-10-10-13
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-10 10:10:13,940 INFO [decode.py:641] Decoding started
|
2 |
+
2023-03-10 10:10:13,940 INFO [decode.py:642] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_ctc', 'icefall-git-sha1': '11e21f3-dirty', 'icefall-git-date': 'Thu Mar 9 19:58:30 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n03', 'IP address': '10.1.7.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'method': 'attention-decoder', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'num_decoder_layers': 6, 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
|
3 |
+
2023-03-10 10:10:14,177 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
|
4 |
+
2023-03-10 10:10:14,284 INFO [decode.py:653] device: cuda:0
|
5 |
+
2023-03-10 10:10:19,750 INFO [decode.py:720] Loading pre-compiled G_4_gram.pt
|
6 |
+
2023-03-10 10:10:20,968 INFO [decode.py:741] About to create model
|
7 |
+
2023-03-10 10:10:21,454 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
8 |
+
2023-03-10 10:10:21,526 INFO [checkpoint.py:112] Loading checkpoint from zipformer_ctc/exp/v0/epoch-99.pt
|
9 |
+
2023-03-10 10:10:22,138 INFO [decode.py:824] Number of model parameters: 86083707
|
10 |
+
2023-03-10 10:10:22,138 INFO [asr_datamodule.py:443] About to get test-clean cuts
|
11 |
+
2023-03-10 10:10:22,227 INFO [asr_datamodule.py:450] About to get test-other cuts
|
log/attention_decoder/log-decode-2023-03-10-10-20-00
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-10 10:20:00,301 INFO [decode.py:641] Decoding started
|
2 |
+
2023-03-10 10:20:00,302 INFO [decode.py:642] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_ctc', 'icefall-git-sha1': '11e21f3-dirty', 'icefall-git-date': 'Thu Mar 9 19:58:30 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n03', 'IP address': '10.1.7.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'method': 'attention-decoder', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'num_decoder_layers': 6, 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
|
3 |
+
2023-03-10 10:20:00,577 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
|
4 |
+
2023-03-10 10:20:00,713 INFO [decode.py:653] device: cuda:0
|
5 |
+
2023-03-10 10:20:07,246 INFO [decode.py:720] Loading pre-compiled G_4_gram.pt
|
6 |
+
2023-03-10 10:20:08,507 INFO [decode.py:741] About to create model
|
7 |
+
2023-03-10 10:20:09,069 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
8 |
+
2023-03-10 10:20:09,139 INFO [checkpoint.py:112] Loading checkpoint from zipformer_ctc/exp/v0/epoch-99.pt
|
9 |
+
2023-03-10 10:20:09,768 INFO [decode.py:824] Number of model parameters: 86083707
|
10 |
+
2023-03-10 10:20:09,768 INFO [asr_datamodule.py:443] About to get test-clean cuts
|
11 |
+
2023-03-10 10:20:09,900 INFO [asr_datamodule.py:450] About to get test-other cuts
|
log/attention_decoder/log-decode-2023-03-10-10-56-28
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-10 10:56:28,210 INFO [decode.py:642] Decoding started
|
2 |
+
2023-03-10 10:56:28,211 INFO [decode.py:643] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_ctc', 'icefall-git-sha1': '11e21f3-dirty', 'icefall-git-date': 'Thu Mar 9 19:58:30 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r8n03', 'IP address': '10.1.8.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'method': 'attention-decoder', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'exp/rnnlm', 'rnn_lm_epoch': 99, 'rnn_lm_avg': 1, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'num_decoder_layers': 6, 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
|
3 |
+
2023-03-10 10:56:28,460 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
|
4 |
+
2023-03-10 10:56:28,572 INFO [decode.py:654] device: cuda:0
|
5 |
+
2023-03-10 10:56:33,999 INFO [decode.py:721] Loading pre-compiled G_4_gram.pt
|
6 |
+
2023-03-10 10:56:35,323 INFO [decode.py:742] About to create model
|
7 |
+
2023-03-10 10:56:35,787 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
8 |
+
2023-03-10 10:56:35,847 INFO [checkpoint.py:112] Loading checkpoint from zipformer_ctc/exp/v0/epoch-99.pt
|
9 |
+
2023-03-10 10:56:36,454 INFO [decode.py:825] Number of model parameters: 86083707
|
10 |
+
2023-03-10 10:56:36,454 INFO [asr_datamodule.py:443] About to get test-clean cuts
|
11 |
+
2023-03-10 10:56:36,531 INFO [asr_datamodule.py:450] About to get test-other cuts
|
log/attention_decoder/log-decode-2023-03-10-11-58-59
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-10 11:58:59,546 INFO [decode.py:642] Decoding started
|
2 |
+
2023-03-10 11:58:59,546 INFO [decode.py:643] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_ctc', 'icefall-git-sha1': '11e21f3-dirty', 'icefall-git-date': 'Thu Mar 9 19:58:30 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n04', 'IP address': '10.1.7.4'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'method': 'attention-decoder', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'exp/rnnlm', 'rnn_lm_epoch': 99, 'rnn_lm_avg': 1, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'num_decoder_layers': 6, 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
|
3 |
+
2023-03-10 11:58:59,841 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
|
4 |
+
2023-03-10 11:58:59,957 INFO [decode.py:654] device: cuda:0
|
5 |
+
2023-03-10 11:59:07,426 INFO [decode.py:721] Loading pre-compiled G_4_gram.pt
|
6 |
+
2023-03-10 11:59:12,292 INFO [decode.py:742] About to create model
|
7 |
+
2023-03-10 11:59:12,758 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
8 |
+
2023-03-10 11:59:12,820 INFO [checkpoint.py:112] Loading checkpoint from zipformer_ctc/exp/v0/epoch-99.pt
|
9 |
+
2023-03-10 11:59:14,959 INFO [decode.py:825] Number of model parameters: 86083707
|
10 |
+
2023-03-10 11:59:14,960 INFO [asr_datamodule.py:443] About to get test-clean cuts
|
11 |
+
2023-03-10 11:59:15,047 INFO [asr_datamodule.py:450] About to get test-other cuts
|
log/attention_decoder/log-decode-2023-03-10-16-18-14
ADDED
@@ -0,0 +1,1184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-10 16:18:14,062 INFO [decode.py:642] Decoding started
|
2 |
+
2023-03-10 16:18:14,062 INFO [decode.py:643] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_ctc', 'icefall-git-sha1': '11e21f3-dirty', 'icefall-git-date': 'Thu Mar 9 19:58:30 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n03', 'IP address': '10.1.7.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'method': 'attention-decoder', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'exp/rnnlm', 'rnn_lm_epoch': 99, 'rnn_lm_avg': 1, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'num_decoder_layers': 6, 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
|
3 |
+
2023-03-10 16:18:14,321 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
|
4 |
+
2023-03-10 16:18:14,432 INFO [decode.py:654] device: cuda:0
|
5 |
+
2023-03-10 16:18:20,193 INFO [decode.py:721] Loading pre-compiled G_4_gram.pt
|
6 |
+
2023-03-10 16:18:21,447 INFO [decode.py:742] About to create model
|
7 |
+
2023-03-10 16:18:21,947 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
8 |
+
2023-03-10 16:18:22,017 INFO [checkpoint.py:112] Loading checkpoint from zipformer_ctc/exp/v0/epoch-99.pt
|
9 |
+
2023-03-10 16:18:22,663 INFO [decode.py:825] Number of model parameters: 86083707
|
10 |
+
2023-03-10 16:18:22,663 INFO [asr_datamodule.py:443] About to get test-clean cuts
|
11 |
+
2023-03-10 16:18:22,787 INFO [asr_datamodule.py:450] About to get test-other cuts
|
12 |
+
2023-03-10 16:18:27,802 INFO [decode.py:580] batch 0/?, cuts processed until now is 14
|
13 |
+
2023-03-10 16:23:39,552 INFO [decode.py:580] batch 100/?, cuts processed until now is 2293
|
14 |
+
2023-03-10 16:26:52,008 INFO [decode.py:626]
|
15 |
+
For test-clean, WER of different settings are:
|
16 |
+
ngram_lm_scale_1.2_attention_scale_4.0 2.35 best for test-clean
|
17 |
+
ngram_lm_scale_1.3_attention_scale_5.0 2.35
|
18 |
+
ngram_lm_scale_1.5_attention_scale_5.0 2.35
|
19 |
+
ngram_lm_scale_0.9_attention_scale_4.0 2.36
|
20 |
+
ngram_lm_scale_0.9_attention_scale_5.0 2.36
|
21 |
+
ngram_lm_scale_1.0_attention_scale_5.0 2.36
|
22 |
+
ngram_lm_scale_1.1_attention_scale_4.0 2.36
|
23 |
+
ngram_lm_scale_1.1_attention_scale_5.0 2.36
|
24 |
+
ngram_lm_scale_1.2_attention_scale_5.0 2.36
|
25 |
+
ngram_lm_scale_1.3_attention_scale_4.0 2.36
|
26 |
+
ngram_lm_scale_0.6_attention_scale_1.7 2.37
|
27 |
+
ngram_lm_scale_0.6_attention_scale_3.0 2.37
|
28 |
+
ngram_lm_scale_0.7_attention_scale_1.9 2.37
|
29 |
+
ngram_lm_scale_0.7_attention_scale_2.0 2.37
|
30 |
+
ngram_lm_scale_0.7_attention_scale_2.1 2.37
|
31 |
+
ngram_lm_scale_0.7_attention_scale_2.2 2.37
|
32 |
+
ngram_lm_scale_0.7_attention_scale_2.3 2.37
|
33 |
+
ngram_lm_scale_0.7_attention_scale_3.0 2.37
|
34 |
+
ngram_lm_scale_0.9_attention_scale_3.0 2.37
|
35 |
+
ngram_lm_scale_1.0_attention_scale_3.0 2.37
|
36 |
+
ngram_lm_scale_1.0_attention_scale_4.0 2.37
|
37 |
+
ngram_lm_scale_1.1_attention_scale_3.0 2.37
|
38 |
+
ngram_lm_scale_1.7_attention_scale_4.0 2.37
|
39 |
+
ngram_lm_scale_1.7_attention_scale_5.0 2.37
|
40 |
+
ngram_lm_scale_0.08_attention_scale_4.0 2.38
|
41 |
+
ngram_lm_scale_0.1_attention_scale_4.0 2.38
|
42 |
+
ngram_lm_scale_0.3_attention_scale_4.0 2.38
|
43 |
+
ngram_lm_scale_0.5_attention_scale_3.0 2.38
|
44 |
+
ngram_lm_scale_0.5_attention_scale_5.0 2.38
|
45 |
+
ngram_lm_scale_0.6_attention_scale_1.9 2.38
|
46 |
+
ngram_lm_scale_0.6_attention_scale_2.0 2.38
|
47 |
+
ngram_lm_scale_0.6_attention_scale_2.1 2.38
|
48 |
+
ngram_lm_scale_0.6_attention_scale_2.2 2.38
|
49 |
+
ngram_lm_scale_0.6_attention_scale_2.3 2.38
|
50 |
+
ngram_lm_scale_0.6_attention_scale_2.5 2.38
|
51 |
+
ngram_lm_scale_0.6_attention_scale_4.0 2.38
|
52 |
+
ngram_lm_scale_0.6_attention_scale_5.0 2.38
|
53 |
+
ngram_lm_scale_0.7_attention_scale_2.5 2.38
|
54 |
+
ngram_lm_scale_0.7_attention_scale_4.0 2.38
|
55 |
+
ngram_lm_scale_0.7_attention_scale_5.0 2.38
|
56 |
+
ngram_lm_scale_0.9_attention_scale_2.2 2.38
|
57 |
+
ngram_lm_scale_0.9_attention_scale_2.5 2.38
|
58 |
+
ngram_lm_scale_1.1_attention_scale_1.9 2.38
|
59 |
+
ngram_lm_scale_1.1_attention_scale_2.0 2.38
|
60 |
+
ngram_lm_scale_1.1_attention_scale_2.1 2.38
|
61 |
+
ngram_lm_scale_1.1_attention_scale_2.2 2.38
|
62 |
+
ngram_lm_scale_1.1_attention_scale_2.3 2.38
|
63 |
+
ngram_lm_scale_1.1_attention_scale_2.5 2.38
|
64 |
+
ngram_lm_scale_1.2_attention_scale_2.5 2.38
|
65 |
+
ngram_lm_scale_1.2_attention_scale_3.0 2.38
|
66 |
+
ngram_lm_scale_1.3_attention_scale_3.0 2.38
|
67 |
+
ngram_lm_scale_1.5_attention_scale_4.0 2.38
|
68 |
+
ngram_lm_scale_1.9_attention_scale_5.0 2.38
|
69 |
+
ngram_lm_scale_2.0_attention_scale_5.0 2.38
|
70 |
+
ngram_lm_scale_0.01_attention_scale_0.7 2.39
|
71 |
+
ngram_lm_scale_0.01_attention_scale_1.0 2.39
|
72 |
+
ngram_lm_scale_0.01_attention_scale_1.2 2.39
|
73 |
+
ngram_lm_scale_0.01_attention_scale_1.3 2.39
|
74 |
+
ngram_lm_scale_0.01_attention_scale_1.5 2.39
|
75 |
+
ngram_lm_scale_0.01_attention_scale_4.0 2.39
|
76 |
+
ngram_lm_scale_0.01_attention_scale_5.0 2.39
|
77 |
+
ngram_lm_scale_0.05_attention_scale_0.5 2.39
|
78 |
+
ngram_lm_scale_0.05_attention_scale_0.6 2.39
|
79 |
+
ngram_lm_scale_0.05_attention_scale_0.7 2.39
|
80 |
+
ngram_lm_scale_0.05_attention_scale_0.9 2.39
|
81 |
+
ngram_lm_scale_0.05_attention_scale_1.0 2.39
|
82 |
+
ngram_lm_scale_0.05_attention_scale_1.1 2.39
|
83 |
+
ngram_lm_scale_0.05_attention_scale_1.2 2.39
|
84 |
+
ngram_lm_scale_0.05_attention_scale_1.3 2.39
|
85 |
+
ngram_lm_scale_0.05_attention_scale_1.5 2.39
|
86 |
+
ngram_lm_scale_0.05_attention_scale_1.9 2.39
|
87 |
+
ngram_lm_scale_0.05_attention_scale_3.0 2.39
|
88 |
+
ngram_lm_scale_0.05_attention_scale_4.0 2.39
|
89 |
+
ngram_lm_scale_0.05_attention_scale_5.0 2.39
|
90 |
+
ngram_lm_scale_0.08_attention_scale_0.5 2.39
|
91 |
+
ngram_lm_scale_0.08_attention_scale_0.6 2.39
|
92 |
+
ngram_lm_scale_0.08_attention_scale_0.7 2.39
|
93 |
+
ngram_lm_scale_0.08_attention_scale_0.9 2.39
|
94 |
+
ngram_lm_scale_0.08_attention_scale_1.0 2.39
|
95 |
+
ngram_lm_scale_0.08_attention_scale_1.1 2.39
|
96 |
+
ngram_lm_scale_0.08_attention_scale_1.2 2.39
|
97 |
+
ngram_lm_scale_0.08_attention_scale_1.3 2.39
|
98 |
+
ngram_lm_scale_0.08_attention_scale_1.7 2.39
|
99 |
+
ngram_lm_scale_0.08_attention_scale_1.9 2.39
|
100 |
+
ngram_lm_scale_0.08_attention_scale_2.1 2.39
|
101 |
+
ngram_lm_scale_0.08_attention_scale_2.2 2.39
|
102 |
+
ngram_lm_scale_0.08_attention_scale_2.3 2.39
|
103 |
+
ngram_lm_scale_0.08_attention_scale_3.0 2.39
|
104 |
+
ngram_lm_scale_0.08_attention_scale_5.0 2.39
|
105 |
+
ngram_lm_scale_0.1_attention_scale_0.5 2.39
|
106 |
+
ngram_lm_scale_0.1_attention_scale_0.6 2.39
|
107 |
+
ngram_lm_scale_0.1_attention_scale_1.0 2.39
|
108 |
+
ngram_lm_scale_0.1_attention_scale_1.7 2.39
|
109 |
+
ngram_lm_scale_0.1_attention_scale_1.9 2.39
|
110 |
+
ngram_lm_scale_0.1_attention_scale_3.0 2.39
|
111 |
+
ngram_lm_scale_0.1_attention_scale_5.0 2.39
|
112 |
+
ngram_lm_scale_0.3_attention_scale_1.2 2.39
|
113 |
+
ngram_lm_scale_0.3_attention_scale_1.3 2.39
|
114 |
+
ngram_lm_scale_0.3_attention_scale_2.1 2.39
|
115 |
+
ngram_lm_scale_0.3_attention_scale_2.2 2.39
|
116 |
+
ngram_lm_scale_0.3_attention_scale_3.0 2.39
|
117 |
+
ngram_lm_scale_0.3_attention_scale_5.0 2.39
|
118 |
+
ngram_lm_scale_0.5_attention_scale_1.3 2.39
|
119 |
+
ngram_lm_scale_0.5_attention_scale_1.7 2.39
|
120 |
+
ngram_lm_scale_0.5_attention_scale_1.9 2.39
|
121 |
+
ngram_lm_scale_0.5_attention_scale_2.0 2.39
|
122 |
+
ngram_lm_scale_0.5_attention_scale_2.1 2.39
|
123 |
+
ngram_lm_scale_0.5_attention_scale_2.2 2.39
|
124 |
+
ngram_lm_scale_0.5_attention_scale_2.3 2.39
|
125 |
+
ngram_lm_scale_0.5_attention_scale_2.5 2.39
|
126 |
+
ngram_lm_scale_0.5_attention_scale_4.0 2.39
|
127 |
+
ngram_lm_scale_0.6_attention_scale_1.3 2.39
|
128 |
+
ngram_lm_scale_0.6_attention_scale_1.5 2.39
|
129 |
+
ngram_lm_scale_0.7_attention_scale_1.3 2.39
|
130 |
+
ngram_lm_scale_0.7_attention_scale_1.5 2.39
|
131 |
+
ngram_lm_scale_0.7_attention_scale_1.7 2.39
|
132 |
+
ngram_lm_scale_0.9_attention_scale_1.7 2.39
|
133 |
+
ngram_lm_scale_0.9_attention_scale_2.0 2.39
|
134 |
+
ngram_lm_scale_0.9_attention_scale_2.1 2.39
|
135 |
+
ngram_lm_scale_0.9_attention_scale_2.3 2.39
|
136 |
+
ngram_lm_scale_1.0_attention_scale_1.9 2.39
|
137 |
+
ngram_lm_scale_1.0_attention_scale_2.0 2.39
|
138 |
+
ngram_lm_scale_1.0_attention_scale_2.1 2.39
|
139 |
+
ngram_lm_scale_1.0_attention_scale_2.2 2.39
|
140 |
+
ngram_lm_scale_1.0_attention_scale_2.3 2.39
|
141 |
+
ngram_lm_scale_1.0_attention_scale_2.5 2.39
|
142 |
+
ngram_lm_scale_1.1_attention_scale_1.7 2.39
|
143 |
+
ngram_lm_scale_1.2_attention_scale_1.9 2.39
|
144 |
+
ngram_lm_scale_1.2_attention_scale_2.0 2.39
|
145 |
+
ngram_lm_scale_1.2_attention_scale_2.1 2.39
|
146 |
+
ngram_lm_scale_1.2_attention_scale_2.2 2.39
|
147 |
+
ngram_lm_scale_1.2_attention_scale_2.3 2.39
|
148 |
+
ngram_lm_scale_1.3_attention_scale_2.3 2.39
|
149 |
+
ngram_lm_scale_1.3_attention_scale_2.5 2.39
|
150 |
+
ngram_lm_scale_1.5_attention_scale_3.0 2.39
|
151 |
+
ngram_lm_scale_1.9_attention_scale_4.0 2.39
|
152 |
+
ngram_lm_scale_2.1_attention_scale_5.0 2.39
|
153 |
+
ngram_lm_scale_2.2_attention_scale_5.0 2.39
|
154 |
+
ngram_lm_scale_2.3_attention_scale_5.0 2.39
|
155 |
+
ngram_lm_scale_0.01_attention_scale_0.5 2.4
|
156 |
+
ngram_lm_scale_0.01_attention_scale_0.6 2.4
|
157 |
+
ngram_lm_scale_0.01_attention_scale_0.9 2.4
|
158 |
+
ngram_lm_scale_0.01_attention_scale_1.1 2.4
|
159 |
+
ngram_lm_scale_0.01_attention_scale_1.7 2.4
|
160 |
+
ngram_lm_scale_0.01_attention_scale_1.9 2.4
|
161 |
+
ngram_lm_scale_0.01_attention_scale_2.0 2.4
|
162 |
+
ngram_lm_scale_0.01_attention_scale_2.1 2.4
|
163 |
+
ngram_lm_scale_0.01_attention_scale_2.2 2.4
|
164 |
+
ngram_lm_scale_0.01_attention_scale_2.3 2.4
|
165 |
+
ngram_lm_scale_0.01_attention_scale_2.5 2.4
|
166 |
+
ngram_lm_scale_0.01_attention_scale_3.0 2.4
|
167 |
+
ngram_lm_scale_0.05_attention_scale_1.7 2.4
|
168 |
+
ngram_lm_scale_0.05_attention_scale_2.0 2.4
|
169 |
+
ngram_lm_scale_0.05_attention_scale_2.1 2.4
|
170 |
+
ngram_lm_scale_0.05_attention_scale_2.2 2.4
|
171 |
+
ngram_lm_scale_0.05_attention_scale_2.3 2.4
|
172 |
+
ngram_lm_scale_0.05_attention_scale_2.5 2.4
|
173 |
+
ngram_lm_scale_0.08_attention_scale_1.5 2.4
|
174 |
+
ngram_lm_scale_0.08_attention_scale_2.0 2.4
|
175 |
+
ngram_lm_scale_0.08_attention_scale_2.5 2.4
|
176 |
+
ngram_lm_scale_0.1_attention_scale_0.7 2.4
|
177 |
+
ngram_lm_scale_0.1_attention_scale_0.9 2.4
|
178 |
+
ngram_lm_scale_0.1_attention_scale_1.1 2.4
|
179 |
+
ngram_lm_scale_0.1_attention_scale_1.2 2.4
|
180 |
+
ngram_lm_scale_0.1_attention_scale_1.3 2.4
|
181 |
+
ngram_lm_scale_0.1_attention_scale_1.5 2.4
|
182 |
+
ngram_lm_scale_0.1_attention_scale_2.0 2.4
|
183 |
+
ngram_lm_scale_0.1_attention_scale_2.1 2.4
|
184 |
+
ngram_lm_scale_0.1_attention_scale_2.2 2.4
|
185 |
+
ngram_lm_scale_0.1_attention_scale_2.3 2.4
|
186 |
+
ngram_lm_scale_0.1_attention_scale_2.5 2.4
|
187 |
+
ngram_lm_scale_0.3_attention_scale_0.3 2.4
|
188 |
+
ngram_lm_scale_0.3_attention_scale_0.5 2.4
|
189 |
+
ngram_lm_scale_0.3_attention_scale_0.6 2.4
|
190 |
+
ngram_lm_scale_0.3_attention_scale_0.7 2.4
|
191 |
+
ngram_lm_scale_0.3_attention_scale_1.1 2.4
|
192 |
+
ngram_lm_scale_0.3_attention_scale_1.5 2.4
|
193 |
+
ngram_lm_scale_0.3_attention_scale_1.7 2.4
|
194 |
+
ngram_lm_scale_0.3_attention_scale_1.9 2.4
|
195 |
+
ngram_lm_scale_0.3_attention_scale_2.0 2.4
|
196 |
+
ngram_lm_scale_0.3_attention_scale_2.3 2.4
|
197 |
+
ngram_lm_scale_0.3_attention_scale_2.5 2.4
|
198 |
+
ngram_lm_scale_0.5_attention_scale_0.9 2.4
|
199 |
+
ngram_lm_scale_0.5_attention_scale_1.0 2.4
|
200 |
+
ngram_lm_scale_0.5_attention_scale_1.1 2.4
|
201 |
+
ngram_lm_scale_0.5_attention_scale_1.2 2.4
|
202 |
+
ngram_lm_scale_0.5_attention_scale_1.5 2.4
|
203 |
+
ngram_lm_scale_0.6_attention_scale_1.0 2.4
|
204 |
+
ngram_lm_scale_0.6_attention_scale_1.1 2.4
|
205 |
+
ngram_lm_scale_0.6_attention_scale_1.2 2.4
|
206 |
+
ngram_lm_scale_0.7_attention_scale_1.2 2.4
|
207 |
+
ngram_lm_scale_0.9_attention_scale_1.5 2.4
|
208 |
+
ngram_lm_scale_0.9_attention_scale_1.9 2.4
|
209 |
+
ngram_lm_scale_1.0_attention_scale_1.5 2.4
|
210 |
+
ngram_lm_scale_1.0_attention_scale_1.7 2.4
|
211 |
+
ngram_lm_scale_1.3_attention_scale_2.2 2.4
|
212 |
+
ngram_lm_scale_2.0_attention_scale_4.0 2.4
|
213 |
+
ngram_lm_scale_0.05_attention_scale_0.3 2.41
|
214 |
+
ngram_lm_scale_0.08_attention_scale_0.3 2.41
|
215 |
+
ngram_lm_scale_0.3_attention_scale_1.0 2.41
|
216 |
+
ngram_lm_scale_0.5_attention_scale_0.6 2.41
|
217 |
+
ngram_lm_scale_0.5_attention_scale_0.7 2.41
|
218 |
+
ngram_lm_scale_0.6_attention_scale_0.9 2.41
|
219 |
+
ngram_lm_scale_0.7_attention_scale_1.0 2.41
|
220 |
+
ngram_lm_scale_0.7_attention_scale_1.1 2.41
|
221 |
+
ngram_lm_scale_0.9_attention_scale_1.2 2.41
|
222 |
+
ngram_lm_scale_1.3_attention_scale_2.0 2.41
|
223 |
+
ngram_lm_scale_1.3_attention_scale_2.1 2.41
|
224 |
+
ngram_lm_scale_1.5_attention_scale_2.5 2.41
|
225 |
+
ngram_lm_scale_1.7_attention_scale_3.0 2.41
|
226 |
+
ngram_lm_scale_2.5_attention_scale_5.0 2.41
|
227 |
+
ngram_lm_scale_0.01_attention_scale_0.3 2.42
|
228 |
+
ngram_lm_scale_0.1_attention_scale_0.3 2.42
|
229 |
+
ngram_lm_scale_0.3_attention_scale_0.9 2.42
|
230 |
+
ngram_lm_scale_0.6_attention_scale_0.6 2.42
|
231 |
+
ngram_lm_scale_0.6_attention_scale_0.7 2.42
|
232 |
+
ngram_lm_scale_0.7_attention_scale_0.9 2.42
|
233 |
+
ngram_lm_scale_0.9_attention_scale_1.3 2.42
|
234 |
+
ngram_lm_scale_1.0_attention_scale_1.3 2.42
|
235 |
+
ngram_lm_scale_2.1_attention_scale_4.0 2.42
|
236 |
+
ngram_lm_scale_0.05_attention_scale_0.01 2.43
|
237 |
+
ngram_lm_scale_0.05_attention_scale_0.1 2.43
|
238 |
+
ngram_lm_scale_0.08_attention_scale_0.05 2.43
|
239 |
+
ngram_lm_scale_0.08_attention_scale_0.08 2.43
|
240 |
+
ngram_lm_scale_0.08_attention_scale_0.1 2.43
|
241 |
+
ngram_lm_scale_0.3_attention_scale_0.1 2.43
|
242 |
+
ngram_lm_scale_0.5_attention_scale_0.5 2.43
|
243 |
+
ngram_lm_scale_0.7_attention_scale_0.7 2.43
|
244 |
+
ngram_lm_scale_0.9_attention_scale_1.1 2.43
|
245 |
+
ngram_lm_scale_1.0_attention_scale_1.2 2.43
|
246 |
+
ngram_lm_scale_1.1_attention_scale_1.5 2.43
|
247 |
+
ngram_lm_scale_1.2_attention_scale_1.7 2.43
|
248 |
+
ngram_lm_scale_1.3_attention_scale_1.9 2.43
|
249 |
+
ngram_lm_scale_2.2_attention_scale_4.0 2.43
|
250 |
+
ngram_lm_scale_0.01_attention_scale_0.01 2.44
|
251 |
+
ngram_lm_scale_0.01_attention_scale_0.05 2.44
|
252 |
+
ngram_lm_scale_0.01_attention_scale_0.08 2.44
|
253 |
+
ngram_lm_scale_0.01_attention_scale_0.1 2.44
|
254 |
+
ngram_lm_scale_0.05_attention_scale_0.05 2.44
|
255 |
+
ngram_lm_scale_0.05_attention_scale_0.08 2.44
|
256 |
+
ngram_lm_scale_0.08_attention_scale_0.01 2.44
|
257 |
+
ngram_lm_scale_0.1_attention_scale_0.05 2.44
|
258 |
+
ngram_lm_scale_0.1_attention_scale_0.08 2.44
|
259 |
+
ngram_lm_scale_0.1_attention_scale_0.1 2.44
|
260 |
+
ngram_lm_scale_0.3_attention_scale_0.05 2.44
|
261 |
+
ngram_lm_scale_0.3_attention_scale_0.08 2.44
|
262 |
+
ngram_lm_scale_0.5_attention_scale_0.3 2.44
|
263 |
+
ngram_lm_scale_0.6_attention_scale_0.5 2.44
|
264 |
+
ngram_lm_scale_0.1_attention_scale_0.01 2.45
|
265 |
+
ngram_lm_scale_0.9_attention_scale_1.0 2.45
|
266 |
+
ngram_lm_scale_1.5_attention_scale_2.2 2.45
|
267 |
+
ngram_lm_scale_1.5_attention_scale_2.3 2.45
|
268 |
+
ngram_lm_scale_0.3_attention_scale_0.01 2.46
|
269 |
+
ngram_lm_scale_0.7_attention_scale_0.6 2.46
|
270 |
+
ngram_lm_scale_0.9_attention_scale_0.9 2.46
|
271 |
+
ngram_lm_scale_1.0_attention_scale_1.1 2.46
|
272 |
+
ngram_lm_scale_1.1_attention_scale_1.3 2.47
|
273 |
+
ngram_lm_scale_1.2_attention_scale_1.5 2.47
|
274 |
+
ngram_lm_scale_1.3_attention_scale_1.7 2.47
|
275 |
+
ngram_lm_scale_1.5_attention_scale_2.1 2.47
|
276 |
+
ngram_lm_scale_0.7_attention_scale_0.5 2.48
|
277 |
+
ngram_lm_scale_1.9_attention_scale_3.0 2.48
|
278 |
+
ngram_lm_scale_2.3_attention_scale_4.0 2.48
|
279 |
+
ngram_lm_scale_1.1_attention_scale_1.2 2.49
|
280 |
+
ngram_lm_scale_1.7_attention_scale_2.5 2.49
|
281 |
+
ngram_lm_scale_0.6_attention_scale_0.3 2.5
|
282 |
+
ngram_lm_scale_1.0_attention_scale_1.0 2.5
|
283 |
+
ngram_lm_scale_1.5_attention_scale_2.0 2.5
|
284 |
+
ngram_lm_scale_1.3_attention_scale_1.5 2.51
|
285 |
+
ngram_lm_scale_1.5_attention_scale_1.9 2.51
|
286 |
+
ngram_lm_scale_2.0_attention_scale_3.0 2.51
|
287 |
+
ngram_lm_scale_1.1_attention_scale_1.1 2.52
|
288 |
+
ngram_lm_scale_1.2_attention_scale_1.3 2.52
|
289 |
+
ngram_lm_scale_1.7_attention_scale_2.3 2.53
|
290 |
+
ngram_lm_scale_0.5_attention_scale_0.08 2.54
|
291 |
+
ngram_lm_scale_0.5_attention_scale_0.1 2.54
|
292 |
+
ngram_lm_scale_1.0_attention_scale_0.9 2.54
|
293 |
+
ngram_lm_scale_2.5_attention_scale_4.0 2.54
|
294 |
+
ngram_lm_scale_0.9_attention_scale_0.7 2.55
|
295 |
+
ngram_lm_scale_1.7_attention_scale_2.2 2.55
|
296 |
+
ngram_lm_scale_3.0_attention_scale_5.0 2.55
|
297 |
+
ngram_lm_scale_1.2_attention_scale_1.2 2.56
|
298 |
+
ngram_lm_scale_0.5_attention_scale_0.05 2.57
|
299 |
+
ngram_lm_scale_1.1_attention_scale_1.0 2.58
|
300 |
+
ngram_lm_scale_2.1_attention_scale_3.0 2.58
|
301 |
+
ngram_lm_scale_0.7_attention_scale_0.3 2.59
|
302 |
+
ngram_lm_scale_1.2_attention_scale_1.1 2.59
|
303 |
+
ngram_lm_scale_1.3_attention_scale_1.3 2.59
|
304 |
+
ngram_lm_scale_1.5_attention_scale_1.7 2.6
|
305 |
+
ngram_lm_scale_0.5_attention_scale_0.01 2.61
|
306 |
+
ngram_lm_scale_1.7_attention_scale_2.1 2.61
|
307 |
+
ngram_lm_scale_1.9_attention_scale_2.5 2.61
|
308 |
+
ngram_lm_scale_0.9_attention_scale_0.6 2.62
|
309 |
+
ngram_lm_scale_1.1_attention_scale_0.9 2.62
|
310 |
+
ngram_lm_scale_1.7_attention_scale_2.0 2.64
|
311 |
+
ngram_lm_scale_1.0_attention_scale_0.7 2.65
|
312 |
+
ngram_lm_scale_2.2_attention_scale_3.0 2.65
|
313 |
+
ngram_lm_scale_0.6_attention_scale_0.1 2.68
|
314 |
+
ngram_lm_scale_1.3_attention_scale_1.2 2.68
|
315 |
+
ngram_lm_scale_0.9_attention_scale_0.5 2.69
|
316 |
+
ngram_lm_scale_1.2_attention_scale_1.0 2.69
|
317 |
+
ngram_lm_scale_1.7_attention_scale_1.9 2.69
|
318 |
+
ngram_lm_scale_0.6_attention_scale_0.08 2.7
|
319 |
+
ngram_lm_scale_1.9_attention_scale_2.3 2.7
|
320 |
+
ngram_lm_scale_2.0_attention_scale_2.5 2.7
|
321 |
+
ngram_lm_scale_1.5_attention_scale_1.5 2.72
|
322 |
+
ngram_lm_scale_0.6_attention_scale_0.05 2.74
|
323 |
+
ngram_lm_scale_1.3_attention_scale_1.1 2.75
|
324 |
+
ngram_lm_scale_2.3_attention_scale_3.0 2.75
|
325 |
+
ngram_lm_scale_1.0_attention_scale_0.6 2.76
|
326 |
+
ngram_lm_scale_1.9_attention_scale_2.2 2.76
|
327 |
+
ngram_lm_scale_1.2_attention_scale_0.9 2.77
|
328 |
+
ngram_lm_scale_0.6_attention_scale_0.01 2.8
|
329 |
+
ngram_lm_scale_1.1_attention_scale_0.7 2.81
|
330 |
+
ngram_lm_scale_2.1_attention_scale_2.5 2.83
|
331 |
+
ngram_lm_scale_1.9_attention_scale_2.1 2.84
|
332 |
+
ngram_lm_scale_2.0_attention_scale_2.3 2.84
|
333 |
+
ngram_lm_scale_1.3_attention_scale_1.0 2.85
|
334 |
+
ngram_lm_scale_1.7_attention_scale_1.7 2.85
|
335 |
+
ngram_lm_scale_0.7_attention_scale_0.1 2.86
|
336 |
+
ngram_lm_scale_1.0_attention_scale_0.5 2.89
|
337 |
+
ngram_lm_scale_1.5_attention_scale_1.3 2.92
|
338 |
+
ngram_lm_scale_0.7_attention_scale_0.08 2.93
|
339 |
+
ngram_lm_scale_2.0_attention_scale_2.2 2.93
|
340 |
+
ngram_lm_scale_1.9_attention_scale_2.0 2.95
|
341 |
+
ngram_lm_scale_3.0_attention_scale_4.0 2.96
|
342 |
+
ngram_lm_scale_2.2_attention_scale_2.5 2.99
|
343 |
+
ngram_lm_scale_1.1_attention_scale_0.6 3.0
|
344 |
+
ngram_lm_scale_2.0_attention_scale_2.1 3.01
|
345 |
+
ngram_lm_scale_2.1_attention_scale_2.3 3.01
|
346 |
+
ngram_lm_scale_0.7_attention_scale_0.05 3.02
|
347 |
+
ngram_lm_scale_2.5_attention_scale_3.0 3.02
|
348 |
+
ngram_lm_scale_1.9_attention_scale_1.9 3.04
|
349 |
+
ngram_lm_scale_1.3_attention_scale_0.9 3.05
|
350 |
+
ngram_lm_scale_0.9_attention_scale_0.3 3.06
|
351 |
+
ngram_lm_scale_2.1_attention_scale_2.2 3.09
|
352 |
+
ngram_lm_scale_1.5_attention_scale_1.2 3.1
|
353 |
+
ngram_lm_scale_1.2_attention_scale_0.7 3.12
|
354 |
+
ngram_lm_scale_2.0_attention_scale_2.0 3.12
|
355 |
+
ngram_lm_scale_1.7_attention_scale_1.5 3.13
|
356 |
+
ngram_lm_scale_0.7_attention_scale_0.01 3.15
|
357 |
+
ngram_lm_scale_2.3_attention_scale_2.5 3.15
|
358 |
+
ngram_lm_scale_2.2_attention_scale_2.3 3.16
|
359 |
+
ngram_lm_scale_2.1_attention_scale_2.1 3.23
|
360 |
+
ngram_lm_scale_1.1_attention_scale_0.5 3.29
|
361 |
+
ngram_lm_scale_2.0_attention_scale_1.9 3.3
|
362 |
+
ngram_lm_scale_1.5_attention_scale_1.1 3.31
|
363 |
+
ngram_lm_scale_2.2_attention_scale_2.2 3.33
|
364 |
+
ngram_lm_scale_1.9_attention_scale_1.7 3.36
|
365 |
+
ngram_lm_scale_4.0_attention_scale_5.0 3.37
|
366 |
+
ngram_lm_scale_2.1_attention_scale_2.0 3.4
|
367 |
+
ngram_lm_scale_2.3_attention_scale_2.3 3.41
|
368 |
+
ngram_lm_scale_1.2_attention_scale_0.6 3.46
|
369 |
+
ngram_lm_scale_2.2_attention_scale_2.1 3.49
|
370 |
+
ngram_lm_scale_2.5_attention_scale_2.5 3.55
|
371 |
+
ngram_lm_scale_1.0_attention_scale_0.3 3.56
|
372 |
+
ngram_lm_scale_2.1_attention_scale_1.9 3.56
|
373 |
+
ngram_lm_scale_2.3_attention_scale_2.2 3.56
|
374 |
+
ngram_lm_scale_1.7_attention_scale_1.3 3.58
|
375 |
+
ngram_lm_scale_1.5_attention_scale_1.0 3.59
|
376 |
+
ngram_lm_scale_1.3_attention_scale_0.7 3.62
|
377 |
+
ngram_lm_scale_2.2_attention_scale_2.0 3.65
|
378 |
+
ngram_lm_scale_2.0_attention_scale_1.7 3.67
|
379 |
+
ngram_lm_scale_2.3_attention_scale_2.1 3.74
|
380 |
+
ngram_lm_scale_1.9_attention_scale_1.5 3.82
|
381 |
+
ngram_lm_scale_2.2_attention_scale_1.9 3.86
|
382 |
+
ngram_lm_scale_1.2_attention_scale_0.5 3.88
|
383 |
+
ngram_lm_scale_1.7_attention_scale_1.2 3.9
|
384 |
+
ngram_lm_scale_3.0_attention_scale_3.0 3.91
|
385 |
+
ngram_lm_scale_0.9_attention_scale_0.1 3.92
|
386 |
+
ngram_lm_scale_2.5_attention_scale_2.3 3.94
|
387 |
+
ngram_lm_scale_1.5_attention_scale_0.9 3.98
|
388 |
+
ngram_lm_scale_2.3_attention_scale_2.0 4.0
|
389 |
+
ngram_lm_scale_0.9_attention_scale_0.08 4.05
|
390 |
+
ngram_lm_scale_2.1_attention_scale_1.7 4.08
|
391 |
+
ngram_lm_scale_1.3_attention_scale_0.6 4.1
|
392 |
+
ngram_lm_scale_2.5_attention_scale_2.2 4.19
|
393 |
+
ngram_lm_scale_1.1_attention_scale_0.3 4.26
|
394 |
+
ngram_lm_scale_0.9_attention_scale_0.05 4.27
|
395 |
+
ngram_lm_scale_1.7_attention_scale_1.1 4.27
|
396 |
+
ngram_lm_scale_2.3_attention_scale_1.9 4.27
|
397 |
+
ngram_lm_scale_2.0_attention_scale_1.5 4.28
|
398 |
+
ngram_lm_scale_2.5_attention_scale_2.1 4.47
|
399 |
+
ngram_lm_scale_2.2_attention_scale_1.7 4.49
|
400 |
+
ngram_lm_scale_1.9_attention_scale_1.3 4.53
|
401 |
+
ngram_lm_scale_4.0_attention_scale_4.0 4.55
|
402 |
+
ngram_lm_scale_0.9_attention_scale_0.01 4.58
|
403 |
+
ngram_lm_scale_1.3_attention_scale_0.5 4.65
|
404 |
+
ngram_lm_scale_1.7_attention_scale_1.0 4.76
|
405 |
+
ngram_lm_scale_2.1_attention_scale_1.5 4.8
|
406 |
+
ngram_lm_scale_2.5_attention_scale_2.0 4.83
|
407 |
+
ngram_lm_scale_1.0_attention_scale_0.1 4.89
|
408 |
+
ngram_lm_scale_1.9_attention_scale_1.2 5.04
|
409 |
+
ngram_lm_scale_2.3_attention_scale_1.7 5.04
|
410 |
+
ngram_lm_scale_1.0_attention_scale_0.08 5.06
|
411 |
+
ngram_lm_scale_1.5_attention_scale_0.7 5.06
|
412 |
+
ngram_lm_scale_5.0_attention_scale_5.0 5.08
|
413 |
+
ngram_lm_scale_2.0_attention_scale_1.3 5.2
|
414 |
+
ngram_lm_scale_2.5_attention_scale_1.9 5.26
|
415 |
+
ngram_lm_scale_1.2_attention_scale_0.3 5.29
|
416 |
+
ngram_lm_scale_3.0_attention_scale_2.5 5.31
|
417 |
+
ngram_lm_scale_1.0_attention_scale_0.05 5.33
|
418 |
+
ngram_lm_scale_1.7_attention_scale_0.9 5.39
|
419 |
+
ngram_lm_scale_2.2_attention_scale_1.5 5.44
|
420 |
+
ngram_lm_scale_1.9_attention_scale_1.1 5.71
|
421 |
+
ngram_lm_scale_1.0_attention_scale_0.01 5.75
|
422 |
+
ngram_lm_scale_1.5_attention_scale_0.6 5.8
|
423 |
+
ngram_lm_scale_2.0_attention_scale_1.2 5.81
|
424 |
+
ngram_lm_scale_2.1_attention_scale_1.3 5.91
|
425 |
+
ngram_lm_scale_1.1_attention_scale_0.1 6.0
|
426 |
+
ngram_lm_scale_2.3_attention_scale_1.5 6.07
|
427 |
+
ngram_lm_scale_3.0_attention_scale_2.3 6.12
|
428 |
+
ngram_lm_scale_1.1_attention_scale_0.08 6.18
|
429 |
+
ngram_lm_scale_2.5_attention_scale_1.7 6.23
|
430 |
+
ngram_lm_scale_1.9_attention_scale_1.0 6.27
|
431 |
+
ngram_lm_scale_1.3_attention_scale_0.3 6.3
|
432 |
+
ngram_lm_scale_2.0_attention_scale_1.1 6.36
|
433 |
+
ngram_lm_scale_1.1_attention_scale_0.05 6.44
|
434 |
+
ngram_lm_scale_2.1_attention_scale_1.2 6.45
|
435 |
+
ngram_lm_scale_2.2_attention_scale_1.3 6.52
|
436 |
+
ngram_lm_scale_1.5_attention_scale_0.5 6.55
|
437 |
+
ngram_lm_scale_3.0_attention_scale_2.2 6.58
|
438 |
+
ngram_lm_scale_1.7_attention_scale_0.7 6.68
|
439 |
+
ngram_lm_scale_1.1_attention_scale_0.01 6.79
|
440 |
+
ngram_lm_scale_1.9_attention_scale_0.9 6.84
|
441 |
+
ngram_lm_scale_2.0_attention_scale_1.0 6.91
|
442 |
+
ngram_lm_scale_1.2_attention_scale_0.1 6.97
|
443 |
+
ngram_lm_scale_2.1_attention_scale_1.1 6.99
|
444 |
+
ngram_lm_scale_3.0_attention_scale_2.1 7.07
|
445 |
+
ngram_lm_scale_2.2_attention_scale_1.2 7.08
|
446 |
+
ngram_lm_scale_1.2_attention_scale_0.08 7.14
|
447 |
+
ngram_lm_scale_2.3_attention_scale_1.3 7.14
|
448 |
+
ngram_lm_scale_2.5_attention_scale_1.5 7.24
|
449 |
+
ngram_lm_scale_1.7_attention_scale_0.6 7.36
|
450 |
+
ngram_lm_scale_1.2_attention_scale_0.05 7.4
|
451 |
+
ngram_lm_scale_3.0_attention_scale_2.0 7.43
|
452 |
+
ngram_lm_scale_2.0_attention_scale_0.9 7.47
|
453 |
+
ngram_lm_scale_2.1_attention_scale_1.0 7.51
|
454 |
+
ngram_lm_scale_2.2_attention_scale_1.1 7.56
|
455 |
+
ngram_lm_scale_2.3_attention_scale_1.2 7.58
|
456 |
+
ngram_lm_scale_4.0_attention_scale_3.0 7.68
|
457 |
+
ngram_lm_scale_1.2_attention_scale_0.01 7.73
|
458 |
+
ngram_lm_scale_3.0_attention_scale_1.9 7.78
|
459 |
+
ngram_lm_scale_1.3_attention_scale_0.1 7.81
|
460 |
+
ngram_lm_scale_5.0_attention_scale_4.0 7.81
|
461 |
+
ngram_lm_scale_1.5_attention_scale_0.3 7.87
|
462 |
+
ngram_lm_scale_1.7_attention_scale_0.5 7.89
|
463 |
+
ngram_lm_scale_1.9_attention_scale_0.7 7.91
|
464 |
+
ngram_lm_scale_1.3_attention_scale_0.08 7.92
|
465 |
+
ngram_lm_scale_2.1_attention_scale_0.9 7.94
|
466 |
+
ngram_lm_scale_2.2_attention_scale_1.0 7.96
|
467 |
+
ngram_lm_scale_2.3_attention_scale_1.1 7.97
|
468 |
+
ngram_lm_scale_2.5_attention_scale_1.3 7.98
|
469 |
+
ngram_lm_scale_1.3_attention_scale_0.05 8.07
|
470 |
+
ngram_lm_scale_2.5_attention_scale_1.2 8.26
|
471 |
+
ngram_lm_scale_3.0_attention_scale_1.7 8.26
|
472 |
+
ngram_lm_scale_1.3_attention_scale_0.01 8.27
|
473 |
+
ngram_lm_scale_2.3_attention_scale_1.0 8.29
|
474 |
+
ngram_lm_scale_2.2_attention_scale_0.9 8.3
|
475 |
+
ngram_lm_scale_2.0_attention_scale_0.7 8.31
|
476 |
+
ngram_lm_scale_1.9_attention_scale_0.6 8.32
|
477 |
+
ngram_lm_scale_4.0_attention_scale_2.5 8.41
|
478 |
+
ngram_lm_scale_2.5_attention_scale_1.1 8.45
|
479 |
+
ngram_lm_scale_2.3_attention_scale_0.9 8.48
|
480 |
+
ngram_lm_scale_3.0_attention_scale_1.5 8.51
|
481 |
+
ngram_lm_scale_2.1_attention_scale_0.7 8.52
|
482 |
+
ngram_lm_scale_2.0_attention_scale_0.6 8.55
|
483 |
+
ngram_lm_scale_1.9_attention_scale_0.5 8.56
|
484 |
+
ngram_lm_scale_4.0_attention_scale_2.3 8.58
|
485 |
+
ngram_lm_scale_2.5_attention_scale_1.0 8.61
|
486 |
+
ngram_lm_scale_1.7_attention_scale_0.3 8.62
|
487 |
+
ngram_lm_scale_4.0_attention_scale_2.2 8.65
|
488 |
+
ngram_lm_scale_5.0_attention_scale_3.0 8.67
|
489 |
+
ngram_lm_scale_1.5_attention_scale_0.1 8.68
|
490 |
+
ngram_lm_scale_2.2_attention_scale_0.7 8.68
|
491 |
+
ngram_lm_scale_2.1_attention_scale_0.6 8.72
|
492 |
+
ngram_lm_scale_4.0_attention_scale_2.1 8.73
|
493 |
+
ngram_lm_scale_3.0_attention_scale_1.3 8.74
|
494 |
+
ngram_lm_scale_1.5_attention_scale_0.08 8.75
|
495 |
+
ngram_lm_scale_2.0_attention_scale_0.5 8.76
|
496 |
+
ngram_lm_scale_2.5_attention_scale_0.9 8.77
|
497 |
+
ngram_lm_scale_1.5_attention_scale_0.05 8.83
|
498 |
+
ngram_lm_scale_2.3_attention_scale_0.7 8.83
|
499 |
+
ngram_lm_scale_4.0_attention_scale_2.0 8.83
|
500 |
+
ngram_lm_scale_2.2_attention_scale_0.6 8.86
|
501 |
+
ngram_lm_scale_3.0_attention_scale_1.2 8.86
|
502 |
+
ngram_lm_scale_2.1_attention_scale_0.5 8.89
|
503 |
+
ngram_lm_scale_1.5_attention_scale_0.01 8.91
|
504 |
+
ngram_lm_scale_4.0_attention_scale_1.9 8.91
|
505 |
+
ngram_lm_scale_2.3_attention_scale_0.6 8.95
|
506 |
+
ngram_lm_scale_3.0_attention_scale_1.1 8.95
|
507 |
+
ngram_lm_scale_1.9_attention_scale_0.3 8.96
|
508 |
+
ngram_lm_scale_2.2_attention_scale_0.5 8.98
|
509 |
+
ngram_lm_scale_2.5_attention_scale_0.7 9.0
|
510 |
+
ngram_lm_scale_5.0_attention_scale_2.5 9.0
|
511 |
+
ngram_lm_scale_1.7_attention_scale_0.1 9.01
|
512 |
+
ngram_lm_scale_1.7_attention_scale_0.08 9.04
|
513 |
+
ngram_lm_scale_3.0_attention_scale_1.0 9.04
|
514 |
+
ngram_lm_scale_2.0_attention_scale_0.3 9.05
|
515 |
+
ngram_lm_scale_2.3_attention_scale_0.5 9.05
|
516 |
+
ngram_lm_scale_4.0_attention_scale_1.7 9.05
|
517 |
+
ngram_lm_scale_2.5_attention_scale_0.6 9.09
|
518 |
+
ngram_lm_scale_5.0_attention_scale_2.3 9.1
|
519 |
+
ngram_lm_scale_1.7_attention_scale_0.05 9.11
|
520 |
+
ngram_lm_scale_3.0_attention_scale_0.9 9.11
|
521 |
+
ngram_lm_scale_2.1_attention_scale_0.3 9.12
|
522 |
+
ngram_lm_scale_5.0_attention_scale_2.2 9.13
|
523 |
+
ngram_lm_scale_4.0_attention_scale_1.5 9.15
|
524 |
+
ngram_lm_scale_5.0_attention_scale_2.1 9.17
|
525 |
+
ngram_lm_scale_1.7_attention_scale_0.01 9.18
|
526 |
+
ngram_lm_scale_2.2_attention_scale_0.3 9.19
|
527 |
+
ngram_lm_scale_2.5_attention_scale_0.5 9.19
|
528 |
+
ngram_lm_scale_1.9_attention_scale_0.1 9.2
|
529 |
+
ngram_lm_scale_5.0_attention_scale_2.0 9.21
|
530 |
+
ngram_lm_scale_1.9_attention_scale_0.08 9.22
|
531 |
+
ngram_lm_scale_3.0_attention_scale_0.7 9.23
|
532 |
+
ngram_lm_scale_2.3_attention_scale_0.3 9.24
|
533 |
+
ngram_lm_scale_4.0_attention_scale_1.3 9.24
|
534 |
+
ngram_lm_scale_1.9_attention_scale_0.05 9.25
|
535 |
+
ngram_lm_scale_2.0_attention_scale_0.1 9.25
|
536 |
+
ngram_lm_scale_5.0_attention_scale_1.9 9.25
|
537 |
+
ngram_lm_scale_1.9_attention_scale_0.01 9.26
|
538 |
+
ngram_lm_scale_2.0_attention_scale_0.08 9.26
|
539 |
+
ngram_lm_scale_2.0_attention_scale_0.05 9.28
|
540 |
+
ngram_lm_scale_2.1_attention_scale_0.1 9.28
|
541 |
+
ngram_lm_scale_4.0_attention_scale_1.2 9.28
|
542 |
+
ngram_lm_scale_5.0_attention_scale_1.7 9.29
|
543 |
+
ngram_lm_scale_2.1_attention_scale_0.08 9.3
|
544 |
+
ngram_lm_scale_2.5_attention_scale_0.3 9.3
|
545 |
+
ngram_lm_scale_3.0_attention_scale_0.6 9.3
|
546 |
+
ngram_lm_scale_4.0_attention_scale_1.1 9.3
|
547 |
+
ngram_lm_scale_2.0_attention_scale_0.01 9.31
|
548 |
+
ngram_lm_scale_3.0_attention_scale_0.5 9.32
|
549 |
+
ngram_lm_scale_4.0_attention_scale_1.0 9.32
|
550 |
+
ngram_lm_scale_5.0_attention_scale_1.5 9.32
|
551 |
+
ngram_lm_scale_2.1_attention_scale_0.05 9.33
|
552 |
+
ngram_lm_scale_2.2_attention_scale_0.1 9.33
|
553 |
+
ngram_lm_scale_2.1_attention_scale_0.01 9.35
|
554 |
+
ngram_lm_scale_2.2_attention_scale_0.08 9.35
|
555 |
+
ngram_lm_scale_2.3_attention_scale_0.1 9.35
|
556 |
+
ngram_lm_scale_4.0_attention_scale_0.9 9.35
|
557 |
+
ngram_lm_scale_5.0_attention_scale_1.3 9.35
|
558 |
+
ngram_lm_scale_2.2_attention_scale_0.05 9.36
|
559 |
+
ngram_lm_scale_2.3_attention_scale_0.08 9.37
|
560 |
+
ngram_lm_scale_5.0_attention_scale_1.2 9.37
|
561 |
+
ngram_lm_scale_2.2_attention_scale_0.01 9.38
|
562 |
+
ngram_lm_scale_2.3_attention_scale_0.05 9.38
|
563 |
+
ngram_lm_scale_5.0_attention_scale_1.1 9.38
|
564 |
+
ngram_lm_scale_4.0_attention_scale_0.7 9.39
|
565 |
+
ngram_lm_scale_2.3_attention_scale_0.01 9.4
|
566 |
+
ngram_lm_scale_2.5_attention_scale_0.08 9.4
|
567 |
+
ngram_lm_scale_2.5_attention_scale_0.1 9.4
|
568 |
+
ngram_lm_scale_3.0_attention_scale_0.3 9.4
|
569 |
+
ngram_lm_scale_4.0_attention_scale_0.6 9.4
|
570 |
+
ngram_lm_scale_5.0_attention_scale_0.9 9.4
|
571 |
+
ngram_lm_scale_5.0_attention_scale_1.0 9.4
|
572 |
+
ngram_lm_scale_2.5_attention_scale_0.05 9.42
|
573 |
+
ngram_lm_scale_4.0_attention_scale_0.5 9.42
|
574 |
+
ngram_lm_scale_5.0_attention_scale_0.7 9.42
|
575 |
+
ngram_lm_scale_2.5_attention_scale_0.01 9.43
|
576 |
+
ngram_lm_scale_5.0_attention_scale_0.6 9.43
|
577 |
+
ngram_lm_scale_4.0_attention_scale_0.3 9.44
|
578 |
+
ngram_lm_scale_5.0_attention_scale_0.5 9.45
|
579 |
+
ngram_lm_scale_3.0_attention_scale_0.01 9.46
|
580 |
+
ngram_lm_scale_3.0_attention_scale_0.05 9.46
|
581 |
+
ngram_lm_scale_3.0_attention_scale_0.08 9.46
|
582 |
+
ngram_lm_scale_3.0_attention_scale_0.1 9.46
|
583 |
+
ngram_lm_scale_5.0_attention_scale_0.3 9.46
|
584 |
+
ngram_lm_scale_4.0_attention_scale_0.05 9.48
|
585 |
+
ngram_lm_scale_4.0_attention_scale_0.08 9.48
|
586 |
+
ngram_lm_scale_4.0_attention_scale_0.1 9.48
|
587 |
+
ngram_lm_scale_4.0_attention_scale_0.01 9.49
|
588 |
+
ngram_lm_scale_5.0_attention_scale_0.1 9.49
|
589 |
+
ngram_lm_scale_5.0_attention_scale_0.08 9.5
|
590 |
+
ngram_lm_scale_5.0_attention_scale_0.01 9.51
|
591 |
+
ngram_lm_scale_5.0_attention_scale_0.05 9.51
|
592 |
+
|
593 |
+
2023-03-10 16:26:56,393 INFO [decode.py:580] batch 0/?, cuts processed until now is 17
|
594 |
+
2023-03-10 16:29:21,300 INFO [zipformer.py:1455] attn_weights_entropy = tensor([3.7346, 3.8901, 3.6083, 3.9171, 3.5037, 3.9391, 3.9041, 3.8373],
|
595 |
+
device='cuda:0'), covar=tensor([0.0486, 0.0328, 0.0562, 0.0435, 0.0383, 0.0169, 0.0287, 0.0198],
|
596 |
+
device='cuda:0'), in_proj_covar=tensor([0.0390, 0.0327, 0.0367, 0.0362, 0.0325, 0.0234, 0.0307, 0.0288],
|
597 |
+
device='cuda:0'), out_proj_covar=tensor([0.0006, 0.0006, 0.0005, 0.0006, 0.0005, 0.0004, 0.0005, 0.0005],
|
598 |
+
device='cuda:0')
|
599 |
+
2023-03-10 16:32:59,546 INFO [decode.py:580] batch 100/?, cuts processed until now is 2560
|
600 |
+
2023-03-10 16:33:13,559 INFO [zipformer.py:1455] attn_weights_entropy = tensor([2.5211, 2.4382, 2.4224, 2.3565, 2.4605, 2.2951, 2.5959, 1.9337],
|
601 |
+
device='cuda:0'), covar=tensor([0.0807, 0.1321, 0.2179, 0.3759, 0.1536, 0.1748, 0.1180, 0.3484],
|
602 |
+
device='cuda:0'), in_proj_covar=tensor([0.0186, 0.0193, 0.0209, 0.0260, 0.0168, 0.0270, 0.0191, 0.0219],
|
603 |
+
device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002],
|
604 |
+
device='cuda:0')
|
605 |
+
2023-03-10 16:36:32,675 INFO [decode.py:626]
|
606 |
+
For test-other, WER of different settings are:
|
607 |
+
ngram_lm_scale_0.1_attention_scale_5.0 5.16 best for test-other
|
608 |
+
ngram_lm_scale_0.3_attention_scale_5.0 5.16
|
609 |
+
ngram_lm_scale_0.08_attention_scale_5.0 5.17
|
610 |
+
ngram_lm_scale_0.01_attention_scale_2.2 5.18
|
611 |
+
ngram_lm_scale_0.01_attention_scale_2.3 5.18
|
612 |
+
ngram_lm_scale_0.01_attention_scale_2.5 5.18
|
613 |
+
ngram_lm_scale_0.01_attention_scale_3.0 5.18
|
614 |
+
ngram_lm_scale_0.01_attention_scale_4.0 5.18
|
615 |
+
ngram_lm_scale_0.01_attention_scale_5.0 5.18
|
616 |
+
ngram_lm_scale_0.05_attention_scale_1.9 5.18
|
617 |
+
ngram_lm_scale_0.05_attention_scale_2.2 5.18
|
618 |
+
ngram_lm_scale_0.05_attention_scale_2.3 5.18
|
619 |
+
ngram_lm_scale_0.05_attention_scale_2.5 5.18
|
620 |
+
ngram_lm_scale_0.05_attention_scale_3.0 5.18
|
621 |
+
ngram_lm_scale_0.05_attention_scale_4.0 5.18
|
622 |
+
ngram_lm_scale_0.05_attention_scale_5.0 5.18
|
623 |
+
ngram_lm_scale_0.08_attention_scale_2.5 5.18
|
624 |
+
ngram_lm_scale_0.08_attention_scale_3.0 5.18
|
625 |
+
ngram_lm_scale_0.08_attention_scale_4.0 5.18
|
626 |
+
ngram_lm_scale_0.1_attention_scale_2.5 5.18
|
627 |
+
ngram_lm_scale_0.1_attention_scale_3.0 5.18
|
628 |
+
ngram_lm_scale_0.1_attention_scale_4.0 5.18
|
629 |
+
ngram_lm_scale_0.3_attention_scale_4.0 5.18
|
630 |
+
ngram_lm_scale_0.01_attention_scale_1.1 5.19
|
631 |
+
ngram_lm_scale_0.01_attention_scale_1.2 5.19
|
632 |
+
ngram_lm_scale_0.01_attention_scale_1.3 5.19
|
633 |
+
ngram_lm_scale_0.01_attention_scale_1.5 5.19
|
634 |
+
ngram_lm_scale_0.01_attention_scale_1.7 5.19
|
635 |
+
ngram_lm_scale_0.01_attention_scale_1.9 5.19
|
636 |
+
ngram_lm_scale_0.01_attention_scale_2.0 5.19
|
637 |
+
ngram_lm_scale_0.01_attention_scale_2.1 5.19
|
638 |
+
ngram_lm_scale_0.05_attention_scale_1.2 5.19
|
639 |
+
ngram_lm_scale_0.05_attention_scale_1.3 5.19
|
640 |
+
ngram_lm_scale_0.05_attention_scale_1.5 5.19
|
641 |
+
ngram_lm_scale_0.05_attention_scale_1.7 5.19
|
642 |
+
ngram_lm_scale_0.05_attention_scale_2.0 5.19
|
643 |
+
ngram_lm_scale_0.05_attention_scale_2.1 5.19
|
644 |
+
ngram_lm_scale_0.08_attention_scale_1.3 5.19
|
645 |
+
ngram_lm_scale_0.08_attention_scale_1.5 5.19
|
646 |
+
ngram_lm_scale_0.08_attention_scale_1.7 5.19
|
647 |
+
ngram_lm_scale_0.08_attention_scale_2.0 5.19
|
648 |
+
ngram_lm_scale_0.08_attention_scale_2.1 5.19
|
649 |
+
ngram_lm_scale_0.08_attention_scale_2.2 5.19
|
650 |
+
ngram_lm_scale_0.08_attention_scale_2.3 5.19
|
651 |
+
ngram_lm_scale_0.1_attention_scale_1.0 5.19
|
652 |
+
ngram_lm_scale_0.1_attention_scale_1.1 5.19
|
653 |
+
ngram_lm_scale_0.1_attention_scale_1.2 5.19
|
654 |
+
ngram_lm_scale_0.1_attention_scale_1.5 5.19
|
655 |
+
ngram_lm_scale_0.1_attention_scale_2.1 5.19
|
656 |
+
ngram_lm_scale_0.1_attention_scale_2.2 5.19
|
657 |
+
ngram_lm_scale_0.1_attention_scale_2.3 5.19
|
658 |
+
ngram_lm_scale_0.5_attention_scale_5.0 5.19
|
659 |
+
ngram_lm_scale_0.7_attention_scale_5.0 5.19
|
660 |
+
ngram_lm_scale_0.01_attention_scale_0.9 5.2
|
661 |
+
ngram_lm_scale_0.05_attention_scale_0.9 5.2
|
662 |
+
ngram_lm_scale_0.05_attention_scale_1.0 5.2
|
663 |
+
ngram_lm_scale_0.05_attention_scale_1.1 5.2
|
664 |
+
ngram_lm_scale_0.08_attention_scale_0.9 5.2
|
665 |
+
ngram_lm_scale_0.08_attention_scale_1.0 5.2
|
666 |
+
ngram_lm_scale_0.08_attention_scale_1.1 5.2
|
667 |
+
ngram_lm_scale_0.08_attention_scale_1.2 5.2
|
668 |
+
ngram_lm_scale_0.08_attention_scale_1.9 5.2
|
669 |
+
ngram_lm_scale_0.1_attention_scale_0.9 5.2
|
670 |
+
ngram_lm_scale_0.1_attention_scale_1.3 5.2
|
671 |
+
ngram_lm_scale_0.1_attention_scale_1.7 5.2
|
672 |
+
ngram_lm_scale_0.1_attention_scale_1.9 5.2
|
673 |
+
ngram_lm_scale_0.1_attention_scale_2.0 5.2
|
674 |
+
ngram_lm_scale_0.3_attention_scale_3.0 5.2
|
675 |
+
ngram_lm_scale_0.5_attention_scale_4.0 5.2
|
676 |
+
ngram_lm_scale_0.6_attention_scale_5.0 5.2
|
677 |
+
ngram_lm_scale_0.7_attention_scale_4.0 5.2
|
678 |
+
ngram_lm_scale_0.9_attention_scale_5.0 5.2
|
679 |
+
ngram_lm_scale_0.01_attention_scale_0.7 5.21
|
680 |
+
ngram_lm_scale_0.01_attention_scale_1.0 5.21
|
681 |
+
ngram_lm_scale_0.5_attention_scale_1.3 5.21
|
682 |
+
ngram_lm_scale_0.6_attention_scale_4.0 5.21
|
683 |
+
ngram_lm_scale_0.7_attention_scale_3.0 5.21
|
684 |
+
ngram_lm_scale_0.9_attention_scale_4.0 5.21
|
685 |
+
ngram_lm_scale_1.0_attention_scale_5.0 5.21
|
686 |
+
ngram_lm_scale_0.05_attention_scale_0.6 5.22
|
687 |
+
ngram_lm_scale_0.05_attention_scale_0.7 5.22
|
688 |
+
ngram_lm_scale_0.08_attention_scale_0.7 5.22
|
689 |
+
ngram_lm_scale_0.1_attention_scale_0.6 5.22
|
690 |
+
ngram_lm_scale_0.1_attention_scale_0.7 5.22
|
691 |
+
ngram_lm_scale_0.3_attention_scale_0.9 5.22
|
692 |
+
ngram_lm_scale_0.3_attention_scale_1.0 5.22
|
693 |
+
ngram_lm_scale_0.3_attention_scale_1.1 5.22
|
694 |
+
ngram_lm_scale_0.3_attention_scale_1.2 5.22
|
695 |
+
ngram_lm_scale_0.3_attention_scale_1.3 5.22
|
696 |
+
ngram_lm_scale_0.3_attention_scale_1.5 5.22
|
697 |
+
ngram_lm_scale_0.3_attention_scale_2.1 5.22
|
698 |
+
ngram_lm_scale_0.3_attention_scale_2.2 5.22
|
699 |
+
ngram_lm_scale_0.3_attention_scale_2.3 5.22
|
700 |
+
ngram_lm_scale_0.3_attention_scale_2.5 5.22
|
701 |
+
ngram_lm_scale_0.5_attention_scale_1.2 5.22
|
702 |
+
ngram_lm_scale_0.5_attention_scale_1.5 5.22
|
703 |
+
ngram_lm_scale_0.5_attention_scale_2.1 5.22
|
704 |
+
ngram_lm_scale_0.5_attention_scale_2.2 5.22
|
705 |
+
ngram_lm_scale_0.5_attention_scale_2.5 5.22
|
706 |
+
ngram_lm_scale_0.5_attention_scale_3.0 5.22
|
707 |
+
ngram_lm_scale_0.6_attention_scale_1.7 5.22
|
708 |
+
ngram_lm_scale_0.6_attention_scale_2.0 5.22
|
709 |
+
ngram_lm_scale_0.6_attention_scale_2.1 5.22
|
710 |
+
ngram_lm_scale_0.6_attention_scale_2.2 5.22
|
711 |
+
ngram_lm_scale_0.6_attention_scale_2.5 5.22
|
712 |
+
ngram_lm_scale_0.7_attention_scale_2.1 5.22
|
713 |
+
ngram_lm_scale_0.7_attention_scale_2.5 5.22
|
714 |
+
ngram_lm_scale_1.0_attention_scale_4.0 5.22
|
715 |
+
ngram_lm_scale_1.1_attention_scale_5.0 5.22
|
716 |
+
ngram_lm_scale_1.2_attention_scale_5.0 5.22
|
717 |
+
ngram_lm_scale_0.01_attention_scale_0.6 5.23
|
718 |
+
ngram_lm_scale_0.05_attention_scale_0.5 5.23
|
719 |
+
ngram_lm_scale_0.08_attention_scale_0.5 5.23
|
720 |
+
ngram_lm_scale_0.08_attention_scale_0.6 5.23
|
721 |
+
ngram_lm_scale_0.1_attention_scale_0.5 5.23
|
722 |
+
ngram_lm_scale_0.3_attention_scale_1.7 5.23
|
723 |
+
ngram_lm_scale_0.3_attention_scale_1.9 5.23
|
724 |
+
ngram_lm_scale_0.3_attention_scale_2.0 5.23
|
725 |
+
ngram_lm_scale_0.5_attention_scale_1.1 5.23
|
726 |
+
ngram_lm_scale_0.5_attention_scale_1.7 5.23
|
727 |
+
ngram_lm_scale_0.5_attention_scale_1.9 5.23
|
728 |
+
ngram_lm_scale_0.5_attention_scale_2.0 5.23
|
729 |
+
ngram_lm_scale_0.5_attention_scale_2.3 5.23
|
730 |
+
ngram_lm_scale_0.6_attention_scale_1.5 5.23
|
731 |
+
ngram_lm_scale_0.6_attention_scale_1.9 5.23
|
732 |
+
ngram_lm_scale_0.6_attention_scale_2.3 5.23
|
733 |
+
ngram_lm_scale_0.6_attention_scale_3.0 5.23
|
734 |
+
ngram_lm_scale_0.7_attention_scale_1.7 5.23
|
735 |
+
ngram_lm_scale_0.7_attention_scale_1.9 5.23
|
736 |
+
ngram_lm_scale_0.7_attention_scale_2.0 5.23
|
737 |
+
ngram_lm_scale_0.7_attention_scale_2.2 5.23
|
738 |
+
ngram_lm_scale_0.7_attention_scale_2.3 5.23
|
739 |
+
ngram_lm_scale_1.3_attention_scale_5.0 5.23
|
740 |
+
ngram_lm_scale_0.01_attention_scale_0.5 5.24
|
741 |
+
ngram_lm_scale_0.05_attention_scale_0.3 5.24
|
742 |
+
ngram_lm_scale_0.6_attention_scale_1.3 5.24
|
743 |
+
ngram_lm_scale_0.7_attention_scale_1.5 5.24
|
744 |
+
ngram_lm_scale_0.9_attention_scale_2.5 5.24
|
745 |
+
ngram_lm_scale_0.9_attention_scale_3.0 5.24
|
746 |
+
ngram_lm_scale_1.0_attention_scale_3.0 5.24
|
747 |
+
ngram_lm_scale_1.1_attention_scale_4.0 5.24
|
748 |
+
ngram_lm_scale_1.2_attention_scale_4.0 5.24
|
749 |
+
ngram_lm_scale_1.3_attention_scale_4.0 5.24
|
750 |
+
ngram_lm_scale_0.08_attention_scale_0.3 5.25
|
751 |
+
ngram_lm_scale_0.3_attention_scale_0.7 5.25
|
752 |
+
ngram_lm_scale_0.5_attention_scale_1.0 5.25
|
753 |
+
ngram_lm_scale_0.7_attention_scale_1.3 5.25
|
754 |
+
ngram_lm_scale_0.9_attention_scale_2.2 5.25
|
755 |
+
ngram_lm_scale_1.0_attention_scale_2.5 5.25
|
756 |
+
ngram_lm_scale_1.1_attention_scale_3.0 5.25
|
757 |
+
ngram_lm_scale_1.5_attention_scale_5.0 5.25
|
758 |
+
ngram_lm_scale_0.01_attention_scale_0.3 5.26
|
759 |
+
ngram_lm_scale_0.5_attention_scale_0.9 5.26
|
760 |
+
ngram_lm_scale_0.6_attention_scale_1.1 5.26
|
761 |
+
ngram_lm_scale_0.6_attention_scale_1.2 5.26
|
762 |
+
ngram_lm_scale_0.9_attention_scale_2.1 5.26
|
763 |
+
ngram_lm_scale_0.9_attention_scale_2.3 5.26
|
764 |
+
ngram_lm_scale_1.0_attention_scale_2.3 5.26
|
765 |
+
ngram_lm_scale_1.7_attention_scale_5.0 5.26
|
766 |
+
ngram_lm_scale_0.1_attention_scale_0.3 5.27
|
767 |
+
ngram_lm_scale_0.6_attention_scale_0.9 5.27
|
768 |
+
ngram_lm_scale_0.6_attention_scale_1.0 5.27
|
769 |
+
ngram_lm_scale_0.7_attention_scale_1.2 5.27
|
770 |
+
ngram_lm_scale_0.7_attention_scale_1.1 5.28
|
771 |
+
ngram_lm_scale_0.9_attention_scale_1.7 5.28
|
772 |
+
ngram_lm_scale_0.9_attention_scale_1.9 5.28
|
773 |
+
ngram_lm_scale_0.9_attention_scale_2.0 5.28
|
774 |
+
ngram_lm_scale_1.0_attention_scale_2.2 5.28
|
775 |
+
ngram_lm_scale_1.1_attention_scale_2.5 5.28
|
776 |
+
ngram_lm_scale_1.2_attention_scale_3.0 5.28
|
777 |
+
ngram_lm_scale_0.3_attention_scale_0.5 5.29
|
778 |
+
ngram_lm_scale_0.3_attention_scale_0.6 5.29
|
779 |
+
ngram_lm_scale_0.5_attention_scale_0.7 5.29
|
780 |
+
ngram_lm_scale_1.0_attention_scale_2.1 5.29
|
781 |
+
ngram_lm_scale_1.5_attention_scale_4.0 5.29
|
782 |
+
ngram_lm_scale_1.3_attention_scale_3.0 5.3
|
783 |
+
ngram_lm_scale_1.9_attention_scale_5.0 5.3
|
784 |
+
ngram_lm_scale_0.01_attention_scale_0.1 5.31
|
785 |
+
ngram_lm_scale_0.05_attention_scale_0.08 5.31
|
786 |
+
ngram_lm_scale_0.05_attention_scale_0.1 5.31
|
787 |
+
ngram_lm_scale_0.5_attention_scale_0.6 5.31
|
788 |
+
ngram_lm_scale_0.7_attention_scale_1.0 5.31
|
789 |
+
ngram_lm_scale_1.0_attention_scale_2.0 5.31
|
790 |
+
ngram_lm_scale_2.0_attention_scale_5.0 5.31
|
791 |
+
ngram_lm_scale_0.01_attention_scale_0.08 5.32
|
792 |
+
ngram_lm_scale_0.08_attention_scale_0.1 5.32
|
793 |
+
ngram_lm_scale_0.5_attention_scale_0.5 5.32
|
794 |
+
ngram_lm_scale_0.6_attention_scale_0.7 5.32
|
795 |
+
ngram_lm_scale_1.1_attention_scale_2.2 5.32
|
796 |
+
ngram_lm_scale_1.1_attention_scale_2.3 5.32
|
797 |
+
ngram_lm_scale_0.08_attention_scale_0.08 5.33
|
798 |
+
ngram_lm_scale_0.1_attention_scale_0.1 5.33
|
799 |
+
ngram_lm_scale_0.3_attention_scale_0.3 5.33
|
800 |
+
ngram_lm_scale_1.0_attention_scale_1.9 5.33
|
801 |
+
ngram_lm_scale_1.2_attention_scale_2.5 5.33
|
802 |
+
ngram_lm_scale_1.7_attention_scale_4.0 5.33
|
803 |
+
ngram_lm_scale_0.05_attention_scale_0.05 5.34
|
804 |
+
ngram_lm_scale_0.08_attention_scale_0.05 5.34
|
805 |
+
ngram_lm_scale_0.1_attention_scale_0.08 5.34
|
806 |
+
ngram_lm_scale_0.7_attention_scale_0.9 5.34
|
807 |
+
ngram_lm_scale_0.9_attention_scale_1.5 5.34
|
808 |
+
ngram_lm_scale_1.1_attention_scale_2.1 5.34
|
809 |
+
ngram_lm_scale_2.1_attention_scale_5.0 5.34
|
810 |
+
ngram_lm_scale_0.01_attention_scale_0.05 5.35
|
811 |
+
ngram_lm_scale_0.6_attention_scale_0.6 5.35
|
812 |
+
ngram_lm_scale_1.0_attention_scale_1.7 5.35
|
813 |
+
ngram_lm_scale_1.1_attention_scale_2.0 5.35
|
814 |
+
ngram_lm_scale_1.2_attention_scale_2.3 5.35
|
815 |
+
ngram_lm_scale_0.3_attention_scale_0.1 5.36
|
816 |
+
ngram_lm_scale_2.2_attention_scale_5.0 5.36
|
817 |
+
ngram_lm_scale_0.1_attention_scale_0.05 5.37
|
818 |
+
ngram_lm_scale_0.9_attention_scale_1.2 5.37
|
819 |
+
ngram_lm_scale_0.9_attention_scale_1.3 5.37
|
820 |
+
ngram_lm_scale_1.1_attention_scale_1.9 5.37
|
821 |
+
ngram_lm_scale_1.2_attention_scale_2.2 5.37
|
822 |
+
ngram_lm_scale_1.3_attention_scale_2.5 5.37
|
823 |
+
ngram_lm_scale_0.01_attention_scale_0.01 5.38
|
824 |
+
ngram_lm_scale_0.05_attention_scale_0.01 5.38
|
825 |
+
ngram_lm_scale_0.08_attention_scale_0.01 5.38
|
826 |
+
ngram_lm_scale_0.7_attention_scale_0.7 5.38
|
827 |
+
ngram_lm_scale_1.0_attention_scale_1.5 5.38
|
828 |
+
ngram_lm_scale_1.2_attention_scale_2.1 5.38
|
829 |
+
ngram_lm_scale_0.1_attention_scale_0.01 5.39
|
830 |
+
ngram_lm_scale_0.3_attention_scale_0.08 5.39
|
831 |
+
ngram_lm_scale_0.5_attention_scale_0.3 5.39
|
832 |
+
ngram_lm_scale_0.6_attention_scale_0.5 5.39
|
833 |
+
ngram_lm_scale_1.1_attention_scale_1.7 5.39
|
834 |
+
ngram_lm_scale_0.3_attention_scale_0.05 5.4
|
835 |
+
ngram_lm_scale_0.9_attention_scale_1.1 5.4
|
836 |
+
ngram_lm_scale_1.2_attention_scale_2.0 5.4
|
837 |
+
ngram_lm_scale_1.3_attention_scale_2.2 5.4
|
838 |
+
ngram_lm_scale_1.3_attention_scale_2.3 5.4
|
839 |
+
ngram_lm_scale_1.5_attention_scale_3.0 5.4
|
840 |
+
ngram_lm_scale_1.9_attention_scale_4.0 5.4
|
841 |
+
ngram_lm_scale_0.7_attention_scale_0.6 5.41
|
842 |
+
ngram_lm_scale_1.0_attention_scale_1.3 5.41
|
843 |
+
ngram_lm_scale_1.2_attention_scale_1.9 5.41
|
844 |
+
ngram_lm_scale_0.9_attention_scale_1.0 5.42
|
845 |
+
ngram_lm_scale_1.3_attention_scale_2.1 5.42
|
846 |
+
ngram_lm_scale_2.3_attention_scale_5.0 5.42
|
847 |
+
ngram_lm_scale_0.3_attention_scale_0.01 5.43
|
848 |
+
ngram_lm_scale_1.1_attention_scale_1.5 5.43
|
849 |
+
ngram_lm_scale_1.2_attention_scale_1.7 5.43
|
850 |
+
ngram_lm_scale_1.3_attention_scale_2.0 5.43
|
851 |
+
ngram_lm_scale_1.0_attention_scale_1.2 5.44
|
852 |
+
ngram_lm_scale_1.3_attention_scale_1.9 5.44
|
853 |
+
ngram_lm_scale_1.5_attention_scale_2.5 5.44
|
854 |
+
ngram_lm_scale_1.7_attention_scale_3.0 5.44
|
855 |
+
ngram_lm_scale_2.0_attention_scale_4.0 5.44
|
856 |
+
ngram_lm_scale_2.1_attention_scale_4.0 5.46
|
857 |
+
ngram_lm_scale_0.9_attention_scale_0.9 5.47
|
858 |
+
ngram_lm_scale_1.0_attention_scale_1.1 5.47
|
859 |
+
ngram_lm_scale_1.5_attention_scale_2.3 5.47
|
860 |
+
ngram_lm_scale_0.7_attention_scale_0.5 5.48
|
861 |
+
ngram_lm_scale_1.1_attention_scale_1.3 5.48
|
862 |
+
ngram_lm_scale_2.5_attention_scale_5.0 5.48
|
863 |
+
ngram_lm_scale_1.2_attention_scale_1.5 5.49
|
864 |
+
ngram_lm_scale_1.5_attention_scale_2.2 5.49
|
865 |
+
ngram_lm_scale_2.2_attention_scale_4.0 5.49
|
866 |
+
ngram_lm_scale_0.6_attention_scale_0.3 5.51
|
867 |
+
ngram_lm_scale_1.3_attention_scale_1.7 5.51
|
868 |
+
ngram_lm_scale_1.5_attention_scale_2.1 5.52
|
869 |
+
ngram_lm_scale_1.1_attention_scale_1.2 5.54
|
870 |
+
ngram_lm_scale_2.3_attention_scale_4.0 5.54
|
871 |
+
ngram_lm_scale_1.0_attention_scale_1.0 5.55
|
872 |
+
ngram_lm_scale_1.9_attention_scale_3.0 5.55
|
873 |
+
ngram_lm_scale_1.7_attention_scale_2.5 5.56
|
874 |
+
ngram_lm_scale_1.5_attention_scale_2.0 5.57
|
875 |
+
ngram_lm_scale_0.5_attention_scale_0.1 5.6
|
876 |
+
ngram_lm_scale_1.3_attention_scale_1.5 5.61
|
877 |
+
ngram_lm_scale_1.1_attention_scale_1.1 5.62
|
878 |
+
ngram_lm_scale_1.2_attention_scale_1.3 5.62
|
879 |
+
ngram_lm_scale_0.5_attention_scale_0.08 5.63
|
880 |
+
ngram_lm_scale_1.0_attention_scale_0.9 5.63
|
881 |
+
ngram_lm_scale_1.5_attention_scale_1.9 5.64
|
882 |
+
ngram_lm_scale_2.0_attention_scale_3.0 5.65
|
883 |
+
ngram_lm_scale_0.9_attention_scale_0.7 5.66
|
884 |
+
ngram_lm_scale_0.5_attention_scale_0.05 5.67
|
885 |
+
ngram_lm_scale_1.7_attention_scale_2.3 5.67
|
886 |
+
ngram_lm_scale_0.7_attention_scale_0.3 5.73
|
887 |
+
ngram_lm_scale_1.2_attention_scale_1.2 5.73
|
888 |
+
ngram_lm_scale_2.5_attention_scale_4.0 5.73
|
889 |
+
ngram_lm_scale_1.1_attention_scale_1.0 5.74
|
890 |
+
ngram_lm_scale_0.5_attention_scale_0.01 5.75
|
891 |
+
ngram_lm_scale_1.7_attention_scale_2.2 5.77
|
892 |
+
ngram_lm_scale_0.9_attention_scale_0.6 5.79
|
893 |
+
ngram_lm_scale_2.1_attention_scale_3.0 5.82
|
894 |
+
ngram_lm_scale_0.6_attention_scale_0.1 5.83
|
895 |
+
ngram_lm_scale_1.2_attention_scale_1.1 5.83
|
896 |
+
ngram_lm_scale_3.0_attention_scale_5.0 5.83
|
897 |
+
ngram_lm_scale_1.3_attention_scale_1.3 5.84
|
898 |
+
ngram_lm_scale_1.5_attention_scale_1.7 5.87
|
899 |
+
ngram_lm_scale_0.6_attention_scale_0.08 5.88
|
900 |
+
ngram_lm_scale_1.1_attention_scale_0.9 5.88
|
901 |
+
ngram_lm_scale_1.7_attention_scale_2.1 5.89
|
902 |
+
ngram_lm_scale_1.0_attention_scale_0.7 5.9
|
903 |
+
ngram_lm_scale_1.9_attention_scale_2.5 5.91
|
904 |
+
ngram_lm_scale_0.9_attention_scale_0.5 5.95
|
905 |
+
ngram_lm_scale_0.6_attention_scale_0.05 5.97
|
906 |
+
ngram_lm_scale_1.7_attention_scale_2.0 6.0
|
907 |
+
ngram_lm_scale_1.3_attention_scale_1.2 6.01
|
908 |
+
ngram_lm_scale_1.2_attention_scale_1.0 6.02
|
909 |
+
ngram_lm_scale_2.2_attention_scale_3.0 6.04
|
910 |
+
ngram_lm_scale_0.6_attention_scale_0.01 6.09
|
911 |
+
ngram_lm_scale_2.0_attention_scale_2.5 6.11
|
912 |
+
ngram_lm_scale_1.0_attention_scale_0.6 6.12
|
913 |
+
ngram_lm_scale_1.7_attention_scale_1.9 6.13
|
914 |
+
ngram_lm_scale_1.9_attention_scale_2.3 6.13
|
915 |
+
ngram_lm_scale_1.5_attention_scale_1.5 6.16
|
916 |
+
ngram_lm_scale_1.3_attention_scale_1.1 6.17
|
917 |
+
ngram_lm_scale_1.2_attention_scale_0.9 6.21
|
918 |
+
ngram_lm_scale_0.7_attention_scale_0.1 6.23
|
919 |
+
ngram_lm_scale_1.1_attention_scale_0.7 6.26
|
920 |
+
ngram_lm_scale_1.9_attention_scale_2.2 6.29
|
921 |
+
ngram_lm_scale_2.3_attention_scale_3.0 6.3
|
922 |
+
ngram_lm_scale_0.7_attention_scale_0.08 6.32
|
923 |
+
ngram_lm_scale_1.0_attention_scale_0.5 6.35
|
924 |
+
ngram_lm_scale_1.3_attention_scale_1.0 6.38
|
925 |
+
ngram_lm_scale_2.0_attention_scale_2.3 6.43
|
926 |
+
ngram_lm_scale_2.1_attention_scale_2.5 6.43
|
927 |
+
ngram_lm_scale_1.9_attention_scale_2.1 6.46
|
928 |
+
ngram_lm_scale_0.7_attention_scale_0.05 6.47
|
929 |
+
ngram_lm_scale_1.7_attention_scale_1.7 6.49
|
930 |
+
ngram_lm_scale_1.5_attention_scale_1.3 6.56
|
931 |
+
ngram_lm_scale_0.9_attention_scale_0.3 6.59
|
932 |
+
ngram_lm_scale_1.1_attention_scale_0.6 6.61
|
933 |
+
ngram_lm_scale_1.9_attention_scale_2.0 6.63
|
934 |
+
ngram_lm_scale_2.0_attention_scale_2.2 6.63
|
935 |
+
ngram_lm_scale_0.7_attention_scale_0.01 6.69
|
936 |
+
ngram_lm_scale_1.3_attention_scale_0.9 6.71
|
937 |
+
ngram_lm_scale_2.2_attention_scale_2.5 6.72
|
938 |
+
ngram_lm_scale_3.0_attention_scale_4.0 6.73
|
939 |
+
ngram_lm_scale_2.1_attention_scale_2.3 6.76
|
940 |
+
ngram_lm_scale_2.5_attention_scale_3.0 6.79
|
941 |
+
ngram_lm_scale_2.0_attention_scale_2.1 6.81
|
942 |
+
ngram_lm_scale_1.9_attention_scale_1.9 6.84
|
943 |
+
ngram_lm_scale_1.5_attention_scale_1.2 6.85
|
944 |
+
ngram_lm_scale_1.2_attention_scale_0.7 6.87
|
945 |
+
ngram_lm_scale_2.1_attention_scale_2.2 6.92
|
946 |
+
ngram_lm_scale_1.7_attention_scale_1.5 7.0
|
947 |
+
ngram_lm_scale_2.0_attention_scale_2.0 7.0
|
948 |
+
ngram_lm_scale_2.3_attention_scale_2.5 7.0
|
949 |
+
ngram_lm_scale_2.2_attention_scale_2.3 7.06
|
950 |
+
ngram_lm_scale_1.1_attention_scale_0.5 7.12
|
951 |
+
ngram_lm_scale_2.1_attention_scale_2.1 7.15
|
952 |
+
ngram_lm_scale_2.0_attention_scale_1.9 7.23
|
953 |
+
ngram_lm_scale_1.5_attention_scale_1.1 7.24
|
954 |
+
ngram_lm_scale_2.2_attention_scale_2.2 7.31
|
955 |
+
ngram_lm_scale_1.9_attention_scale_1.7 7.32
|
956 |
+
ngram_lm_scale_1.2_attention_scale_0.6 7.35
|
957 |
+
ngram_lm_scale_4.0_attention_scale_5.0 7.36
|
958 |
+
ngram_lm_scale_2.1_attention_scale_2.0 7.39
|
959 |
+
ngram_lm_scale_2.3_attention_scale_2.3 7.42
|
960 |
+
ngram_lm_scale_1.0_attention_scale_0.3 7.44
|
961 |
+
ngram_lm_scale_2.2_attention_scale_2.1 7.53
|
962 |
+
ngram_lm_scale_2.3_attention_scale_2.2 7.63
|
963 |
+
ngram_lm_scale_1.3_attention_scale_0.7 7.64
|
964 |
+
ngram_lm_scale_1.7_attention_scale_1.3 7.64
|
965 |
+
ngram_lm_scale_1.5_attention_scale_1.0 7.65
|
966 |
+
ngram_lm_scale_2.5_attention_scale_2.5 7.65
|
967 |
+
ngram_lm_scale_2.1_attention_scale_1.9 7.66
|
968 |
+
ngram_lm_scale_2.2_attention_scale_2.0 7.76
|
969 |
+
ngram_lm_scale_2.0_attention_scale_1.7 7.81
|
970 |
+
ngram_lm_scale_2.3_attention_scale_2.1 7.91
|
971 |
+
ngram_lm_scale_0.9_attention_scale_0.1 7.92
|
972 |
+
ngram_lm_scale_1.2_attention_scale_0.5 7.96
|
973 |
+
ngram_lm_scale_1.9_attention_scale_1.5 7.99
|
974 |
+
ngram_lm_scale_1.7_attention_scale_1.2 8.02
|
975 |
+
ngram_lm_scale_2.2_attention_scale_1.9 8.09
|
976 |
+
ngram_lm_scale_0.9_attention_scale_0.08 8.11
|
977 |
+
ngram_lm_scale_1.5_attention_scale_0.9 8.12
|
978 |
+
ngram_lm_scale_2.5_attention_scale_2.3 8.17
|
979 |
+
ngram_lm_scale_3.0_attention_scale_3.0 8.18
|
980 |
+
ngram_lm_scale_2.3_attention_scale_2.0 8.23
|
981 |
+
ngram_lm_scale_1.3_attention_scale_0.6 8.26
|
982 |
+
ngram_lm_scale_2.1_attention_scale_1.7 8.29
|
983 |
+
ngram_lm_scale_0.9_attention_scale_0.05 8.41
|
984 |
+
ngram_lm_scale_1.1_attention_scale_0.3 8.43
|
985 |
+
ngram_lm_scale_2.5_attention_scale_2.2 8.49
|
986 |
+
ngram_lm_scale_2.0_attention_scale_1.5 8.58
|
987 |
+
ngram_lm_scale_1.7_attention_scale_1.1 8.59
|
988 |
+
ngram_lm_scale_2.3_attention_scale_1.9 8.59
|
989 |
+
ngram_lm_scale_0.9_attention_scale_0.01 8.83
|
990 |
+
ngram_lm_scale_2.5_attention_scale_2.1 8.83
|
991 |
+
ngram_lm_scale_2.2_attention_scale_1.7 8.87
|
992 |
+
ngram_lm_scale_4.0_attention_scale_4.0 8.91
|
993 |
+
ngram_lm_scale_1.9_attention_scale_1.3 8.92
|
994 |
+
ngram_lm_scale_1.3_attention_scale_0.5 9.01
|
995 |
+
ngram_lm_scale_1.7_attention_scale_1.0 9.14
|
996 |
+
ngram_lm_scale_2.1_attention_scale_1.5 9.19
|
997 |
+
ngram_lm_scale_2.5_attention_scale_2.0 9.19
|
998 |
+
ngram_lm_scale_1.0_attention_scale_0.1 9.23
|
999 |
+
ngram_lm_scale_1.0_attention_scale_0.08 9.4
|
1000 |
+
ngram_lm_scale_2.3_attention_scale_1.7 9.44
|
1001 |
+
ngram_lm_scale_1.5_attention_scale_0.7 9.48
|
1002 |
+
ngram_lm_scale_1.9_attention_scale_1.2 9.48
|
1003 |
+
ngram_lm_scale_5.0_attention_scale_5.0 9.51
|
1004 |
+
ngram_lm_scale_2.0_attention_scale_1.3 9.63
|
1005 |
+
ngram_lm_scale_1.2_attention_scale_0.3 9.69
|
1006 |
+
ngram_lm_scale_2.5_attention_scale_1.9 9.69
|
1007 |
+
ngram_lm_scale_3.0_attention_scale_2.5 9.71
|
1008 |
+
ngram_lm_scale_1.0_attention_scale_0.05 9.74
|
1009 |
+
ngram_lm_scale_1.7_attention_scale_0.9 9.86
|
1010 |
+
ngram_lm_scale_2.2_attention_scale_1.5 9.9
|
1011 |
+
ngram_lm_scale_1.9_attention_scale_1.1 10.18
|
1012 |
+
ngram_lm_scale_1.0_attention_scale_0.01 10.22
|
1013 |
+
ngram_lm_scale_2.0_attention_scale_1.2 10.35
|
1014 |
+
ngram_lm_scale_1.5_attention_scale_0.6 10.39
|
1015 |
+
ngram_lm_scale_2.1_attention_scale_1.3 10.42
|
1016 |
+
ngram_lm_scale_1.1_attention_scale_0.1 10.54
|
1017 |
+
ngram_lm_scale_2.3_attention_scale_1.5 10.67
|
1018 |
+
ngram_lm_scale_1.1_attention_scale_0.08 10.77
|
1019 |
+
ngram_lm_scale_3.0_attention_scale_2.3 10.77
|
1020 |
+
ngram_lm_scale_2.5_attention_scale_1.7 10.85
|
1021 |
+
ngram_lm_scale_1.9_attention_scale_1.0 10.9
|
1022 |
+
ngram_lm_scale_1.3_attention_scale_0.3 10.92
|
1023 |
+
ngram_lm_scale_2.0_attention_scale_1.1 11.01
|
1024 |
+
ngram_lm_scale_1.1_attention_scale_0.05 11.09
|
1025 |
+
ngram_lm_scale_2.1_attention_scale_1.2 11.09
|
1026 |
+
ngram_lm_scale_2.2_attention_scale_1.3 11.19
|
1027 |
+
ngram_lm_scale_1.5_attention_scale_0.5 11.22
|
1028 |
+
ngram_lm_scale_3.0_attention_scale_2.2 11.23
|
1029 |
+
ngram_lm_scale_1.7_attention_scale_0.7 11.48
|
1030 |
+
ngram_lm_scale_1.1_attention_scale_0.01 11.56
|
1031 |
+
ngram_lm_scale_1.9_attention_scale_0.9 11.59
|
1032 |
+
ngram_lm_scale_2.0_attention_scale_1.0 11.65
|
1033 |
+
ngram_lm_scale_3.0_attention_scale_2.1 11.68
|
1034 |
+
ngram_lm_scale_2.1_attention_scale_1.1 11.71
|
1035 |
+
ngram_lm_scale_1.2_attention_scale_0.1 11.75
|
1036 |
+
ngram_lm_scale_2.2_attention_scale_1.2 11.75
|
1037 |
+
ngram_lm_scale_2.3_attention_scale_1.3 11.8
|
1038 |
+
ngram_lm_scale_2.5_attention_scale_1.5 11.92
|
1039 |
+
ngram_lm_scale_1.2_attention_scale_0.08 11.96
|
1040 |
+
ngram_lm_scale_3.0_attention_scale_2.0 12.05
|
1041 |
+
ngram_lm_scale_1.7_attention_scale_0.6 12.14
|
1042 |
+
ngram_lm_scale_1.2_attention_scale_0.05 12.24
|
1043 |
+
ngram_lm_scale_4.0_attention_scale_3.0 12.26
|
1044 |
+
ngram_lm_scale_2.0_attention_scale_0.9 12.28
|
1045 |
+
ngram_lm_scale_2.1_attention_scale_1.0 12.3
|
1046 |
+
ngram_lm_scale_2.2_attention_scale_1.1 12.32
|
1047 |
+
ngram_lm_scale_2.3_attention_scale_1.2 12.33
|
1048 |
+
ngram_lm_scale_3.0_attention_scale_1.9 12.41
|
1049 |
+
ngram_lm_scale_5.0_attention_scale_4.0 12.42
|
1050 |
+
ngram_lm_scale_1.2_attention_scale_0.01 12.54
|
1051 |
+
ngram_lm_scale_1.3_attention_scale_0.1 12.66
|
1052 |
+
ngram_lm_scale_1.5_attention_scale_0.3 12.66
|
1053 |
+
ngram_lm_scale_1.7_attention_scale_0.5 12.68
|
1054 |
+
ngram_lm_scale_1.9_attention_scale_0.7 12.74
|
1055 |
+
ngram_lm_scale_2.1_attention_scale_0.9 12.75
|
1056 |
+
ngram_lm_scale_2.2_attention_scale_1.0 12.76
|
1057 |
+
ngram_lm_scale_2.3_attention_scale_1.1 12.76
|
1058 |
+
ngram_lm_scale_2.5_attention_scale_1.3 12.76
|
1059 |
+
ngram_lm_scale_1.3_attention_scale_0.08 12.77
|
1060 |
+
ngram_lm_scale_1.3_attention_scale_0.05 12.91
|
1061 |
+
ngram_lm_scale_3.0_attention_scale_1.7 12.91
|
1062 |
+
ngram_lm_scale_2.5_attention_scale_1.2 13.0
|
1063 |
+
ngram_lm_scale_2.3_attention_scale_1.0 13.03
|
1064 |
+
ngram_lm_scale_2.2_attention_scale_0.9 13.04
|
1065 |
+
ngram_lm_scale_4.0_attention_scale_2.5 13.07
|
1066 |
+
ngram_lm_scale_2.0_attention_scale_0.7 13.08
|
1067 |
+
ngram_lm_scale_1.9_attention_scale_0.6 13.1
|
1068 |
+
ngram_lm_scale_1.3_attention_scale_0.01 13.18
|
1069 |
+
ngram_lm_scale_2.5_attention_scale_1.1 13.2
|
1070 |
+
ngram_lm_scale_3.0_attention_scale_1.5 13.24
|
1071 |
+
ngram_lm_scale_2.3_attention_scale_0.9 13.26
|
1072 |
+
ngram_lm_scale_2.1_attention_scale_0.7 13.31
|
1073 |
+
ngram_lm_scale_4.0_attention_scale_2.3 13.31
|
1074 |
+
ngram_lm_scale_2.0_attention_scale_0.6 13.36
|
1075 |
+
ngram_lm_scale_1.9_attention_scale_0.5 13.37
|
1076 |
+
ngram_lm_scale_2.5_attention_scale_1.0 13.38
|
1077 |
+
ngram_lm_scale_4.0_attention_scale_2.2 13.4
|
1078 |
+
ngram_lm_scale_5.0_attention_scale_3.0 13.41
|
1079 |
+
ngram_lm_scale_1.7_attention_scale_0.3 13.45
|
1080 |
+
ngram_lm_scale_2.2_attention_scale_0.7 13.5
|
1081 |
+
ngram_lm_scale_4.0_attention_scale_2.1 13.5
|
1082 |
+
ngram_lm_scale_3.0_attention_scale_1.3 13.51
|
1083 |
+
ngram_lm_scale_2.1_attention_scale_0.6 13.52
|
1084 |
+
ngram_lm_scale_1.5_attention_scale_0.1 13.54
|
1085 |
+
ngram_lm_scale_2.0_attention_scale_0.5 13.56
|
1086 |
+
ngram_lm_scale_2.5_attention_scale_0.9 13.56
|
1087 |
+
ngram_lm_scale_4.0_attention_scale_2.0 13.56
|
1088 |
+
ngram_lm_scale_1.5_attention_scale_0.08 13.58
|
1089 |
+
ngram_lm_scale_2.3_attention_scale_0.7 13.64
|
1090 |
+
ngram_lm_scale_3.0_attention_scale_1.2 13.64
|
1091 |
+
ngram_lm_scale_4.0_attention_scale_1.9 13.64
|
1092 |
+
ngram_lm_scale_1.5_attention_scale_0.05 13.66
|
1093 |
+
ngram_lm_scale_2.2_attention_scale_0.6 13.67
|
1094 |
+
ngram_lm_scale_2.1_attention_scale_0.5 13.69
|
1095 |
+
ngram_lm_scale_5.0_attention_scale_2.5 13.74
|
1096 |
+
ngram_lm_scale_1.5_attention_scale_0.01 13.76
|
1097 |
+
ngram_lm_scale_2.3_attention_scale_0.6 13.77
|
1098 |
+
ngram_lm_scale_3.0_attention_scale_1.1 13.77
|
1099 |
+
ngram_lm_scale_1.9_attention_scale_0.3 13.8
|
1100 |
+
ngram_lm_scale_2.2_attention_scale_0.5 13.8
|
1101 |
+
ngram_lm_scale_2.5_attention_scale_0.7 13.84
|
1102 |
+
ngram_lm_scale_4.0_attention_scale_1.7 13.86
|
1103 |
+
ngram_lm_scale_5.0_attention_scale_2.3 13.88
|
1104 |
+
ngram_lm_scale_1.7_attention_scale_0.1 13.89
|
1105 |
+
ngram_lm_scale_2.0_attention_scale_0.3 13.89
|
1106 |
+
ngram_lm_scale_1.7_attention_scale_0.08 13.9
|
1107 |
+
ngram_lm_scale_3.0_attention_scale_1.0 13.9
|
1108 |
+
ngram_lm_scale_2.3_attention_scale_0.5 13.92
|
1109 |
+
ngram_lm_scale_2.5_attention_scale_0.6 13.94
|
1110 |
+
ngram_lm_scale_5.0_attention_scale_2.2 13.95
|
1111 |
+
ngram_lm_scale_1.7_attention_scale_0.05 13.96
|
1112 |
+
ngram_lm_scale_3.0_attention_scale_0.9 13.97
|
1113 |
+
ngram_lm_scale_2.1_attention_scale_0.3 13.98
|
1114 |
+
ngram_lm_scale_4.0_attention_scale_1.5 13.99
|
1115 |
+
ngram_lm_scale_5.0_attention_scale_2.1 14.0
|
1116 |
+
ngram_lm_scale_1.7_attention_scale_0.01 14.01
|
1117 |
+
ngram_lm_scale_2.5_attention_scale_0.5 14.04
|
1118 |
+
ngram_lm_scale_2.2_attention_scale_0.3 14.05
|
1119 |
+
ngram_lm_scale_5.0_attention_scale_2.0 14.06
|
1120 |
+
ngram_lm_scale_1.9_attention_scale_0.1 14.08
|
1121 |
+
ngram_lm_scale_2.3_attention_scale_0.3 14.09
|
1122 |
+
ngram_lm_scale_5.0_attention_scale_1.9 14.09
|
1123 |
+
ngram_lm_scale_1.9_attention_scale_0.08 14.1
|
1124 |
+
ngram_lm_scale_3.0_attention_scale_0.7 14.1
|
1125 |
+
ngram_lm_scale_4.0_attention_scale_1.3 14.11
|
1126 |
+
ngram_lm_scale_1.9_attention_scale_0.05 14.13
|
1127 |
+
ngram_lm_scale_2.0_attention_scale_0.1 14.13
|
1128 |
+
ngram_lm_scale_2.0_attention_scale_0.08 14.14
|
1129 |
+
ngram_lm_scale_1.9_attention_scale_0.01 14.15
|
1130 |
+
ngram_lm_scale_4.0_attention_scale_1.2 14.15
|
1131 |
+
ngram_lm_scale_2.0_attention_scale_0.05 14.16
|
1132 |
+
ngram_lm_scale_5.0_attention_scale_1.7 14.16
|
1133 |
+
ngram_lm_scale_2.5_attention_scale_0.3 14.17
|
1134 |
+
ngram_lm_scale_3.0_attention_scale_0.6 14.17
|
1135 |
+
ngram_lm_scale_4.0_attention_scale_1.1 14.17
|
1136 |
+
ngram_lm_scale_2.1_attention_scale_0.1 14.18
|
1137 |
+
ngram_lm_scale_2.0_attention_scale_0.01 14.2
|
1138 |
+
ngram_lm_scale_2.1_attention_scale_0.08 14.2
|
1139 |
+
ngram_lm_scale_4.0_attention_scale_1.0 14.22
|
1140 |
+
ngram_lm_scale_2.2_attention_scale_0.1 14.23
|
1141 |
+
ngram_lm_scale_3.0_attention_scale_0.5 14.23
|
1142 |
+
ngram_lm_scale_5.0_attention_scale_1.5 14.23
|
1143 |
+
ngram_lm_scale_2.1_attention_scale_0.05 14.24
|
1144 |
+
ngram_lm_scale_2.2_attention_scale_0.08 14.25
|
1145 |
+
ngram_lm_scale_2.1_attention_scale_0.01 14.26
|
1146 |
+
ngram_lm_scale_2.2_attention_scale_0.05 14.28
|
1147 |
+
ngram_lm_scale_2.3_attention_scale_0.1 14.28
|
1148 |
+
ngram_lm_scale_4.0_attention_scale_0.9 14.28
|
1149 |
+
ngram_lm_scale_5.0_attention_scale_1.3 14.28
|
1150 |
+
ngram_lm_scale_2.3_attention_scale_0.08 14.29
|
1151 |
+
ngram_lm_scale_2.2_attention_scale_0.01 14.31
|
1152 |
+
ngram_lm_scale_2.3_attention_scale_0.05 14.31
|
1153 |
+
ngram_lm_scale_5.0_attention_scale_1.2 14.31
|
1154 |
+
ngram_lm_scale_2.3_attention_scale_0.01 14.33
|
1155 |
+
ngram_lm_scale_2.5_attention_scale_0.1 14.34
|
1156 |
+
ngram_lm_scale_3.0_attention_scale_0.3 14.34
|
1157 |
+
ngram_lm_scale_4.0_attention_scale_0.7 14.34
|
1158 |
+
ngram_lm_scale_2.5_attention_scale_0.08 14.35
|
1159 |
+
ngram_lm_scale_5.0_attention_scale_1.1 14.35
|
1160 |
+
ngram_lm_scale_2.5_attention_scale_0.05 14.36
|
1161 |
+
ngram_lm_scale_4.0_attention_scale_0.6 14.36
|
1162 |
+
ngram_lm_scale_5.0_attention_scale_1.0 14.36
|
1163 |
+
ngram_lm_scale_2.5_attention_scale_0.01 14.38
|
1164 |
+
ngram_lm_scale_5.0_attention_scale_0.9 14.38
|
1165 |
+
ngram_lm_scale_3.0_attention_scale_0.08 14.39
|
1166 |
+
ngram_lm_scale_3.0_attention_scale_0.1 14.39
|
1167 |
+
ngram_lm_scale_4.0_attention_scale_0.5 14.39
|
1168 |
+
ngram_lm_scale_3.0_attention_scale_0.05 14.41
|
1169 |
+
ngram_lm_scale_5.0_attention_scale_0.7 14.41
|
1170 |
+
ngram_lm_scale_3.0_attention_scale_0.01 14.42
|
1171 |
+
ngram_lm_scale_4.0_attention_scale_0.3 14.42
|
1172 |
+
ngram_lm_scale_5.0_attention_scale_0.6 14.42
|
1173 |
+
ngram_lm_scale_5.0_attention_scale_0.5 14.43
|
1174 |
+
ngram_lm_scale_4.0_attention_scale_0.08 14.45
|
1175 |
+
ngram_lm_scale_4.0_attention_scale_0.1 14.45
|
1176 |
+
ngram_lm_scale_5.0_attention_scale_0.3 14.46
|
1177 |
+
ngram_lm_scale_4.0_attention_scale_0.01 14.47
|
1178 |
+
ngram_lm_scale_4.0_attention_scale_0.05 14.47
|
1179 |
+
ngram_lm_scale_5.0_attention_scale_0.05 14.48
|
1180 |
+
ngram_lm_scale_5.0_attention_scale_0.08 14.48
|
1181 |
+
ngram_lm_scale_5.0_attention_scale_0.1 14.48
|
1182 |
+
ngram_lm_scale_5.0_attention_scale_0.01 14.5
|
1183 |
+
|
1184 |
+
2023-03-10 16:36:32,676 INFO [decode.py:882] Done!
|
log/ctc_decoding/log-decode-2023-03-09-01-20-40
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-09 01:20:40,285 INFO [decode.py:657] Decoding started
|
2 |
+
2023-03-09 01:20:40,285 INFO [decode.py:658] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'surt', 'icefall-git-sha1': 'e9931b7-dirty', 'icefall-git-date': 'Fri Mar 3 16:27:17 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r8n03', 'IP address': '10.1.8.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 21, 'iter': 0, 'avg': 5, 'use_averaged_model': True, 'method': 'ctc-decoding', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc_att/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'num_decoder_layers': 6, 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
|
3 |
+
2023-03-09 01:20:40,464 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
|
4 |
+
2023-03-09 01:20:40,857 INFO [decode.py:669] device: cuda:0
|
5 |
+
2023-03-09 01:20:45,992 INFO [decode.py:757] About to create model
|
6 |
+
2023-03-09 01:20:46,623 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
7 |
+
2023-03-09 01:20:46,709 INFO [decode.py:824] Calculating the averaged model over epoch range from 16 (excluded) to 21
|
8 |
+
2023-03-09 01:21:10,542 INFO [decode.py:840] Number of model parameters: 86083707
|
9 |
+
2023-03-09 01:21:10,542 INFO [asr_datamodule.py:440] About to get dev-clean cuts
|
10 |
+
2023-03-09 01:21:10,609 INFO [asr_datamodule.py:454] About to get dev-other cuts
|
11 |
+
2023-03-09 01:21:10,610 INFO [asr_datamodule.py:468] About to get test-clean cuts
|
12 |
+
2023-03-09 01:21:10,610 INFO [asr_datamodule.py:482] About to get test-other cuts
|
13 |
+
2023-03-09 01:21:12,241 INFO [decode.py:595] batch 0/?, cuts processed until now is 16
|
14 |
+
2023-03-09 01:22:03,615 INFO [decode.py:595] batch 100/?, cuts processed until now is 2335
|
15 |
+
2023-03-09 01:22:10,131 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-dev-clean-ctc-decoding.txt
|
16 |
+
2023-03-09 01:22:10,200 INFO [utils.py:538] [dev-clean-ctc-decoding] %WER 2.48% [1350 / 54402, 121 ins, 114 del, 1115 sub ]
|
17 |
+
2023-03-09 01:22:10,350 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-dev-clean-ctc-decoding.txt
|
18 |
+
2023-03-09 01:22:10,351 INFO [decode.py:641]
|
19 |
+
For dev-clean, WER of different settings are:
|
20 |
+
ctc-decoding 2.48 best for dev-clean
|
21 |
+
|
22 |
+
2023-03-09 01:22:11,351 INFO [decode.py:595] batch 0/?, cuts processed until now is 18
|
23 |
+
2023-03-09 01:22:13,439 INFO [zipformer.py:1447] attn_weights_entropy = tensor([3.2532, 2.9490, 3.3925, 4.3052, 3.8906, 3.8377, 2.8715, 2.3639],
|
24 |
+
device='cuda:0'), covar=tensor([0.0741, 0.2031, 0.0892, 0.0517, 0.0864, 0.0483, 0.1706, 0.2449],
|
25 |
+
device='cuda:0'), in_proj_covar=tensor([0.0169, 0.0208, 0.0181, 0.0204, 0.0209, 0.0165, 0.0193, 0.0180],
|
26 |
+
device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0003, 0.0002, 0.0002, 0.0002],
|
27 |
+
device='cuda:0')
|
28 |
+
2023-03-09 01:22:41,747 INFO [zipformer.py:1447] attn_weights_entropy = tensor([5.9773, 6.1870, 5.7736, 5.9844, 5.8950, 5.6403, 5.6171, 5.5847],
|
29 |
+
device='cuda:0'), covar=tensor([0.0838, 0.0432, 0.0575, 0.0440, 0.0393, 0.0988, 0.1716, 0.1633],
|
30 |
+
device='cuda:0'), in_proj_covar=tensor([0.0494, 0.0577, 0.0433, 0.0428, 0.0406, 0.0445, 0.0587, 0.0504],
|
31 |
+
device='cuda:0'), out_proj_covar=tensor([0.0003, 0.0004, 0.0003, 0.0003, 0.0003, 0.0003, 0.0004, 0.0003],
|
32 |
+
device='cuda:0')
|
33 |
+
2023-03-09 01:22:53,505 INFO [zipformer.py:1447] attn_weights_entropy = tensor([4.2329, 4.1956, 4.1419, 4.0666, 4.6500, 4.2362, 4.0969, 2.4006],
|
34 |
+
device='cuda:0'), covar=tensor([0.0272, 0.0398, 0.0414, 0.0302, 0.0936, 0.0228, 0.0368, 0.1957],
|
35 |
+
device='cuda:0'), in_proj_covar=tensor([0.0140, 0.0161, 0.0165, 0.0181, 0.0356, 0.0137, 0.0152, 0.0208],
|
36 |
+
device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0002, 0.0002, 0.0002, 0.0003, 0.0001, 0.0002, 0.0002],
|
37 |
+
device='cuda:0')
|
38 |
+
2023-03-09 01:22:55,821 INFO [zipformer.py:1447] attn_weights_entropy = tensor([3.8753, 4.1602, 3.9796, 3.9890, 4.1755, 3.9942, 3.1298, 4.0274],
|
39 |
+
device='cuda:0'), covar=tensor([0.0157, 0.0136, 0.0176, 0.0131, 0.0120, 0.0147, 0.0660, 0.0244],
|
40 |
+
device='cuda:0'), in_proj_covar=tensor([0.0086, 0.0082, 0.0104, 0.0064, 0.0069, 0.0081, 0.0099, 0.0103],
|
41 |
+
device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0003, 0.0003, 0.0002, 0.0002, 0.0002, 0.0003, 0.0003],
|
42 |
+
device='cuda:0')
|
43 |
+
2023-03-09 01:23:01,448 INFO [decode.py:595] batch 100/?, cuts processed until now is 2625
|
44 |
+
2023-03-09 01:23:05,727 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-dev-other-ctc-decoding.txt
|
45 |
+
2023-03-09 01:23:05,787 INFO [utils.py:538] [dev-other-ctc-decoding] %WER 6.36% [3238 / 50948, 275 ins, 255 del, 2708 sub ]
|
46 |
+
2023-03-09 01:23:05,928 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-dev-other-ctc-decoding.txt
|
47 |
+
2023-03-09 01:23:05,929 INFO [decode.py:641]
|
48 |
+
For dev-other, WER of different settings are:
|
49 |
+
ctc-decoding 6.36 best for dev-other
|
50 |
+
|
51 |
+
2023-03-09 01:23:07,031 INFO [decode.py:595] batch 0/?, cuts processed until now is 14
|
52 |
+
2023-03-09 01:23:59,819 INFO [decode.py:595] batch 100/?, cuts processed until now is 2293
|
53 |
+
2023-03-09 01:24:03,002 INFO [zipformer.py:1447] attn_weights_entropy = tensor([4.2997, 4.3643, 4.0564, 2.7896, 4.1000, 4.1336, 3.6739, 2.6991],
|
54 |
+
device='cuda:0'), covar=tensor([0.0108, 0.0111, 0.0289, 0.0952, 0.0129, 0.0232, 0.0338, 0.1326],
|
55 |
+
device='cuda:0'), in_proj_covar=tensor([0.0069, 0.0096, 0.0096, 0.0107, 0.0079, 0.0105, 0.0094, 0.0101],
|
56 |
+
device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0003, 0.0003, 0.0004, 0.0003, 0.0004, 0.0004, 0.0004],
|
57 |
+
device='cuda:0')
|
58 |
+
2023-03-09 01:24:06,967 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-test-clean-ctc-decoding.txt
|
59 |
+
2023-03-09 01:24:07,032 INFO [utils.py:538] [test-clean-ctc-decoding] %WER 2.68% [1410 / 52576, 136 ins, 114 del, 1160 sub ]
|
60 |
+
2023-03-09 01:24:07,178 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-test-clean-ctc-decoding.txt
|
61 |
+
2023-03-09 01:24:07,179 INFO [decode.py:641]
|
62 |
+
For test-clean, WER of different settings are:
|
63 |
+
ctc-decoding 2.68 best for test-clean
|
64 |
+
|
65 |
+
2023-03-09 01:24:08,272 INFO [decode.py:595] batch 0/?, cuts processed until now is 17
|
66 |
+
2023-03-09 01:24:59,720 INFO [decode.py:595] batch 100/?, cuts processed until now is 2560
|
67 |
+
2023-03-09 01:25:06,602 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-test-other-ctc-decoding.txt
|
68 |
+
2023-03-09 01:25:06,673 INFO [utils.py:538] [test-other-ctc-decoding] %WER 6.42% [3362 / 52343, 305 ins, 277 del, 2780 sub ]
|
69 |
+
2023-03-09 01:25:06,823 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-test-other-ctc-decoding.txt
|
70 |
+
2023-03-09 01:25:06,824 INFO [decode.py:641]
|
71 |
+
For test-other, WER of different settings are:
|
72 |
+
ctc-decoding 6.42 best for test-other
|
73 |
+
|
74 |
+
2023-03-09 01:25:06,824 INFO [decode.py:901] Done!
|
log/ctc_decoding/log-decode-2023-03-09-04-23-24
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-09 04:23:24,501 INFO [decode.py:657] Decoding started
|
2 |
+
2023-03-09 04:23:24,501 INFO [decode.py:658] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'surt', 'icefall-git-sha1': 'e9931b7-dirty', 'icefall-git-date': 'Fri Mar 3 16:27:17 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r8n03', 'IP address': '10.1.8.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 23, 'iter': 0, 'avg': 5, 'use_averaged_model': True, 'method': 'ctc-decoding', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc_att/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'num_decoder_layers': 6, 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
|
3 |
+
2023-03-09 04:23:24,610 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
|
4 |
+
2023-03-09 04:23:24,725 INFO [decode.py:669] device: cuda:0
|
5 |
+
2023-03-09 04:23:29,169 INFO [decode.py:757] About to create model
|
6 |
+
2023-03-09 04:23:29,625 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
7 |
+
2023-03-09 04:23:29,683 INFO [decode.py:824] Calculating the averaged model over epoch range from 18 (excluded) to 23
|
8 |
+
2023-03-09 04:23:59,034 INFO [decode.py:840] Number of model parameters: 86083707
|
9 |
+
2023-03-09 04:23:59,035 INFO [asr_datamodule.py:440] About to get dev-clean cuts
|
10 |
+
2023-03-09 04:23:59,102 INFO [asr_datamodule.py:454] About to get dev-other cuts
|
11 |
+
2023-03-09 04:23:59,103 INFO [asr_datamodule.py:468] About to get test-clean cuts
|
12 |
+
2023-03-09 04:23:59,104 INFO [asr_datamodule.py:482] About to get test-other cuts
|
13 |
+
2023-03-09 04:24:00,793 INFO [decode.py:595] batch 0/?, cuts processed until now is 16
|
14 |
+
2023-03-09 04:24:20,887 INFO [zipformer.py:1447] attn_weights_entropy = tensor([3.5097, 2.4544, 3.7387, 3.2820, 2.6631, 3.5698, 3.6508, 3.5118],
|
15 |
+
device='cuda:0'), covar=tensor([0.0233, 0.1487, 0.0209, 0.0739, 0.1421, 0.0285, 0.0247, 0.0240],
|
16 |
+
device='cuda:0'), in_proj_covar=tensor([0.0183, 0.0236, 0.0176, 0.0306, 0.0256, 0.0204, 0.0164, 0.0194],
|
17 |
+
device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0003, 0.0002, 0.0002, 0.0002, 0.0002],
|
18 |
+
device='cuda:0')
|
19 |
+
2023-03-09 04:24:23,072 INFO [zipformer.py:1447] attn_weights_entropy = tensor([2.5664, 2.2849, 2.5186, 3.0238, 2.7956, 2.9528, 2.4076, 2.0466],
|
20 |
+
device='cuda:0'), covar=tensor([0.0793, 0.2076, 0.0952, 0.0847, 0.0986, 0.0889, 0.1785, 0.2259],
|
21 |
+
device='cuda:0'), in_proj_covar=tensor([0.0173, 0.0209, 0.0183, 0.0211, 0.0217, 0.0170, 0.0196, 0.0182],
|
22 |
+
device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0003, 0.0002, 0.0002, 0.0002],
|
23 |
+
device='cuda:0')
|
24 |
+
2023-03-09 04:24:49,384 INFO [zipformer.py:1447] attn_weights_entropy = tensor([4.8208, 5.4436, 5.4218, 4.8623, 5.9272, 4.8507, 5.3783, 3.3480],
|
25 |
+
device='cuda:0'), covar=tensor([0.0181, 0.0106, 0.0117, 0.0305, 0.0505, 0.0170, 0.0146, 0.1411],
|
26 |
+
device='cuda:0'), in_proj_covar=tensor([0.0151, 0.0176, 0.0177, 0.0193, 0.0361, 0.0147, 0.0166, 0.0209],
|
27 |
+
device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0003, 0.0001, 0.0002, 0.0002],
|
28 |
+
device='cuda:0')
|
29 |
+
2023-03-09 04:24:52,404 INFO [decode.py:595] batch 100/?, cuts processed until now is 2335
|
30 |
+
2023-03-09 04:24:59,003 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-dev-clean-ctc-decoding.txt
|
31 |
+
2023-03-09 04:24:59,072 INFO [utils.py:538] [dev-clean-ctc-decoding] %WER 2.44% [1325 / 54402, 115 ins, 113 del, 1097 sub ]
|
32 |
+
2023-03-09 04:24:59,222 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-dev-clean-ctc-decoding.txt
|
33 |
+
2023-03-09 04:24:59,223 INFO [decode.py:641]
|
34 |
+
For dev-clean, WER of different settings are:
|
35 |
+
ctc-decoding 2.44 best for dev-clean
|
36 |
+
|
37 |
+
2023-03-09 04:25:00,276 INFO [decode.py:595] batch 0/?, cuts processed until now is 18
|
38 |
+
2023-03-09 04:25:20,446 INFO [zipformer.py:1447] attn_weights_entropy = tensor([3.1746, 3.6242, 3.1356, 3.6365, 2.3967, 3.4838, 2.4663, 1.7018],
|
39 |
+
device='cuda:0'), covar=tensor([0.0603, 0.0347, 0.0963, 0.0240, 0.1707, 0.0248, 0.1535, 0.1882],
|
40 |
+
device='cuda:0'), in_proj_covar=tensor([0.0182, 0.0154, 0.0252, 0.0147, 0.0215, 0.0134, 0.0225, 0.0198],
|
41 |
+
device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002],
|
42 |
+
device='cuda:0')
|
43 |
+
2023-03-09 04:25:50,986 INFO [decode.py:595] batch 100/?, cuts processed until now is 2625
|
44 |
+
2023-03-09 04:25:55,314 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-dev-other-ctc-decoding.txt
|
45 |
+
2023-03-09 04:25:55,383 INFO [utils.py:538] [dev-other-ctc-decoding] %WER 6.20% [3157 / 50948, 254 ins, 245 del, 2658 sub ]
|
46 |
+
2023-03-09 04:25:55,534 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-dev-other-ctc-decoding.txt
|
47 |
+
2023-03-09 04:25:55,536 INFO [decode.py:641]
|
48 |
+
For dev-other, WER of different settings are:
|
49 |
+
ctc-decoding 6.2 best for dev-other
|
50 |
+
|
51 |
+
2023-03-09 04:25:56,598 INFO [decode.py:595] batch 0/?, cuts processed until now is 14
|
52 |
+
2023-03-09 04:26:01,569 INFO [zipformer.py:1447] attn_weights_entropy = tensor([4.4120, 5.0760, 5.2997, 5.1498, 3.5879, 4.8010, 3.7668, 2.6052],
|
53 |
+
device='cuda:0'), covar=tensor([0.0291, 0.0159, 0.0397, 0.0115, 0.1199, 0.0151, 0.1023, 0.1435],
|
54 |
+
device='cuda:0'), in_proj_covar=tensor([0.0182, 0.0154, 0.0252, 0.0147, 0.0215, 0.0134, 0.0225, 0.0198],
|
55 |
+
device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002],
|
56 |
+
device='cuda:0')
|
57 |
+
2023-03-09 04:26:16,340 INFO [zipformer.py:1447] attn_weights_entropy = tensor([3.1817, 3.9030, 3.9128, 3.6124, 3.7950, 3.8524, 3.9487, 3.2508],
|
58 |
+
device='cuda:0'), covar=tensor([0.0674, 0.0929, 0.1161, 0.1590, 0.1837, 0.0824, 0.0429, 0.2261],
|
59 |
+
device='cuda:0'), in_proj_covar=tensor([0.0162, 0.0177, 0.0189, 0.0245, 0.0149, 0.0250, 0.0169, 0.0209],
|
60 |
+
device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0002],
|
61 |
+
device='cuda:0')
|
62 |
+
2023-03-09 04:26:49,057 INFO [decode.py:595] batch 100/?, cuts processed until now is 2293
|
63 |
+
2023-03-09 04:26:56,021 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-test-clean-ctc-decoding.txt
|
64 |
+
2023-03-09 04:26:56,086 INFO [utils.py:538] [test-clean-ctc-decoding] %WER 2.58% [1354 / 52576, 134 ins, 101 del, 1119 sub ]
|
65 |
+
2023-03-09 04:26:56,224 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-test-clean-ctc-decoding.txt
|
66 |
+
2023-03-09 04:26:56,225 INFO [decode.py:641]
|
67 |
+
For test-clean, WER of different settings are:
|
68 |
+
ctc-decoding 2.58 best for test-clean
|
69 |
+
|
70 |
+
2023-03-09 04:26:57,298 INFO [decode.py:595] batch 0/?, cuts processed until now is 17
|
71 |
+
2023-03-09 04:27:36,606 INFO [zipformer.py:1447] attn_weights_entropy = tensor([3.5775, 2.5343, 3.2675, 2.5832, 3.1080, 3.7384, 3.6521, 2.7340],
|
72 |
+
device='cuda:0'), covar=tensor([0.0503, 0.1965, 0.1334, 0.1462, 0.1432, 0.1233, 0.0734, 0.1428],
|
73 |
+
device='cuda:0'), in_proj_covar=tensor([0.0237, 0.0237, 0.0272, 0.0212, 0.0257, 0.0360, 0.0253, 0.0225],
|
74 |
+
device='cuda:0'), out_proj_covar=tensor([0.0003, 0.0003, 0.0003, 0.0002, 0.0003, 0.0004, 0.0003, 0.0003],
|
75 |
+
device='cuda:0')
|
76 |
+
2023-03-09 04:27:44,448 INFO [zipformer.py:1447] attn_weights_entropy = tensor([4.1154, 4.9219, 4.8740, 2.4294, 2.1290, 3.0700, 2.4395, 3.8819],
|
77 |
+
device='cuda:0'), covar=tensor([0.0583, 0.0207, 0.0217, 0.5031, 0.5416, 0.2327, 0.3603, 0.1347],
|
78 |
+
device='cuda:0'), in_proj_covar=tensor([0.0346, 0.0263, 0.0258, 0.0238, 0.0335, 0.0328, 0.0247, 0.0356],
|
79 |
+
device='cuda:0'), out_proj_covar=tensor([1.4699e-04, 9.7060e-05, 1.0949e-04, 1.0262e-04, 1.4174e-04, 1.2850e-04,
|
80 |
+
9.9139e-05, 1.4624e-04], device='cuda:0')
|
81 |
+
2023-03-09 04:27:48,477 INFO [decode.py:595] batch 100/?, cuts processed until now is 2560
|
82 |
+
2023-03-09 04:27:55,425 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-test-other-ctc-decoding.txt
|
83 |
+
2023-03-09 04:27:55,496 INFO [utils.py:538] [test-other-ctc-decoding] %WER 6.25% [3271 / 52343, 306 ins, 273 del, 2692 sub ]
|
84 |
+
2023-03-09 04:27:55,651 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-test-other-ctc-decoding.txt
|
85 |
+
2023-03-09 04:27:55,652 INFO [decode.py:641]
|
86 |
+
For test-other, WER of different settings are:
|
87 |
+
ctc-decoding 6.25 best for test-other
|
88 |
+
|
89 |
+
2023-03-09 04:27:55,652 INFO [decode.py:901] Done!
|
log/ctc_decoding/log-decode-2023-03-09-16-35-15
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-09 16:35:15,181 INFO [decode.py:657] Decoding started
|
2 |
+
2023-03-09 16:35:15,181 INFO [decode.py:658] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'surt', 'icefall-git-sha1': 'e9931b7-dirty', 'icefall-git-date': 'Fri Mar 3 16:27:17 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n03', 'IP address': '10.1.7.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 30, 'iter': 0, 'avg': 9, 'use_averaged_model': True, 'method': 'ctc-decoding', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc_att/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500_new'), 'num_decoder_layers': 6, 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
|
3 |
+
2023-03-09 16:35:15,311 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500_new/Linv.pt
|
4 |
+
2023-03-09 16:35:15,402 INFO [decode.py:669] device: cuda:0
|
5 |
+
2023-03-09 16:35:19,651 INFO [decode.py:757] About to create model
|
6 |
+
2023-03-09 16:35:20,131 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
7 |
+
2023-03-09 16:35:20,189 INFO [decode.py:824] Calculating the averaged model over epoch range from 21 (excluded) to 30
|
8 |
+
2023-03-09 16:35:40,878 INFO [decode.py:840] Number of model parameters: 86083707
|
9 |
+
2023-03-09 16:35:40,879 INFO [asr_datamodule.py:468] About to get test-clean cuts
|
10 |
+
2023-03-09 16:35:41,777 INFO [asr_datamodule.py:482] About to get test-other cuts
|
11 |
+
2023-03-09 16:35:43,833 INFO [decode.py:595] batch 0/?, cuts processed until now is 14
|
12 |
+
2023-03-09 16:36:35,032 INFO [decode.py:595] batch 100/?, cuts processed until now is 2293
|
13 |
+
2023-03-09 16:36:41,874 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-test-clean-ctc-decoding.txt
|
14 |
+
2023-03-09 16:36:41,975 INFO [utils.py:538] [test-clean-ctc-decoding] %WER 98.49% [51780 / 52576, 6107 ins, 4221 del, 41452 sub ]
|
15 |
+
2023-03-09 16:36:42,252 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-test-clean-ctc-decoding.txt
|
16 |
+
2023-03-09 16:36:42,253 INFO [decode.py:641]
|
17 |
+
For test-clean, WER of different settings are:
|
18 |
+
ctc-decoding 98.49 best for test-clean
|
19 |
+
|
20 |
+
2023-03-09 16:36:43,652 INFO [decode.py:595] batch 0/?, cuts processed until now is 17
|
log/ctc_decoding/log-decode-2023-03-09-16-37-47
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-09 16:37:47,751 INFO [decode.py:657] Decoding started
|
2 |
+
2023-03-09 16:37:47,752 INFO [decode.py:658] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'surt', 'icefall-git-sha1': 'e9931b7-dirty', 'icefall-git-date': 'Fri Mar 3 16:27:17 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n03', 'IP address': '10.1.7.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 30, 'iter': 0, 'avg': 9, 'use_averaged_model': True, 'method': 'ctc-decoding', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc_att/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'num_decoder_layers': 6, 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
|
3 |
+
2023-03-09 16:37:48,092 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
|
4 |
+
2023-03-09 16:37:48,491 INFO [decode.py:669] device: cuda:0
|
5 |
+
2023-03-09 16:37:52,667 INFO [decode.py:757] About to create model
|
6 |
+
2023-03-09 16:37:53,158 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
7 |
+
2023-03-09 16:37:53,216 INFO [decode.py:824] Calculating the averaged model over epoch range from 21 (excluded) to 30
|
8 |
+
2023-03-09 16:37:56,231 INFO [decode.py:840] Number of model parameters: 86083707
|
9 |
+
2023-03-09 16:37:56,232 INFO [asr_datamodule.py:468] About to get test-clean cuts
|
10 |
+
2023-03-09 16:37:56,325 INFO [asr_datamodule.py:482] About to get test-other cuts
|
11 |
+
2023-03-09 16:37:57,801 INFO [decode.py:595] batch 0/?, cuts processed until now is 14
|
12 |
+
2023-03-09 16:38:21,953 INFO [zipformer.py:1447] attn_weights_entropy = tensor([3.8734, 4.8359, 4.7836, 2.2005, 1.9394, 3.1305, 2.3672, 3.7309],
|
13 |
+
device='cuda:0'), covar=tensor([0.0726, 0.0255, 0.0251, 0.5680, 0.6138, 0.2288, 0.4314, 0.1432],
|
14 |
+
device='cuda:0'), in_proj_covar=tensor([0.0351, 0.0282, 0.0266, 0.0244, 0.0333, 0.0327, 0.0254, 0.0360],
|
15 |
+
device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001],
|
16 |
+
device='cuda:0')
|
17 |
+
2023-03-09 16:38:36,815 INFO [zipformer.py:1447] attn_weights_entropy = tensor([2.9556, 3.3917, 2.8934, 3.1775, 3.5526, 3.3754, 2.8833, 3.5053],
|
18 |
+
device='cuda:0'), covar=tensor([0.0973, 0.0680, 0.1121, 0.0759, 0.0776, 0.0769, 0.0865, 0.0496],
|
19 |
+
device='cuda:0'), in_proj_covar=tensor([0.0201, 0.0218, 0.0225, 0.0201, 0.0282, 0.0242, 0.0198, 0.0288],
|
20 |
+
device='cuda:0'), out_proj_covar=tensor([0.0003, 0.0003, 0.0003, 0.0003, 0.0004, 0.0004, 0.0003, 0.0004],
|
21 |
+
device='cuda:0')
|
22 |
+
2023-03-09 16:38:42,569 INFO [zipformer.py:1447] attn_weights_entropy = tensor([3.9828, 4.9623, 4.8838, 2.2937, 1.9373, 3.3023, 2.4284, 3.7700],
|
23 |
+
device='cuda:0'), covar=tensor([0.0650, 0.0265, 0.0272, 0.5707, 0.6273, 0.2079, 0.4437, 0.1474],
|
24 |
+
device='cuda:0'), in_proj_covar=tensor([0.0351, 0.0282, 0.0266, 0.0244, 0.0333, 0.0327, 0.0254, 0.0360],
|
25 |
+
device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001],
|
26 |
+
device='cuda:0')
|
27 |
+
2023-03-09 16:38:47,820 INFO [decode.py:595] batch 100/?, cuts processed until now is 2293
|
28 |
+
2023-03-09 16:38:54,624 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-test-clean-ctc-decoding.txt
|
29 |
+
2023-03-09 16:38:54,683 INFO [utils.py:538] [test-clean-ctc-decoding] %WER 2.50% [1316 / 52576, 140 ins, 94 del, 1082 sub ]
|
30 |
+
2023-03-09 16:38:54,821 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-test-clean-ctc-decoding.txt
|
31 |
+
2023-03-09 16:38:54,822 INFO [decode.py:641]
|
32 |
+
For test-clean, WER of different settings are:
|
33 |
+
ctc-decoding 2.5 best for test-clean
|
34 |
+
|
35 |
+
2023-03-09 16:38:55,805 INFO [decode.py:595] batch 0/?, cuts processed until now is 17
|
36 |
+
2023-03-09 16:39:20,752 INFO [zipformer.py:1447] attn_weights_entropy = tensor([4.9714, 5.3511, 4.9382, 5.1933, 5.0431, 4.6623, 4.8124, 4.6678],
|
37 |
+
device='cuda:0'), covar=tensor([0.1602, 0.0753, 0.0770, 0.0644, 0.0709, 0.1634, 0.2040, 0.2010],
|
38 |
+
device='cuda:0'), in_proj_covar=tensor([0.0535, 0.0618, 0.0469, 0.0458, 0.0433, 0.0468, 0.0622, 0.0530],
|
39 |
+
device='cuda:0'), out_proj_covar=tensor([0.0004, 0.0004, 0.0003, 0.0003, 0.0003, 0.0003, 0.0004, 0.0004],
|
40 |
+
device='cuda:0')
|
41 |
+
2023-03-09 16:39:36,652 INFO [zipformer.py:1447] attn_weights_entropy = tensor([2.9433, 3.5919, 3.1227, 3.3415, 3.7766, 3.5015, 2.9274, 3.8561],
|
42 |
+
device='cuda:0'), covar=tensor([0.0918, 0.0514, 0.1023, 0.0648, 0.0696, 0.0717, 0.0854, 0.0489],
|
43 |
+
device='cuda:0'), in_proj_covar=tensor([0.0201, 0.0218, 0.0225, 0.0201, 0.0282, 0.0242, 0.0198, 0.0288],
|
44 |
+
device='cuda:0'), out_proj_covar=tensor([0.0003, 0.0003, 0.0003, 0.0003, 0.0004, 0.0004, 0.0003, 0.0004],
|
45 |
+
device='cuda:0')
|
46 |
+
2023-03-09 16:39:44,942 INFO [decode.py:595] batch 100/?, cuts processed until now is 2560
|
47 |
+
2023-03-09 16:39:51,805 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-test-other-ctc-decoding.txt
|
48 |
+
2023-03-09 16:39:51,868 INFO [utils.py:538] [test-other-ctc-decoding] %WER 5.86% [3068 / 52343, 278 ins, 243 del, 2547 sub ]
|
49 |
+
2023-03-09 16:39:52,010 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-test-other-ctc-decoding.txt
|
50 |
+
2023-03-09 16:39:52,011 INFO [decode.py:641]
|
51 |
+
For test-other, WER of different settings are:
|
52 |
+
ctc-decoding 5.86 best for test-other
|
53 |
+
|
54 |
+
2023-03-09 16:39:52,011 INFO [decode.py:897] Done!
|
log/log-train-2023-03-07-10-14-36-0
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log/log-train-2023-03-07-10-14-36-1
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log/log-train-2023-03-07-10-14-36-2
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log/log-train-2023-03-07-10-14-36-3
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log/whole_lattice_rescoring/log-decode-2023-03-09-16-44-16
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-09 16:44:16,315 INFO [decode.py:657] Decoding started
|
2 |
+
2023-03-09 16:44:16,315 INFO [decode.py:658] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'surt', 'icefall-git-sha1': 'e9931b7-dirty', 'icefall-git-date': 'Fri Mar 3 16:27:17 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n04', 'IP address': '10.1.7.4'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 30, 'iter': 0, 'avg': 9, 'use_averaged_model': True, 'method': 'whole-lattice-rescoring', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc_att/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'num_decoder_layers': 6, 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
|
3 |
+
2023-03-09 16:44:16,539 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
|
4 |
+
2023-03-09 16:44:16,650 INFO [decode.py:669] device: cuda:0
|
5 |
+
2023-03-09 16:44:25,215 INFO [decode.py:736] Loading pre-compiled G_4_gram.pt
|
6 |
+
2023-03-09 16:44:25,879 INFO [decode.py:757] About to create model
|
7 |
+
2023-03-09 16:44:26,383 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
8 |
+
2023-03-09 16:44:26,451 INFO [decode.py:824] Calculating the averaged model over epoch range from 21 (excluded) to 30
|
9 |
+
2023-03-09 16:44:40,859 INFO [decode.py:840] Number of model parameters: 86083707
|
10 |
+
2023-03-09 16:44:40,859 INFO [asr_datamodule.py:468] About to get test-clean cuts
|
11 |
+
2023-03-09 16:44:40,922 INFO [asr_datamodule.py:482] About to get test-other cuts
|
log/whole_lattice_rescoring/log-decode-2023-03-10-09-28-13
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-10 09:28:13,659 INFO [decode.py:643] Decoding started
|
2 |
+
2023-03-10 09:28:13,660 INFO [decode.py:644] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_ctc', 'icefall-git-sha1': '11e21f3-dirty', 'icefall-git-date': 'Thu Mar 9 19:58:30 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n03', 'IP address': '10.1.7.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'method': 'whole-lattice-rescoring', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'num_decoder_layers': 6, 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
|
3 |
+
2023-03-10 09:28:13,904 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
|
4 |
+
2023-03-10 09:28:14,020 INFO [decode.py:655] device: cuda:0
|
5 |
+
2023-03-10 09:28:19,411 INFO [decode.py:722] Loading pre-compiled G_4_gram.pt
|
6 |
+
2023-03-10 09:28:21,556 INFO [decode.py:743] About to create model
|
7 |
+
2023-03-10 09:28:22,044 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
8 |
+
2023-03-10 09:28:22,105 INFO [checkpoint.py:112] Loading checkpoint from zipformer_ctc/exp/v0/epoch-99.pt
|
9 |
+
2023-03-10 09:28:24,568 INFO [decode.py:826] Number of model parameters: 86083707
|
10 |
+
2023-03-10 09:28:24,568 INFO [asr_datamodule.py:443] About to get test-clean cuts
|
11 |
+
2023-03-10 09:28:24,847 INFO [asr_datamodule.py:450] About to get test-other cuts
|
log/whole_lattice_rescoring/log-decode-2023-03-10-09-44-58
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-10 09:44:58,872 INFO [decode.py:643] Decoding started
|
2 |
+
2023-03-10 09:44:58,873 INFO [decode.py:644] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_ctc', 'icefall-git-sha1': '11e21f3-dirty', 'icefall-git-date': 'Thu Mar 9 19:58:30 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n03', 'IP address': '10.1.7.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'method': 'whole-lattice-rescoring', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'num_decoder_layers': 6, 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
|
3 |
+
2023-03-10 09:44:59,114 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
|
4 |
+
2023-03-10 09:44:59,229 INFO [decode.py:655] device: cuda:0
|
5 |
+
2023-03-10 09:45:04,903 INFO [decode.py:697] Loading G_4_gram.fst.txt
|
6 |
+
2023-03-10 09:45:04,904 WARNING [decode.py:698] It may take 8 minutes.
|
7 |
+
2023-03-10 09:48:46,802 INFO [decode.py:743] About to create model
|
8 |
+
2023-03-10 09:48:47,199 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
9 |
+
2023-03-10 09:48:47,247 INFO [checkpoint.py:112] Loading checkpoint from zipformer_ctc/exp/v0/epoch-99.pt
|
10 |
+
2023-03-10 09:48:47,792 INFO [decode.py:826] Number of model parameters: 86083707
|
11 |
+
2023-03-10 09:48:47,792 INFO [asr_datamodule.py:443] About to get test-clean cuts
|
12 |
+
2023-03-10 09:48:47,895 INFO [asr_datamodule.py:450] About to get test-other cuts
|
13 |
+
2023-03-10 09:48:50,410 INFO [decode.py:581] batch 0/?, cuts processed until now is 14
|
14 |
+
2023-03-10 09:48:52,452 INFO [zipformer.py:1455] attn_weights_entropy = tensor([2.4185, 2.8395, 2.4086, 2.6454, 2.8039, 2.8219, 2.4147, 2.4832],
|
15 |
+
device='cuda:0'), covar=tensor([0.1030, 0.0560, 0.1220, 0.0820, 0.0797, 0.0761, 0.0948, 0.0353],
|
16 |
+
device='cuda:0'), in_proj_covar=tensor([0.0201, 0.0218, 0.0225, 0.0201, 0.0282, 0.0242, 0.0198, 0.0288],
|
17 |
+
device='cuda:0'), out_proj_covar=tensor([0.0003, 0.0003, 0.0003, 0.0003, 0.0004, 0.0004, 0.0003, 0.0004],
|
18 |
+
device='cuda:0')
|
19 |
+
2023-03-10 09:50:31,259 INFO [zipformer.py:1455] attn_weights_entropy = tensor([4.1906, 4.5374, 4.0955, 4.3857, 4.7103, 4.4173, 4.2439, 4.9290],
|
20 |
+
device='cuda:0'), covar=tensor([0.0660, 0.0368, 0.0880, 0.0456, 0.0623, 0.0703, 0.0533, 0.0846],
|
21 |
+
device='cuda:0'), in_proj_covar=tensor([0.0201, 0.0218, 0.0225, 0.0201, 0.0282, 0.0242, 0.0198, 0.0288],
|
22 |
+
device='cuda:0'), out_proj_covar=tensor([0.0003, 0.0003, 0.0003, 0.0003, 0.0004, 0.0004, 0.0003, 0.0004],
|
23 |
+
device='cuda:0')
|
24 |
+
2023-03-10 09:50:35,365 INFO [zipformer.py:1455] attn_weights_entropy = tensor([4.4905, 2.8404, 4.9623, 4.1641, 3.0908, 4.2355, 4.7916, 4.6903],
|
25 |
+
device='cuda:0'), covar=tensor([0.0290, 0.1696, 0.0221, 0.0668, 0.1630, 0.0267, 0.0223, 0.0264],
|
26 |
+
device='cuda:0'), in_proj_covar=tensor([0.0209, 0.0240, 0.0202, 0.0315, 0.0260, 0.0221, 0.0192, 0.0219],
|
27 |
+
device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0003, 0.0003, 0.0002, 0.0002, 0.0002],
|
28 |
+
device='cuda:0')
|
29 |
+
2023-03-10 09:51:08,487 INFO [decode.py:581] batch 100/?, cuts processed until now is 2293
|
30 |
+
2023-03-10 09:51:27,701 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_0.1.txt
|
31 |
+
2023-03-10 09:51:27,766 INFO [utils.py:558] [test-clean-lm_scale_0.1] %WER 2.46% [1291 / 52576, 191 ins, 107 del, 993 sub ]
|
32 |
+
2023-03-10 09:51:27,917 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_0.1.txt
|
33 |
+
2023-03-10 09:51:27,941 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_0.2.txt
|
34 |
+
2023-03-10 09:51:28,004 INFO [utils.py:558] [test-clean-lm_scale_0.2] %WER 2.44% [1285 / 52576, 175 ins, 120 del, 990 sub ]
|
35 |
+
2023-03-10 09:51:28,157 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_0.2.txt
|
36 |
+
2023-03-10 09:51:28,179 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_0.3.txt
|
37 |
+
2023-03-10 09:51:28,238 INFO [utils.py:558] [test-clean-lm_scale_0.3] %WER 2.46% [1293 / 52576, 158 ins, 146 del, 989 sub ]
|
38 |
+
2023-03-10 09:51:28,375 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_0.3.txt
|
39 |
+
2023-03-10 09:51:28,397 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_0.4.txt
|
40 |
+
2023-03-10 09:51:28,453 INFO [utils.py:558] [test-clean-lm_scale_0.4] %WER 2.51% [1321 / 52576, 147 ins, 185 del, 989 sub ]
|
41 |
+
2023-03-10 09:51:28,591 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_0.4.txt
|
42 |
+
2023-03-10 09:51:28,611 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_0.5.txt
|
43 |
+
2023-03-10 09:51:28,666 INFO [utils.py:558] [test-clean-lm_scale_0.5] %WER 2.61% [1373 / 52576, 138 ins, 239 del, 996 sub ]
|
44 |
+
2023-03-10 09:51:28,803 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_0.5.txt
|
45 |
+
2023-03-10 09:51:28,825 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_0.6.txt
|
46 |
+
2023-03-10 09:51:28,885 INFO [utils.py:558] [test-clean-lm_scale_0.6] %WER 2.80% [1473 / 52576, 125 ins, 351 del, 997 sub ]
|
47 |
+
2023-03-10 09:51:29,223 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_0.6.txt
|
48 |
+
2023-03-10 09:51:29,245 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_0.7.txt
|
49 |
+
2023-03-10 09:51:29,304 INFO [utils.py:558] [test-clean-lm_scale_0.7] %WER 3.19% [1678 / 52576, 110 ins, 566 del, 1002 sub ]
|
50 |
+
2023-03-10 09:51:29,444 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_0.7.txt
|
51 |
+
2023-03-10 09:51:29,466 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_0.8.txt
|
52 |
+
2023-03-10 09:51:29,528 INFO [utils.py:558] [test-clean-lm_scale_0.8] %WER 3.81% [2001 / 52576, 95 ins, 908 del, 998 sub ]
|
53 |
+
2023-03-10 09:51:29,673 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_0.8.txt
|
54 |
+
2023-03-10 09:51:29,695 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_0.9.txt
|
55 |
+
2023-03-10 09:51:29,762 INFO [utils.py:558] [test-clean-lm_scale_0.9] %WER 4.81% [2530 / 52576, 87 ins, 1449 del, 994 sub ]
|
56 |
+
2023-03-10 09:51:29,915 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_0.9.txt
|
57 |
+
2023-03-10 09:51:29,939 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.0.txt
|
58 |
+
2023-03-10 09:51:30,006 INFO [utils.py:558] [test-clean-lm_scale_1.0] %WER 6.33% [3328 / 52576, 73 ins, 2273 del, 982 sub ]
|
59 |
+
2023-03-10 09:51:30,168 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.0.txt
|
60 |
+
2023-03-10 09:51:30,191 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.1.txt
|
61 |
+
2023-03-10 09:51:30,248 INFO [utils.py:558] [test-clean-lm_scale_1.1] %WER 8.13% [4272 / 52576, 64 ins, 3237 del, 971 sub ]
|
62 |
+
2023-03-10 09:51:30,385 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.1.txt
|
63 |
+
2023-03-10 09:51:30,407 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.2.txt
|
64 |
+
2023-03-10 09:51:30,467 INFO [utils.py:558] [test-clean-lm_scale_1.2] %WER 10.16% [5340 / 52576, 56 ins, 4321 del, 963 sub ]
|
65 |
+
2023-03-10 09:51:30,603 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.2.txt
|
66 |
+
2023-03-10 09:51:30,627 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.3.txt
|
67 |
+
2023-03-10 09:51:30,690 INFO [utils.py:558] [test-clean-lm_scale_1.3] %WER 12.17% [6396 / 52576, 45 ins, 5400 del, 951 sub ]
|
68 |
+
2023-03-10 09:51:31,002 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.3.txt
|
69 |
+
2023-03-10 09:51:31,021 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.4.txt
|
70 |
+
2023-03-10 09:51:31,078 INFO [utils.py:558] [test-clean-lm_scale_1.4] %WER 13.82% [7264 / 52576, 41 ins, 6282 del, 941 sub ]
|
71 |
+
2023-03-10 09:51:31,226 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.4.txt
|
72 |
+
2023-03-10 09:51:31,247 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.5.txt
|
73 |
+
2023-03-10 09:51:31,318 INFO [utils.py:558] [test-clean-lm_scale_1.5] %WER 15.01% [7893 / 52576, 33 ins, 6939 del, 921 sub ]
|
74 |
+
2023-03-10 09:51:31,460 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.5.txt
|
75 |
+
2023-03-10 09:51:31,481 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.6.txt
|
76 |
+
2023-03-10 09:51:31,541 INFO [utils.py:558] [test-clean-lm_scale_1.6] %WER 15.78% [8295 / 52576, 27 ins, 7352 del, 916 sub ]
|
77 |
+
2023-03-10 09:51:31,680 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.6.txt
|
78 |
+
2023-03-10 09:51:31,700 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.7.txt
|
79 |
+
2023-03-10 09:51:31,758 INFO [utils.py:558] [test-clean-lm_scale_1.7] %WER 16.35% [8596 / 52576, 26 ins, 7653 del, 917 sub ]
|
80 |
+
2023-03-10 09:51:31,899 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.7.txt
|
81 |
+
2023-03-10 09:51:31,918 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.8.txt
|
82 |
+
2023-03-10 09:51:31,972 INFO [utils.py:558] [test-clean-lm_scale_1.8] %WER 16.80% [8835 / 52576, 25 ins, 7886 del, 924 sub ]
|
83 |
+
2023-03-10 09:51:32,121 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.8.txt
|
84 |
+
2023-03-10 09:51:32,140 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.9.txt
|
85 |
+
2023-03-10 09:51:32,196 INFO [utils.py:558] [test-clean-lm_scale_1.9] %WER 17.12% [9003 / 52576, 25 ins, 8052 del, 926 sub ]
|
86 |
+
2023-03-10 09:51:32,335 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.9.txt
|
87 |
+
2023-03-10 09:51:32,355 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_2.0.txt
|
88 |
+
2023-03-10 09:51:32,412 INFO [utils.py:558] [test-clean-lm_scale_2.0] %WER 17.42% [9161 / 52576, 24 ins, 8205 del, 932 sub ]
|
89 |
+
2023-03-10 09:51:32,722 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_2.0.txt
|
90 |
+
2023-03-10 09:51:32,723 INFO [decode.py:627]
|
91 |
+
For test-clean, WER of different settings are:
|
92 |
+
lm_scale_0.2 2.44 best for test-clean
|
93 |
+
lm_scale_0.1 2.46
|
94 |
+
lm_scale_0.3 2.46
|
95 |
+
lm_scale_0.4 2.51
|
96 |
+
lm_scale_0.5 2.61
|
97 |
+
lm_scale_0.6 2.8
|
98 |
+
lm_scale_0.7 3.19
|
99 |
+
lm_scale_0.8 3.81
|
100 |
+
lm_scale_0.9 4.81
|
101 |
+
lm_scale_1.0 6.33
|
102 |
+
lm_scale_1.1 8.13
|
103 |
+
lm_scale_1.2 10.16
|
104 |
+
lm_scale_1.3 12.17
|
105 |
+
lm_scale_1.4 13.82
|
106 |
+
lm_scale_1.5 15.01
|
107 |
+
lm_scale_1.6 15.78
|
108 |
+
lm_scale_1.7 16.35
|
109 |
+
lm_scale_1.8 16.8
|
110 |
+
lm_scale_1.9 17.12
|
111 |
+
lm_scale_2.0 17.42
|
112 |
+
|
113 |
+
2023-03-10 09:51:34,860 INFO [decode.py:581] batch 0/?, cuts processed until now is 17
|
114 |
+
2023-03-10 09:52:09,534 INFO [zipformer.py:1455] attn_weights_entropy = tensor([3.6229, 3.2254, 3.7114, 4.5989, 4.0629, 3.9987, 3.1179, 2.7495],
|
115 |
+
device='cuda:0'), covar=tensor([0.0634, 0.1673, 0.0805, 0.0403, 0.0807, 0.0389, 0.1392, 0.1981],
|
116 |
+
device='cuda:0'), in_proj_covar=tensor([0.0178, 0.0213, 0.0182, 0.0217, 0.0226, 0.0179, 0.0198, 0.0185],
|
117 |
+
device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0003, 0.0003, 0.0002, 0.0002, 0.0002],
|
118 |
+
device='cuda:0')
|
119 |
+
2023-03-10 09:53:06,108 INFO [zipformer.py:1455] attn_weights_entropy = tensor([5.0127, 4.0324, 4.2679, 3.9797, 4.2217, 5.0873, 4.9086, 4.1711],
|
120 |
+
device='cuda:0'), covar=tensor([0.0340, 0.1178, 0.0924, 0.0920, 0.0887, 0.0680, 0.0421, 0.0949],
|
121 |
+
device='cuda:0'), in_proj_covar=tensor([0.0239, 0.0241, 0.0280, 0.0214, 0.0261, 0.0372, 0.0262, 0.0227],
|
122 |
+
device='cuda:0'), out_proj_covar=tensor([0.0003, 0.0003, 0.0003, 0.0002, 0.0003, 0.0004, 0.0003, 0.0003],
|
123 |
+
device='cuda:0')
|
124 |
+
2023-03-10 09:53:46,341 INFO [zipformer.py:1455] attn_weights_entropy = tensor([4.7764, 5.4848, 5.2078, 3.5640, 3.2814, 4.2858, 3.7191, 4.6062],
|
125 |
+
device='cuda:0'), covar=tensor([0.0498, 0.0254, 0.0225, 0.3783, 0.3929, 0.1468, 0.2853, 0.1094],
|
126 |
+
device='cuda:0'), in_proj_covar=tensor([0.0351, 0.0282, 0.0266, 0.0244, 0.0333, 0.0327, 0.0254, 0.0360],
|
127 |
+
device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001],
|
128 |
+
device='cuda:0')
|
129 |
+
2023-03-10 09:53:49,513 INFO [decode.py:581] batch 100/?, cuts processed until now is 2560
|
130 |
+
2023-03-10 09:54:08,539 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_0.1.txt
|
131 |
+
2023-03-10 09:54:08,609 INFO [utils.py:558] [test-other-lm_scale_0.1] %WER 5.38% [2814 / 52343, 336 ins, 224 del, 2254 sub ]
|
132 |
+
2023-03-10 09:54:08,764 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_0.1.txt
|
133 |
+
2023-03-10 09:54:08,790 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_0.2.txt
|
134 |
+
2023-03-10 09:54:08,856 INFO [utils.py:558] [test-other-lm_scale_0.2] %WER 5.38% [2814 / 52343, 304 ins, 271 del, 2239 sub ]
|
135 |
+
2023-03-10 09:54:09,009 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_0.2.txt
|
136 |
+
2023-03-10 09:54:09,032 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_0.3.txt
|
137 |
+
2023-03-10 09:54:09,101 INFO [utils.py:558] [test-other-lm_scale_0.3] %WER 5.42% [2835 / 52343, 274 ins, 342 del, 2219 sub ]
|
138 |
+
2023-03-10 09:54:09,249 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_0.3.txt
|
139 |
+
2023-03-10 09:54:09,270 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_0.4.txt
|
140 |
+
2023-03-10 09:54:09,328 INFO [utils.py:558] [test-other-lm_scale_0.4] %WER 5.53% [2895 / 52343, 244 ins, 442 del, 2209 sub ]
|
141 |
+
2023-03-10 09:54:09,473 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_0.4.txt
|
142 |
+
2023-03-10 09:54:09,496 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_0.5.txt
|
143 |
+
2023-03-10 09:54:09,555 INFO [utils.py:558] [test-other-lm_scale_0.5] %WER 5.76% [3014 / 52343, 211 ins, 596 del, 2207 sub ]
|
144 |
+
2023-03-10 09:54:09,693 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_0.5.txt
|
145 |
+
2023-03-10 09:54:09,714 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_0.6.txt
|
146 |
+
2023-03-10 09:54:09,775 INFO [utils.py:558] [test-other-lm_scale_0.6] %WER 6.10% [3194 / 52343, 184 ins, 832 del, 2178 sub ]
|
147 |
+
2023-03-10 09:54:09,926 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_0.6.txt
|
148 |
+
2023-03-10 09:54:09,949 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_0.7.txt
|
149 |
+
2023-03-10 09:54:10,010 INFO [utils.py:558] [test-other-lm_scale_0.7] %WER 6.79% [3552 / 52343, 166 ins, 1234 del, 2152 sub ]
|
150 |
+
2023-03-10 09:54:10,166 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_0.7.txt
|
151 |
+
2023-03-10 09:54:10,190 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_0.8.txt
|
152 |
+
2023-03-10 09:54:10,420 INFO [utils.py:558] [test-other-lm_scale_0.8] %WER 7.86% [4113 / 52343, 140 ins, 1849 del, 2124 sub ]
|
153 |
+
2023-03-10 09:54:10,578 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_0.8.txt
|
154 |
+
2023-03-10 09:54:10,624 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_0.9.txt
|
155 |
+
2023-03-10 09:54:10,681 INFO [utils.py:558] [test-other-lm_scale_0.9] %WER 9.31% [4872 / 52343, 119 ins, 2698 del, 2055 sub ]
|
156 |
+
2023-03-10 09:54:10,826 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_0.9.txt
|
157 |
+
2023-03-10 09:54:10,847 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.0.txt
|
158 |
+
2023-03-10 09:54:10,906 INFO [utils.py:558] [test-other-lm_scale_1.0] %WER 11.30% [5916 / 52343, 94 ins, 3842 del, 1980 sub ]
|
159 |
+
2023-03-10 09:54:11,073 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.0.txt
|
160 |
+
2023-03-10 09:54:11,097 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.1.txt
|
161 |
+
2023-03-10 09:54:11,167 INFO [utils.py:558] [test-other-lm_scale_1.1] %WER 13.80% [7221 / 52343, 78 ins, 5220 del, 1923 sub ]
|
162 |
+
2023-03-10 09:54:11,330 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.1.txt
|
163 |
+
2023-03-10 09:54:11,352 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.2.txt
|
164 |
+
2023-03-10 09:54:11,426 INFO [utils.py:558] [test-other-lm_scale_1.2] %WER 16.36% [8564 / 52343, 62 ins, 6654 del, 1848 sub ]
|
165 |
+
2023-03-10 09:54:11,580 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.2.txt
|
166 |
+
2023-03-10 09:54:11,606 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.3.txt
|
167 |
+
2023-03-10 09:54:11,665 INFO [utils.py:558] [test-other-lm_scale_1.3] %WER 18.62% [9745 / 52343, 46 ins, 7906 del, 1793 sub ]
|
168 |
+
2023-03-10 09:54:11,849 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.3.txt
|
169 |
+
2023-03-10 09:54:11,872 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.4.txt
|
170 |
+
2023-03-10 09:54:11,933 INFO [utils.py:558] [test-other-lm_scale_1.4] %WER 20.37% [10662 / 52343, 37 ins, 8865 del, 1760 sub ]
|
171 |
+
2023-03-10 09:54:12,092 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.4.txt
|
172 |
+
2023-03-10 09:54:12,117 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.5.txt
|
173 |
+
2023-03-10 09:54:12,183 INFO [utils.py:558] [test-other-lm_scale_1.5] %WER 21.53% [11270 / 52343, 31 ins, 9513 del, 1726 sub ]
|
174 |
+
2023-03-10 09:54:12,533 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.5.txt
|
175 |
+
2023-03-10 09:54:12,571 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.6.txt
|
176 |
+
2023-03-10 09:54:12,634 INFO [utils.py:558] [test-other-lm_scale_1.6] %WER 22.38% [11714 / 52343, 26 ins, 9977 del, 1711 sub ]
|
177 |
+
2023-03-10 09:54:12,800 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.6.txt
|
178 |
+
2023-03-10 09:54:12,819 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.7.txt
|
179 |
+
2023-03-10 09:54:12,881 INFO [utils.py:558] [test-other-lm_scale_1.7] %WER 22.98% [12027 / 52343, 22 ins, 10317 del, 1688 sub ]
|
180 |
+
2023-03-10 09:54:13,031 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.7.txt
|
181 |
+
2023-03-10 09:54:13,051 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.8.txt
|
182 |
+
2023-03-10 09:54:13,116 INFO [utils.py:558] [test-other-lm_scale_1.8] %WER 23.46% [12278 / 52343, 21 ins, 10578 del, 1679 sub ]
|
183 |
+
2023-03-10 09:54:13,280 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.8.txt
|
184 |
+
2023-03-10 09:54:13,301 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.9.txt
|
185 |
+
2023-03-10 09:54:13,362 INFO [utils.py:558] [test-other-lm_scale_1.9] %WER 23.87% [12494 / 52343, 21 ins, 10793 del, 1680 sub ]
|
186 |
+
2023-03-10 09:54:13,530 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.9.txt
|
187 |
+
2023-03-10 09:54:13,552 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_2.0.txt
|
188 |
+
2023-03-10 09:54:13,613 INFO [utils.py:558] [test-other-lm_scale_2.0] %WER 24.19% [12662 / 52343, 20 ins, 10954 del, 1688 sub ]
|
189 |
+
2023-03-10 09:54:13,774 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_2.0.txt
|
190 |
+
2023-03-10 09:54:13,775 INFO [decode.py:627]
|
191 |
+
For test-other, WER of different settings are:
|
192 |
+
lm_scale_0.1 5.38 best for test-other
|
193 |
+
lm_scale_0.2 5.38
|
194 |
+
lm_scale_0.3 5.42
|
195 |
+
lm_scale_0.4 5.53
|
196 |
+
lm_scale_0.5 5.76
|
197 |
+
lm_scale_0.6 6.1
|
198 |
+
lm_scale_0.7 6.79
|
199 |
+
lm_scale_0.8 7.86
|
200 |
+
lm_scale_0.9 9.31
|
201 |
+
lm_scale_1.0 11.3
|
202 |
+
lm_scale_1.1 13.8
|
203 |
+
lm_scale_1.2 16.36
|
204 |
+
lm_scale_1.3 18.62
|
205 |
+
lm_scale_1.4 20.37
|
206 |
+
lm_scale_1.5 21.53
|
207 |
+
lm_scale_1.6 22.38
|
208 |
+
lm_scale_1.7 22.98
|
209 |
+
lm_scale_1.8 23.46
|
210 |
+
lm_scale_1.9 23.87
|
211 |
+
lm_scale_2.0 24.19
|
212 |
+
|
213 |
+
2023-03-10 09:54:13,775 INFO [decode.py:883] Done!
|
test_wavs/1089-134686-0001.wav
ADDED
Binary file (212 kB). View file
|
|
test_wavs/1221-135766-0001.wav
ADDED
Binary file (535 kB). View file
|
|
test_wavs/1221-135766-0002.wav
ADDED
Binary file (154 kB). View file
|
|
test_wavs/trans.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
1089-134686-0001 AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
2 |
+
1221-135766-0001 GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
3 |
+
1221-135766-0002 YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|