desh2608 commited on
Commit
8fade2c
1 Parent(s): 01844ad

initial commit for zipformer_ctc

Browse files
data/lang_bpe_500/HLG.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66d43dc28206a4ef33fc8ed5272abc6dc4b064c78cafc67f9f8a5b88f94be0fc
3
+ size 695095775
data/lang_bpe_500/L.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29b6b298ec932414dedc38e1971893c6d0c710fc0766dc0c495e387702c2e71f
3
+ size 19025793
data/lang_bpe_500/L_disambig.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33745fbef2e2957f39fbb8a563b3735c7204f8398bbed3b59eb43edb1dfce388
3
+ size 20013121
data/lang_bpe_500/Linv.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d76053824dca246b4ac37882f3e96bc8a8ed76038c0b100bba1f57d00246cee9
3
+ size 19025793
data/lang_bpe_500/bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c53433de083c4a6ad12d034550ef22de68cec62c4f58932a7b6b8b2f1e743fa5
3
+ size 244865
data/lang_bpe_500/lexicon.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/lang_bpe_500/tokens.txt ADDED
@@ -0,0 +1,502 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <blk> 0
2
+ <sos/eos> 1
3
+ <unk> 2
4
+ S 3
5
+ ▁THE 4
6
+ ▁A 5
7
+ T 6
8
+ ▁AND 7
9
+ ED 8
10
+ ▁OF 9
11
+ ▁TO 10
12
+ E 11
13
+ D 12
14
+ N 13
15
+ ING 14
16
+ ▁IN 15
17
+ Y 16
18
+ M 17
19
+ C 18
20
+ ▁I 19
21
+ A 20
22
+ P 21
23
+ ▁HE 22
24
+ R 23
25
+ O 24
26
+ L 25
27
+ RE 26
28
+ I 27
29
+ U 28
30
+ ER 29
31
+ ▁IT 30
32
+ LY 31
33
+ ▁THAT 32
34
+ ▁WAS 33
35
+ ▁ 34
36
+ ▁S 35
37
+ AR 36
38
+ ▁BE 37
39
+ F 38
40
+ ▁C 39
41
+ IN 40
42
+ B 41
43
+ ▁FOR 42
44
+ OR 43
45
+ LE 44
46
+ ' 45
47
+ ▁HIS 46
48
+ ▁YOU 47
49
+ AL 48
50
+ ▁RE 49
51
+ V 50
52
+ ▁B 51
53
+ G 52
54
+ RI 53
55
+ ▁E 54
56
+ ▁WITH 55
57
+ ▁T 56
58
+ ▁AS 57
59
+ LL 58
60
+ ▁P 59
61
+ ▁HER 60
62
+ ST 61
63
+ ▁HAD 62
64
+ ▁SO 63
65
+ ▁F 64
66
+ W 65
67
+ CE 66
68
+ ▁IS 67
69
+ ND 68
70
+ ▁NOT 69
71
+ TH 70
72
+ ▁BUT 71
73
+ EN 72
74
+ ▁SHE 73
75
+ ▁ON 74
76
+ VE 75
77
+ ON 76
78
+ SE 77
79
+ ▁DE 78
80
+ UR 79
81
+ ▁G 80
82
+ CH 81
83
+ K 82
84
+ TER 83
85
+ ▁AT 84
86
+ IT 85
87
+ ▁ME 86
88
+ RO 87
89
+ NE 88
90
+ RA 89
91
+ ES 90
92
+ IL 91
93
+ NG 92
94
+ IC 93
95
+ ▁NO 94
96
+ ▁HIM 95
97
+ ENT 96
98
+ IR 97
99
+ ▁WE 98
100
+ H 99
101
+ ▁DO 100
102
+ ▁ALL 101
103
+ ▁HAVE 102
104
+ LO 103
105
+ ▁BY 104
106
+ ▁MY 105
107
+ ▁MO 106
108
+ ▁THIS 107
109
+ LA 108
110
+ ▁ST 109
111
+ ▁WHICH 110
112
+ ▁CON 111
113
+ ▁THEY 112
114
+ CK 113
115
+ TE 114
116
+ ▁SAID 115
117
+ ▁FROM 116
118
+ ▁GO 117
119
+ ▁WHO 118
120
+ ▁TH 119
121
+ ▁OR 120
122
+ ▁D 121
123
+ ▁W 122
124
+ VER 123
125
+ LI 124
126
+ ▁SE 125
127
+ ▁ONE 126
128
+ ▁CA 127
129
+ ▁AN 128
130
+ ▁LA 129
131
+ ▁WERE 130
132
+ EL 131
133
+ ▁HA 132
134
+ ▁MAN 133
135
+ ▁FA 134
136
+ ▁EX 135
137
+ AD 136
138
+ ▁SU 137
139
+ RY 138
140
+ ▁MI 139
141
+ AT 140
142
+ ▁BO 141
143
+ ▁WHEN 142
144
+ AN 143
145
+ THER 144
146
+ PP 145
147
+ ATION 146
148
+ ▁FI 147
149
+ ▁WOULD 148
150
+ ▁PRO 149
151
+ OW 150
152
+ ET 151
153
+ ▁O 152
154
+ ▁THERE 153
155
+ ▁HO 154
156
+ ION 155
157
+ ▁WHAT 156
158
+ ▁FE 157
159
+ ▁PA 158
160
+ US 159
161
+ MENT 160
162
+ ▁MA 161
163
+ UT 162
164
+ ▁OUT 163
165
+ ▁THEIR 164
166
+ ▁IF 165
167
+ ▁LI 166
168
+ ▁K 167
169
+ ▁WILL 168
170
+ ▁ARE 169
171
+ ID 170
172
+ ▁RO 171
173
+ DE 172
174
+ TION 173
175
+ ▁WA 174
176
+ PE 175
177
+ ▁UP 176
178
+ ▁SP 177
179
+ ▁PO 178
180
+ IGHT 179
181
+ ▁UN 180
182
+ RU 181
183
+ ▁LO 182
184
+ AS 183
185
+ OL 184
186
+ ▁LE 185
187
+ ▁BEEN 186
188
+ ▁SH 187
189
+ ▁RA 188
190
+ ▁SEE 189
191
+ KE 190
192
+ UL 191
193
+ TED 192
194
+ ▁SA 193
195
+ UN 194
196
+ UND 195
197
+ ANT 196
198
+ ▁NE 197
199
+ IS 198
200
+ ▁THEM 199
201
+ CI 200
202
+ GE 201
203
+ ▁COULD 202
204
+ ▁DIS 203
205
+ OM 204
206
+ ISH 205
207
+ HE 206
208
+ EST 207
209
+ ▁SOME 208
210
+ ENCE 209
211
+ ITY 210
212
+ IVE 211
213
+ ▁US 212
214
+ ▁MORE 213
215
+ ▁EN 214
216
+ ARD 215
217
+ ATE 216
218
+ ▁YOUR 217
219
+ ▁INTO 218
220
+ ▁KNOW 219
221
+ ▁CO 220
222
+ ANCE 221
223
+ ▁TIME 222
224
+ ▁WI 223
225
+ ▁YE 224
226
+ AGE 225
227
+ ▁NOW 226
228
+ TI 227
229
+ FF 228
230
+ ABLE 229
231
+ ▁VERY 230
232
+ ▁LIKE 231
233
+ AM 232
234
+ HI 233
235
+ Z 234
236
+ ▁OTHER 235
237
+ ▁THAN 236
238
+ ▁LITTLE 237
239
+ ▁DID 238
240
+ ▁LOOK 239
241
+ TY 240
242
+ ERS 241
243
+ ▁CAN 242
244
+ ▁CHA 243
245
+ ▁AR 244
246
+ X 245
247
+ FUL 246
248
+ UGH 247
249
+ ▁BA 248
250
+ ▁DAY 249
251
+ ▁ABOUT 250
252
+ TEN 251
253
+ IM 252
254
+ ▁ANY 253
255
+ ▁PRE 254
256
+ ▁OVER 255
257
+ IES 256
258
+ NESS 257
259
+ ME 258
260
+ BLE 259
261
+ ▁M 260
262
+ ROW 261
263
+ ▁HAS 262
264
+ ▁GREAT 263
265
+ ▁VI 264
266
+ TA 265
267
+ ▁AFTER 266
268
+ PER 267
269
+ ▁AGAIN 268
270
+ HO 269
271
+ SH 270
272
+ ▁UPON 271
273
+ ▁DI 272
274
+ ▁HAND 273
275
+ ▁COM 274
276
+ IST 275
277
+ TURE 276
278
+ ▁STA 277
279
+ ▁THEN 278
280
+ ▁SHOULD 279
281
+ ▁GA 280
282
+ OUS 281
283
+ OUR 282
284
+ ▁WELL 283
285
+ ▁ONLY 284
286
+ MAN 285
287
+ ▁GOOD 286
288
+ ▁TWO 287
289
+ ▁MAR 288
290
+ ▁SAY 289
291
+ ▁HU 290
292
+ TING 291
293
+ ▁OUR 292
294
+ RESS 293
295
+ ▁DOWN 294
296
+ IOUS 295
297
+ ▁BEFORE 296
298
+ ▁DA 297
299
+ ▁NA 298
300
+ QUI 299
301
+ ▁MADE 300
302
+ ▁EVERY 301
303
+ ▁OLD 302
304
+ ▁EVEN 303
305
+ IG 304
306
+ ▁COME 305
307
+ ▁GRA 306
308
+ ▁RI 307
309
+ ▁LONG 308
310
+ OT 309
311
+ SIDE 310
312
+ WARD 311
313
+ ▁FO 312
314
+ ▁WHERE 313
315
+ MO 314
316
+ LESS 315
317
+ ▁SC 316
318
+ ▁MUST 317
319
+ ▁NEVER 318
320
+ ▁HOW 319
321
+ ▁CAME 320
322
+ ▁SUCH 321
323
+ ▁RU 322
324
+ ▁TAKE 323
325
+ ▁WO 324
326
+ ▁CAR 325
327
+ UM 326
328
+ AK 327
329
+ ▁THINK 328
330
+ ▁MUCH 329
331
+ ▁MISTER 330
332
+ ▁MAY 331
333
+ ▁JO 332
334
+ ▁WAY 333
335
+ ▁COMP 334
336
+ ▁THOUGHT 335
337
+ ▁STO 336
338
+ ▁MEN 337
339
+ ▁BACK 338
340
+ ▁DON 339
341
+ J 340
342
+ ▁LET 341
343
+ ▁TRA 342
344
+ ▁FIRST 343
345
+ ▁JUST 344
346
+ ▁VA 345
347
+ ▁OWN 346
348
+ ▁PLA 347
349
+ ▁MAKE 348
350
+ ATED 349
351
+ ▁HIMSELF 350
352
+ ▁WENT 351
353
+ ▁PI 352
354
+ GG 353
355
+ RING 354
356
+ ▁DU 355
357
+ ▁MIGHT 356
358
+ ▁PART 357
359
+ ▁GIVE 358
360
+ ▁IMP 359
361
+ ▁BU 360
362
+ ▁PER 361
363
+ ▁PLACE 362
364
+ ▁HOUSE 363
365
+ ▁THROUGH 364
366
+ IAN 365
367
+ ▁SW 366
368
+ ▁UNDER 367
369
+ QUE 368
370
+ ▁AWAY 369
371
+ ▁LOVE 370
372
+ QUA 371
373
+ ▁LIFE 372
374
+ ▁GET 373
375
+ ▁WITHOUT 374
376
+ ▁PASS 375
377
+ ▁TURN 376
378
+ IGN 377
379
+ ▁HEAD 378
380
+ ▁MOST 379
381
+ ▁THOSE 380
382
+ ▁SHALL 381
383
+ ▁EYES 382
384
+ ▁COL 383
385
+ ▁STILL 384
386
+ ▁NIGHT 385
387
+ ▁NOTHING 386
388
+ ITION 387
389
+ HA 388
390
+ ▁TELL 389
391
+ ▁WORK 390
392
+ ▁LAST 391
393
+ ▁NEW 392
394
+ ▁FACE 393
395
+ ▁HI 394
396
+ ▁WORD 395
397
+ ▁FOUND 396
398
+ ▁COUNT 397
399
+ ▁OB 398
400
+ ▁WHILE 399
401
+ ▁SHA 400
402
+ ▁MEAN 401
403
+ ▁SAW 402
404
+ ▁PEOPLE 403
405
+ ▁FRIEND 404
406
+ ▁THREE 405
407
+ ▁ROOM 406
408
+ ▁SAME 407
409
+ ▁THOUGH 408
410
+ ▁RIGHT 409
411
+ ▁CHILD 410
412
+ ▁FATHER 411
413
+ ▁ANOTHER 412
414
+ ▁HEART 413
415
+ ▁WANT 414
416
+ ▁TOOK 415
417
+ OOK 416
418
+ ▁LIGHT 417
419
+ ▁MISSUS 418
420
+ ▁OPEN 419
421
+ ▁JU 420
422
+ ▁ASKED 421
423
+ PORT 422
424
+ ▁LEFT 423
425
+ ▁JA 424
426
+ ▁WORLD 425
427
+ ▁HOME 426
428
+ ▁WHY 427
429
+ ▁ALWAYS 428
430
+ ▁ANSWER 429
431
+ ▁SEEMED 430
432
+ ▁SOMETHING 431
433
+ ▁GIRL 432
434
+ ▁BECAUSE 433
435
+ ▁NAME 434
436
+ ▁TOLD 435
437
+ ▁NI 436
438
+ ▁HIGH 437
439
+ IZE 438
440
+ ▁WOMAN 439
441
+ ▁FOLLOW 440
442
+ ▁RETURN 441
443
+ ▁KNEW 442
444
+ ▁EACH 443
445
+ ▁KIND 444
446
+ ▁JE 445
447
+ ▁ACT 446
448
+ ▁LU 447
449
+ ▁CERTAIN 448
450
+ ▁YEARS 449
451
+ ▁QUITE 450
452
+ ▁APPEAR 451
453
+ ▁BETTER 452
454
+ ▁HALF 453
455
+ ▁PRESENT 454
456
+ ▁PRINCE 455
457
+ SHIP 456
458
+ ▁ALSO 457
459
+ ▁BEGAN 458
460
+ ▁HAVING 459
461
+ ▁ENOUGH 460
462
+ ▁PERSON 461
463
+ ▁LADY 462
464
+ ▁WHITE 463
465
+ ▁COURSE 464
466
+ ▁VOICE 465
467
+ ▁SPEAK 466
468
+ ▁POWER 467
469
+ ▁MORNING 468
470
+ ▁BETWEEN 469
471
+ ▁AMONG 470
472
+ ▁KEEP 471
473
+ ▁WALK 472
474
+ ▁MATTER 473
475
+ ▁TEA 474
476
+ ▁BELIEVE 475
477
+ ▁SMALL 476
478
+ ▁TALK 477
479
+ ▁FELT 478
480
+ ▁HORSE 479
481
+ ▁MYSELF 480
482
+ ▁SIX 481
483
+ ▁HOWEVER 482
484
+ ▁FULL 483
485
+ ▁HERSELF 484
486
+ ▁POINT 485
487
+ ▁STOOD 486
488
+ ▁HUNDRED 487
489
+ ▁ALMOST 488
490
+ ▁SINCE 489
491
+ ▁LARGE 490
492
+ ▁LEAVE 491
493
+ ▁PERHAPS 492
494
+ ▁DARK 493
495
+ ▁SUDDEN 494
496
+ ▁REPLIED 495
497
+ ▁ANYTHING 496
498
+ ▁WONDER 497
499
+ ▁UNTIL 498
500
+ Q 499
501
+ #0 500
502
+ #1 501
data/lang_bpe_500/words.txt ADDED
The diff for this file is too large to render. See raw diff
 
exp/cpu_jit.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4931cd1eff010cb3d8757b0dd2be404333429f2b7bbbe11c637f9d87de10553c
3
+ size 421440904
exp/pretrained.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9efff0d24646202e3b5506fa3bb0d32e90076d84c28bfa50af294ee96015d2d
3
+ size 344661407
exp/tensorboard/events.out.tfevents.1678202076.r8n04.343595.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fef35df8e5d5f0f32043396ba6ee06e513e9354545ea95d64ea2cf3a4d2ebfdf
3
+ size 1780128
log/attention_decoder/log-decode-2023-03-10-09-58-58 ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-03-10 09:58:58,924 INFO [decode.py:641] Decoding started
2
+ 2023-03-10 09:58:58,925 INFO [decode.py:642] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_ctc', 'icefall-git-sha1': '11e21f3-dirty', 'icefall-git-date': 'Thu Mar 9 19:58:30 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n03', 'IP address': '10.1.7.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'method': 'attention-decoder', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'num_decoder_layers': 6, 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
3
+ 2023-03-10 09:58:59,170 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
4
+ 2023-03-10 09:58:59,289 INFO [decode.py:653] device: cuda:0
5
+ 2023-03-10 09:59:04,720 INFO [decode.py:720] Loading pre-compiled G_4_gram.pt
6
+ 2023-03-10 09:59:08,342 INFO [decode.py:741] About to create model
7
+ 2023-03-10 09:59:08,810 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
8
+ 2023-03-10 09:59:08,866 INFO [checkpoint.py:112] Loading checkpoint from zipformer_ctc/exp/v0/epoch-99.pt
9
+ 2023-03-10 09:59:09,414 INFO [decode.py:824] Number of model parameters: 86083707
10
+ 2023-03-10 09:59:09,415 INFO [asr_datamodule.py:443] About to get test-clean cuts
11
+ 2023-03-10 09:59:09,504 INFO [asr_datamodule.py:450] About to get test-other cuts
log/attention_decoder/log-decode-2023-03-10-10-10-13 ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-03-10 10:10:13,940 INFO [decode.py:641] Decoding started
2
+ 2023-03-10 10:10:13,940 INFO [decode.py:642] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_ctc', 'icefall-git-sha1': '11e21f3-dirty', 'icefall-git-date': 'Thu Mar 9 19:58:30 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n03', 'IP address': '10.1.7.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'method': 'attention-decoder', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'num_decoder_layers': 6, 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
3
+ 2023-03-10 10:10:14,177 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
4
+ 2023-03-10 10:10:14,284 INFO [decode.py:653] device: cuda:0
5
+ 2023-03-10 10:10:19,750 INFO [decode.py:720] Loading pre-compiled G_4_gram.pt
6
+ 2023-03-10 10:10:20,968 INFO [decode.py:741] About to create model
7
+ 2023-03-10 10:10:21,454 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
8
+ 2023-03-10 10:10:21,526 INFO [checkpoint.py:112] Loading checkpoint from zipformer_ctc/exp/v0/epoch-99.pt
9
+ 2023-03-10 10:10:22,138 INFO [decode.py:824] Number of model parameters: 86083707
10
+ 2023-03-10 10:10:22,138 INFO [asr_datamodule.py:443] About to get test-clean cuts
11
+ 2023-03-10 10:10:22,227 INFO [asr_datamodule.py:450] About to get test-other cuts
log/attention_decoder/log-decode-2023-03-10-10-20-00 ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-03-10 10:20:00,301 INFO [decode.py:641] Decoding started
2
+ 2023-03-10 10:20:00,302 INFO [decode.py:642] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_ctc', 'icefall-git-sha1': '11e21f3-dirty', 'icefall-git-date': 'Thu Mar 9 19:58:30 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n03', 'IP address': '10.1.7.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'method': 'attention-decoder', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'num_decoder_layers': 6, 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
3
+ 2023-03-10 10:20:00,577 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
4
+ 2023-03-10 10:20:00,713 INFO [decode.py:653] device: cuda:0
5
+ 2023-03-10 10:20:07,246 INFO [decode.py:720] Loading pre-compiled G_4_gram.pt
6
+ 2023-03-10 10:20:08,507 INFO [decode.py:741] About to create model
7
+ 2023-03-10 10:20:09,069 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
8
+ 2023-03-10 10:20:09,139 INFO [checkpoint.py:112] Loading checkpoint from zipformer_ctc/exp/v0/epoch-99.pt
9
+ 2023-03-10 10:20:09,768 INFO [decode.py:824] Number of model parameters: 86083707
10
+ 2023-03-10 10:20:09,768 INFO [asr_datamodule.py:443] About to get test-clean cuts
11
+ 2023-03-10 10:20:09,900 INFO [asr_datamodule.py:450] About to get test-other cuts
log/attention_decoder/log-decode-2023-03-10-10-56-28 ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-03-10 10:56:28,210 INFO [decode.py:642] Decoding started
2
+ 2023-03-10 10:56:28,211 INFO [decode.py:643] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_ctc', 'icefall-git-sha1': '11e21f3-dirty', 'icefall-git-date': 'Thu Mar 9 19:58:30 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r8n03', 'IP address': '10.1.8.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'method': 'attention-decoder', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'exp/rnnlm', 'rnn_lm_epoch': 99, 'rnn_lm_avg': 1, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'num_decoder_layers': 6, 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
3
+ 2023-03-10 10:56:28,460 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
4
+ 2023-03-10 10:56:28,572 INFO [decode.py:654] device: cuda:0
5
+ 2023-03-10 10:56:33,999 INFO [decode.py:721] Loading pre-compiled G_4_gram.pt
6
+ 2023-03-10 10:56:35,323 INFO [decode.py:742] About to create model
7
+ 2023-03-10 10:56:35,787 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
8
+ 2023-03-10 10:56:35,847 INFO [checkpoint.py:112] Loading checkpoint from zipformer_ctc/exp/v0/epoch-99.pt
9
+ 2023-03-10 10:56:36,454 INFO [decode.py:825] Number of model parameters: 86083707
10
+ 2023-03-10 10:56:36,454 INFO [asr_datamodule.py:443] About to get test-clean cuts
11
+ 2023-03-10 10:56:36,531 INFO [asr_datamodule.py:450] About to get test-other cuts
log/attention_decoder/log-decode-2023-03-10-11-58-59 ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-03-10 11:58:59,546 INFO [decode.py:642] Decoding started
2
+ 2023-03-10 11:58:59,546 INFO [decode.py:643] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_ctc', 'icefall-git-sha1': '11e21f3-dirty', 'icefall-git-date': 'Thu Mar 9 19:58:30 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n04', 'IP address': '10.1.7.4'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'method': 'attention-decoder', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'exp/rnnlm', 'rnn_lm_epoch': 99, 'rnn_lm_avg': 1, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'num_decoder_layers': 6, 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
3
+ 2023-03-10 11:58:59,841 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
4
+ 2023-03-10 11:58:59,957 INFO [decode.py:654] device: cuda:0
5
+ 2023-03-10 11:59:07,426 INFO [decode.py:721] Loading pre-compiled G_4_gram.pt
6
+ 2023-03-10 11:59:12,292 INFO [decode.py:742] About to create model
7
+ 2023-03-10 11:59:12,758 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
8
+ 2023-03-10 11:59:12,820 INFO [checkpoint.py:112] Loading checkpoint from zipformer_ctc/exp/v0/epoch-99.pt
9
+ 2023-03-10 11:59:14,959 INFO [decode.py:825] Number of model parameters: 86083707
10
+ 2023-03-10 11:59:14,960 INFO [asr_datamodule.py:443] About to get test-clean cuts
11
+ 2023-03-10 11:59:15,047 INFO [asr_datamodule.py:450] About to get test-other cuts
log/attention_decoder/log-decode-2023-03-10-16-18-14 ADDED
@@ -0,0 +1,1184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-03-10 16:18:14,062 INFO [decode.py:642] Decoding started
2
+ 2023-03-10 16:18:14,062 INFO [decode.py:643] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_ctc', 'icefall-git-sha1': '11e21f3-dirty', 'icefall-git-date': 'Thu Mar 9 19:58:30 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n03', 'IP address': '10.1.7.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'method': 'attention-decoder', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'exp/rnnlm', 'rnn_lm_epoch': 99, 'rnn_lm_avg': 1, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'num_decoder_layers': 6, 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
3
+ 2023-03-10 16:18:14,321 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
4
+ 2023-03-10 16:18:14,432 INFO [decode.py:654] device: cuda:0
5
+ 2023-03-10 16:18:20,193 INFO [decode.py:721] Loading pre-compiled G_4_gram.pt
6
+ 2023-03-10 16:18:21,447 INFO [decode.py:742] About to create model
7
+ 2023-03-10 16:18:21,947 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
8
+ 2023-03-10 16:18:22,017 INFO [checkpoint.py:112] Loading checkpoint from zipformer_ctc/exp/v0/epoch-99.pt
9
+ 2023-03-10 16:18:22,663 INFO [decode.py:825] Number of model parameters: 86083707
10
+ 2023-03-10 16:18:22,663 INFO [asr_datamodule.py:443] About to get test-clean cuts
11
+ 2023-03-10 16:18:22,787 INFO [asr_datamodule.py:450] About to get test-other cuts
12
+ 2023-03-10 16:18:27,802 INFO [decode.py:580] batch 0/?, cuts processed until now is 14
13
+ 2023-03-10 16:23:39,552 INFO [decode.py:580] batch 100/?, cuts processed until now is 2293
14
+ 2023-03-10 16:26:52,008 INFO [decode.py:626]
15
+ For test-clean, WER of different settings are:
16
+ ngram_lm_scale_1.2_attention_scale_4.0 2.35 best for test-clean
17
+ ngram_lm_scale_1.3_attention_scale_5.0 2.35
18
+ ngram_lm_scale_1.5_attention_scale_5.0 2.35
19
+ ngram_lm_scale_0.9_attention_scale_4.0 2.36
20
+ ngram_lm_scale_0.9_attention_scale_5.0 2.36
21
+ ngram_lm_scale_1.0_attention_scale_5.0 2.36
22
+ ngram_lm_scale_1.1_attention_scale_4.0 2.36
23
+ ngram_lm_scale_1.1_attention_scale_5.0 2.36
24
+ ngram_lm_scale_1.2_attention_scale_5.0 2.36
25
+ ngram_lm_scale_1.3_attention_scale_4.0 2.36
26
+ ngram_lm_scale_0.6_attention_scale_1.7 2.37
27
+ ngram_lm_scale_0.6_attention_scale_3.0 2.37
28
+ ngram_lm_scale_0.7_attention_scale_1.9 2.37
29
+ ngram_lm_scale_0.7_attention_scale_2.0 2.37
30
+ ngram_lm_scale_0.7_attention_scale_2.1 2.37
31
+ ngram_lm_scale_0.7_attention_scale_2.2 2.37
32
+ ngram_lm_scale_0.7_attention_scale_2.3 2.37
33
+ ngram_lm_scale_0.7_attention_scale_3.0 2.37
34
+ ngram_lm_scale_0.9_attention_scale_3.0 2.37
35
+ ngram_lm_scale_1.0_attention_scale_3.0 2.37
36
+ ngram_lm_scale_1.0_attention_scale_4.0 2.37
37
+ ngram_lm_scale_1.1_attention_scale_3.0 2.37
38
+ ngram_lm_scale_1.7_attention_scale_4.0 2.37
39
+ ngram_lm_scale_1.7_attention_scale_5.0 2.37
40
+ ngram_lm_scale_0.08_attention_scale_4.0 2.38
41
+ ngram_lm_scale_0.1_attention_scale_4.0 2.38
42
+ ngram_lm_scale_0.3_attention_scale_4.0 2.38
43
+ ngram_lm_scale_0.5_attention_scale_3.0 2.38
44
+ ngram_lm_scale_0.5_attention_scale_5.0 2.38
45
+ ngram_lm_scale_0.6_attention_scale_1.9 2.38
46
+ ngram_lm_scale_0.6_attention_scale_2.0 2.38
47
+ ngram_lm_scale_0.6_attention_scale_2.1 2.38
48
+ ngram_lm_scale_0.6_attention_scale_2.2 2.38
49
+ ngram_lm_scale_0.6_attention_scale_2.3 2.38
50
+ ngram_lm_scale_0.6_attention_scale_2.5 2.38
51
+ ngram_lm_scale_0.6_attention_scale_4.0 2.38
52
+ ngram_lm_scale_0.6_attention_scale_5.0 2.38
53
+ ngram_lm_scale_0.7_attention_scale_2.5 2.38
54
+ ngram_lm_scale_0.7_attention_scale_4.0 2.38
55
+ ngram_lm_scale_0.7_attention_scale_5.0 2.38
56
+ ngram_lm_scale_0.9_attention_scale_2.2 2.38
57
+ ngram_lm_scale_0.9_attention_scale_2.5 2.38
58
+ ngram_lm_scale_1.1_attention_scale_1.9 2.38
59
+ ngram_lm_scale_1.1_attention_scale_2.0 2.38
60
+ ngram_lm_scale_1.1_attention_scale_2.1 2.38
61
+ ngram_lm_scale_1.1_attention_scale_2.2 2.38
62
+ ngram_lm_scale_1.1_attention_scale_2.3 2.38
63
+ ngram_lm_scale_1.1_attention_scale_2.5 2.38
64
+ ngram_lm_scale_1.2_attention_scale_2.5 2.38
65
+ ngram_lm_scale_1.2_attention_scale_3.0 2.38
66
+ ngram_lm_scale_1.3_attention_scale_3.0 2.38
67
+ ngram_lm_scale_1.5_attention_scale_4.0 2.38
68
+ ngram_lm_scale_1.9_attention_scale_5.0 2.38
69
+ ngram_lm_scale_2.0_attention_scale_5.0 2.38
70
+ ngram_lm_scale_0.01_attention_scale_0.7 2.39
71
+ ngram_lm_scale_0.01_attention_scale_1.0 2.39
72
+ ngram_lm_scale_0.01_attention_scale_1.2 2.39
73
+ ngram_lm_scale_0.01_attention_scale_1.3 2.39
74
+ ngram_lm_scale_0.01_attention_scale_1.5 2.39
75
+ ngram_lm_scale_0.01_attention_scale_4.0 2.39
76
+ ngram_lm_scale_0.01_attention_scale_5.0 2.39
77
+ ngram_lm_scale_0.05_attention_scale_0.5 2.39
78
+ ngram_lm_scale_0.05_attention_scale_0.6 2.39
79
+ ngram_lm_scale_0.05_attention_scale_0.7 2.39
80
+ ngram_lm_scale_0.05_attention_scale_0.9 2.39
81
+ ngram_lm_scale_0.05_attention_scale_1.0 2.39
82
+ ngram_lm_scale_0.05_attention_scale_1.1 2.39
83
+ ngram_lm_scale_0.05_attention_scale_1.2 2.39
84
+ ngram_lm_scale_0.05_attention_scale_1.3 2.39
85
+ ngram_lm_scale_0.05_attention_scale_1.5 2.39
86
+ ngram_lm_scale_0.05_attention_scale_1.9 2.39
87
+ ngram_lm_scale_0.05_attention_scale_3.0 2.39
88
+ ngram_lm_scale_0.05_attention_scale_4.0 2.39
89
+ ngram_lm_scale_0.05_attention_scale_5.0 2.39
90
+ ngram_lm_scale_0.08_attention_scale_0.5 2.39
91
+ ngram_lm_scale_0.08_attention_scale_0.6 2.39
92
+ ngram_lm_scale_0.08_attention_scale_0.7 2.39
93
+ ngram_lm_scale_0.08_attention_scale_0.9 2.39
94
+ ngram_lm_scale_0.08_attention_scale_1.0 2.39
95
+ ngram_lm_scale_0.08_attention_scale_1.1 2.39
96
+ ngram_lm_scale_0.08_attention_scale_1.2 2.39
97
+ ngram_lm_scale_0.08_attention_scale_1.3 2.39
98
+ ngram_lm_scale_0.08_attention_scale_1.7 2.39
99
+ ngram_lm_scale_0.08_attention_scale_1.9 2.39
100
+ ngram_lm_scale_0.08_attention_scale_2.1 2.39
101
+ ngram_lm_scale_0.08_attention_scale_2.2 2.39
102
+ ngram_lm_scale_0.08_attention_scale_2.3 2.39
103
+ ngram_lm_scale_0.08_attention_scale_3.0 2.39
104
+ ngram_lm_scale_0.08_attention_scale_5.0 2.39
105
+ ngram_lm_scale_0.1_attention_scale_0.5 2.39
106
+ ngram_lm_scale_0.1_attention_scale_0.6 2.39
107
+ ngram_lm_scale_0.1_attention_scale_1.0 2.39
108
+ ngram_lm_scale_0.1_attention_scale_1.7 2.39
109
+ ngram_lm_scale_0.1_attention_scale_1.9 2.39
110
+ ngram_lm_scale_0.1_attention_scale_3.0 2.39
111
+ ngram_lm_scale_0.1_attention_scale_5.0 2.39
112
+ ngram_lm_scale_0.3_attention_scale_1.2 2.39
113
+ ngram_lm_scale_0.3_attention_scale_1.3 2.39
114
+ ngram_lm_scale_0.3_attention_scale_2.1 2.39
115
+ ngram_lm_scale_0.3_attention_scale_2.2 2.39
116
+ ngram_lm_scale_0.3_attention_scale_3.0 2.39
117
+ ngram_lm_scale_0.3_attention_scale_5.0 2.39
118
+ ngram_lm_scale_0.5_attention_scale_1.3 2.39
119
+ ngram_lm_scale_0.5_attention_scale_1.7 2.39
120
+ ngram_lm_scale_0.5_attention_scale_1.9 2.39
121
+ ngram_lm_scale_0.5_attention_scale_2.0 2.39
122
+ ngram_lm_scale_0.5_attention_scale_2.1 2.39
123
+ ngram_lm_scale_0.5_attention_scale_2.2 2.39
124
+ ngram_lm_scale_0.5_attention_scale_2.3 2.39
125
+ ngram_lm_scale_0.5_attention_scale_2.5 2.39
126
+ ngram_lm_scale_0.5_attention_scale_4.0 2.39
127
+ ngram_lm_scale_0.6_attention_scale_1.3 2.39
128
+ ngram_lm_scale_0.6_attention_scale_1.5 2.39
129
+ ngram_lm_scale_0.7_attention_scale_1.3 2.39
130
+ ngram_lm_scale_0.7_attention_scale_1.5 2.39
131
+ ngram_lm_scale_0.7_attention_scale_1.7 2.39
132
+ ngram_lm_scale_0.9_attention_scale_1.7 2.39
133
+ ngram_lm_scale_0.9_attention_scale_2.0 2.39
134
+ ngram_lm_scale_0.9_attention_scale_2.1 2.39
135
+ ngram_lm_scale_0.9_attention_scale_2.3 2.39
136
+ ngram_lm_scale_1.0_attention_scale_1.9 2.39
137
+ ngram_lm_scale_1.0_attention_scale_2.0 2.39
138
+ ngram_lm_scale_1.0_attention_scale_2.1 2.39
139
+ ngram_lm_scale_1.0_attention_scale_2.2 2.39
140
+ ngram_lm_scale_1.0_attention_scale_2.3 2.39
141
+ ngram_lm_scale_1.0_attention_scale_2.5 2.39
142
+ ngram_lm_scale_1.1_attention_scale_1.7 2.39
143
+ ngram_lm_scale_1.2_attention_scale_1.9 2.39
144
+ ngram_lm_scale_1.2_attention_scale_2.0 2.39
145
+ ngram_lm_scale_1.2_attention_scale_2.1 2.39
146
+ ngram_lm_scale_1.2_attention_scale_2.2 2.39
147
+ ngram_lm_scale_1.2_attention_scale_2.3 2.39
148
+ ngram_lm_scale_1.3_attention_scale_2.3 2.39
149
+ ngram_lm_scale_1.3_attention_scale_2.5 2.39
150
+ ngram_lm_scale_1.5_attention_scale_3.0 2.39
151
+ ngram_lm_scale_1.9_attention_scale_4.0 2.39
152
+ ngram_lm_scale_2.1_attention_scale_5.0 2.39
153
+ ngram_lm_scale_2.2_attention_scale_5.0 2.39
154
+ ngram_lm_scale_2.3_attention_scale_5.0 2.39
155
+ ngram_lm_scale_0.01_attention_scale_0.5 2.4
156
+ ngram_lm_scale_0.01_attention_scale_0.6 2.4
157
+ ngram_lm_scale_0.01_attention_scale_0.9 2.4
158
+ ngram_lm_scale_0.01_attention_scale_1.1 2.4
159
+ ngram_lm_scale_0.01_attention_scale_1.7 2.4
160
+ ngram_lm_scale_0.01_attention_scale_1.9 2.4
161
+ ngram_lm_scale_0.01_attention_scale_2.0 2.4
162
+ ngram_lm_scale_0.01_attention_scale_2.1 2.4
163
+ ngram_lm_scale_0.01_attention_scale_2.2 2.4
164
+ ngram_lm_scale_0.01_attention_scale_2.3 2.4
165
+ ngram_lm_scale_0.01_attention_scale_2.5 2.4
166
+ ngram_lm_scale_0.01_attention_scale_3.0 2.4
167
+ ngram_lm_scale_0.05_attention_scale_1.7 2.4
168
+ ngram_lm_scale_0.05_attention_scale_2.0 2.4
169
+ ngram_lm_scale_0.05_attention_scale_2.1 2.4
170
+ ngram_lm_scale_0.05_attention_scale_2.2 2.4
171
+ ngram_lm_scale_0.05_attention_scale_2.3 2.4
172
+ ngram_lm_scale_0.05_attention_scale_2.5 2.4
173
+ ngram_lm_scale_0.08_attention_scale_1.5 2.4
174
+ ngram_lm_scale_0.08_attention_scale_2.0 2.4
175
+ ngram_lm_scale_0.08_attention_scale_2.5 2.4
176
+ ngram_lm_scale_0.1_attention_scale_0.7 2.4
177
+ ngram_lm_scale_0.1_attention_scale_0.9 2.4
178
+ ngram_lm_scale_0.1_attention_scale_1.1 2.4
179
+ ngram_lm_scale_0.1_attention_scale_1.2 2.4
180
+ ngram_lm_scale_0.1_attention_scale_1.3 2.4
181
+ ngram_lm_scale_0.1_attention_scale_1.5 2.4
182
+ ngram_lm_scale_0.1_attention_scale_2.0 2.4
183
+ ngram_lm_scale_0.1_attention_scale_2.1 2.4
184
+ ngram_lm_scale_0.1_attention_scale_2.2 2.4
185
+ ngram_lm_scale_0.1_attention_scale_2.3 2.4
186
+ ngram_lm_scale_0.1_attention_scale_2.5 2.4
187
+ ngram_lm_scale_0.3_attention_scale_0.3 2.4
188
+ ngram_lm_scale_0.3_attention_scale_0.5 2.4
189
+ ngram_lm_scale_0.3_attention_scale_0.6 2.4
190
+ ngram_lm_scale_0.3_attention_scale_0.7 2.4
191
+ ngram_lm_scale_0.3_attention_scale_1.1 2.4
192
+ ngram_lm_scale_0.3_attention_scale_1.5 2.4
193
+ ngram_lm_scale_0.3_attention_scale_1.7 2.4
194
+ ngram_lm_scale_0.3_attention_scale_1.9 2.4
195
+ ngram_lm_scale_0.3_attention_scale_2.0 2.4
196
+ ngram_lm_scale_0.3_attention_scale_2.3 2.4
197
+ ngram_lm_scale_0.3_attention_scale_2.5 2.4
198
+ ngram_lm_scale_0.5_attention_scale_0.9 2.4
199
+ ngram_lm_scale_0.5_attention_scale_1.0 2.4
200
+ ngram_lm_scale_0.5_attention_scale_1.1 2.4
201
+ ngram_lm_scale_0.5_attention_scale_1.2 2.4
202
+ ngram_lm_scale_0.5_attention_scale_1.5 2.4
203
+ ngram_lm_scale_0.6_attention_scale_1.0 2.4
204
+ ngram_lm_scale_0.6_attention_scale_1.1 2.4
205
+ ngram_lm_scale_0.6_attention_scale_1.2 2.4
206
+ ngram_lm_scale_0.7_attention_scale_1.2 2.4
207
+ ngram_lm_scale_0.9_attention_scale_1.5 2.4
208
+ ngram_lm_scale_0.9_attention_scale_1.9 2.4
209
+ ngram_lm_scale_1.0_attention_scale_1.5 2.4
210
+ ngram_lm_scale_1.0_attention_scale_1.7 2.4
211
+ ngram_lm_scale_1.3_attention_scale_2.2 2.4
212
+ ngram_lm_scale_2.0_attention_scale_4.0 2.4
213
+ ngram_lm_scale_0.05_attention_scale_0.3 2.41
214
+ ngram_lm_scale_0.08_attention_scale_0.3 2.41
215
+ ngram_lm_scale_0.3_attention_scale_1.0 2.41
216
+ ngram_lm_scale_0.5_attention_scale_0.6 2.41
217
+ ngram_lm_scale_0.5_attention_scale_0.7 2.41
218
+ ngram_lm_scale_0.6_attention_scale_0.9 2.41
219
+ ngram_lm_scale_0.7_attention_scale_1.0 2.41
220
+ ngram_lm_scale_0.7_attention_scale_1.1 2.41
221
+ ngram_lm_scale_0.9_attention_scale_1.2 2.41
222
+ ngram_lm_scale_1.3_attention_scale_2.0 2.41
223
+ ngram_lm_scale_1.3_attention_scale_2.1 2.41
224
+ ngram_lm_scale_1.5_attention_scale_2.5 2.41
225
+ ngram_lm_scale_1.7_attention_scale_3.0 2.41
226
+ ngram_lm_scale_2.5_attention_scale_5.0 2.41
227
+ ngram_lm_scale_0.01_attention_scale_0.3 2.42
228
+ ngram_lm_scale_0.1_attention_scale_0.3 2.42
229
+ ngram_lm_scale_0.3_attention_scale_0.9 2.42
230
+ ngram_lm_scale_0.6_attention_scale_0.6 2.42
231
+ ngram_lm_scale_0.6_attention_scale_0.7 2.42
232
+ ngram_lm_scale_0.7_attention_scale_0.9 2.42
233
+ ngram_lm_scale_0.9_attention_scale_1.3 2.42
234
+ ngram_lm_scale_1.0_attention_scale_1.3 2.42
235
+ ngram_lm_scale_2.1_attention_scale_4.0 2.42
236
+ ngram_lm_scale_0.05_attention_scale_0.01 2.43
237
+ ngram_lm_scale_0.05_attention_scale_0.1 2.43
238
+ ngram_lm_scale_0.08_attention_scale_0.05 2.43
239
+ ngram_lm_scale_0.08_attention_scale_0.08 2.43
240
+ ngram_lm_scale_0.08_attention_scale_0.1 2.43
241
+ ngram_lm_scale_0.3_attention_scale_0.1 2.43
242
+ ngram_lm_scale_0.5_attention_scale_0.5 2.43
243
+ ngram_lm_scale_0.7_attention_scale_0.7 2.43
244
+ ngram_lm_scale_0.9_attention_scale_1.1 2.43
245
+ ngram_lm_scale_1.0_attention_scale_1.2 2.43
246
+ ngram_lm_scale_1.1_attention_scale_1.5 2.43
247
+ ngram_lm_scale_1.2_attention_scale_1.7 2.43
248
+ ngram_lm_scale_1.3_attention_scale_1.9 2.43
249
+ ngram_lm_scale_2.2_attention_scale_4.0 2.43
250
+ ngram_lm_scale_0.01_attention_scale_0.01 2.44
251
+ ngram_lm_scale_0.01_attention_scale_0.05 2.44
252
+ ngram_lm_scale_0.01_attention_scale_0.08 2.44
253
+ ngram_lm_scale_0.01_attention_scale_0.1 2.44
254
+ ngram_lm_scale_0.05_attention_scale_0.05 2.44
255
+ ngram_lm_scale_0.05_attention_scale_0.08 2.44
256
+ ngram_lm_scale_0.08_attention_scale_0.01 2.44
257
+ ngram_lm_scale_0.1_attention_scale_0.05 2.44
258
+ ngram_lm_scale_0.1_attention_scale_0.08 2.44
259
+ ngram_lm_scale_0.1_attention_scale_0.1 2.44
260
+ ngram_lm_scale_0.3_attention_scale_0.05 2.44
261
+ ngram_lm_scale_0.3_attention_scale_0.08 2.44
262
+ ngram_lm_scale_0.5_attention_scale_0.3 2.44
263
+ ngram_lm_scale_0.6_attention_scale_0.5 2.44
264
+ ngram_lm_scale_0.1_attention_scale_0.01 2.45
265
+ ngram_lm_scale_0.9_attention_scale_1.0 2.45
266
+ ngram_lm_scale_1.5_attention_scale_2.2 2.45
267
+ ngram_lm_scale_1.5_attention_scale_2.3 2.45
268
+ ngram_lm_scale_0.3_attention_scale_0.01 2.46
269
+ ngram_lm_scale_0.7_attention_scale_0.6 2.46
270
+ ngram_lm_scale_0.9_attention_scale_0.9 2.46
271
+ ngram_lm_scale_1.0_attention_scale_1.1 2.46
272
+ ngram_lm_scale_1.1_attention_scale_1.3 2.47
273
+ ngram_lm_scale_1.2_attention_scale_1.5 2.47
274
+ ngram_lm_scale_1.3_attention_scale_1.7 2.47
275
+ ngram_lm_scale_1.5_attention_scale_2.1 2.47
276
+ ngram_lm_scale_0.7_attention_scale_0.5 2.48
277
+ ngram_lm_scale_1.9_attention_scale_3.0 2.48
278
+ ngram_lm_scale_2.3_attention_scale_4.0 2.48
279
+ ngram_lm_scale_1.1_attention_scale_1.2 2.49
280
+ ngram_lm_scale_1.7_attention_scale_2.5 2.49
281
+ ngram_lm_scale_0.6_attention_scale_0.3 2.5
282
+ ngram_lm_scale_1.0_attention_scale_1.0 2.5
283
+ ngram_lm_scale_1.5_attention_scale_2.0 2.5
284
+ ngram_lm_scale_1.3_attention_scale_1.5 2.51
285
+ ngram_lm_scale_1.5_attention_scale_1.9 2.51
286
+ ngram_lm_scale_2.0_attention_scale_3.0 2.51
287
+ ngram_lm_scale_1.1_attention_scale_1.1 2.52
288
+ ngram_lm_scale_1.2_attention_scale_1.3 2.52
289
+ ngram_lm_scale_1.7_attention_scale_2.3 2.53
290
+ ngram_lm_scale_0.5_attention_scale_0.08 2.54
291
+ ngram_lm_scale_0.5_attention_scale_0.1 2.54
292
+ ngram_lm_scale_1.0_attention_scale_0.9 2.54
293
+ ngram_lm_scale_2.5_attention_scale_4.0 2.54
294
+ ngram_lm_scale_0.9_attention_scale_0.7 2.55
295
+ ngram_lm_scale_1.7_attention_scale_2.2 2.55
296
+ ngram_lm_scale_3.0_attention_scale_5.0 2.55
297
+ ngram_lm_scale_1.2_attention_scale_1.2 2.56
298
+ ngram_lm_scale_0.5_attention_scale_0.05 2.57
299
+ ngram_lm_scale_1.1_attention_scale_1.0 2.58
300
+ ngram_lm_scale_2.1_attention_scale_3.0 2.58
301
+ ngram_lm_scale_0.7_attention_scale_0.3 2.59
302
+ ngram_lm_scale_1.2_attention_scale_1.1 2.59
303
+ ngram_lm_scale_1.3_attention_scale_1.3 2.59
304
+ ngram_lm_scale_1.5_attention_scale_1.7 2.6
305
+ ngram_lm_scale_0.5_attention_scale_0.01 2.61
306
+ ngram_lm_scale_1.7_attention_scale_2.1 2.61
307
+ ngram_lm_scale_1.9_attention_scale_2.5 2.61
308
+ ngram_lm_scale_0.9_attention_scale_0.6 2.62
309
+ ngram_lm_scale_1.1_attention_scale_0.9 2.62
310
+ ngram_lm_scale_1.7_attention_scale_2.0 2.64
311
+ ngram_lm_scale_1.0_attention_scale_0.7 2.65
312
+ ngram_lm_scale_2.2_attention_scale_3.0 2.65
313
+ ngram_lm_scale_0.6_attention_scale_0.1 2.68
314
+ ngram_lm_scale_1.3_attention_scale_1.2 2.68
315
+ ngram_lm_scale_0.9_attention_scale_0.5 2.69
316
+ ngram_lm_scale_1.2_attention_scale_1.0 2.69
317
+ ngram_lm_scale_1.7_attention_scale_1.9 2.69
318
+ ngram_lm_scale_0.6_attention_scale_0.08 2.7
319
+ ngram_lm_scale_1.9_attention_scale_2.3 2.7
320
+ ngram_lm_scale_2.0_attention_scale_2.5 2.7
321
+ ngram_lm_scale_1.5_attention_scale_1.5 2.72
322
+ ngram_lm_scale_0.6_attention_scale_0.05 2.74
323
+ ngram_lm_scale_1.3_attention_scale_1.1 2.75
324
+ ngram_lm_scale_2.3_attention_scale_3.0 2.75
325
+ ngram_lm_scale_1.0_attention_scale_0.6 2.76
326
+ ngram_lm_scale_1.9_attention_scale_2.2 2.76
327
+ ngram_lm_scale_1.2_attention_scale_0.9 2.77
328
+ ngram_lm_scale_0.6_attention_scale_0.01 2.8
329
+ ngram_lm_scale_1.1_attention_scale_0.7 2.81
330
+ ngram_lm_scale_2.1_attention_scale_2.5 2.83
331
+ ngram_lm_scale_1.9_attention_scale_2.1 2.84
332
+ ngram_lm_scale_2.0_attention_scale_2.3 2.84
333
+ ngram_lm_scale_1.3_attention_scale_1.0 2.85
334
+ ngram_lm_scale_1.7_attention_scale_1.7 2.85
335
+ ngram_lm_scale_0.7_attention_scale_0.1 2.86
336
+ ngram_lm_scale_1.0_attention_scale_0.5 2.89
337
+ ngram_lm_scale_1.5_attention_scale_1.3 2.92
338
+ ngram_lm_scale_0.7_attention_scale_0.08 2.93
339
+ ngram_lm_scale_2.0_attention_scale_2.2 2.93
340
+ ngram_lm_scale_1.9_attention_scale_2.0 2.95
341
+ ngram_lm_scale_3.0_attention_scale_4.0 2.96
342
+ ngram_lm_scale_2.2_attention_scale_2.5 2.99
343
+ ngram_lm_scale_1.1_attention_scale_0.6 3.0
344
+ ngram_lm_scale_2.0_attention_scale_2.1 3.01
345
+ ngram_lm_scale_2.1_attention_scale_2.3 3.01
346
+ ngram_lm_scale_0.7_attention_scale_0.05 3.02
347
+ ngram_lm_scale_2.5_attention_scale_3.0 3.02
348
+ ngram_lm_scale_1.9_attention_scale_1.9 3.04
349
+ ngram_lm_scale_1.3_attention_scale_0.9 3.05
350
+ ngram_lm_scale_0.9_attention_scale_0.3 3.06
351
+ ngram_lm_scale_2.1_attention_scale_2.2 3.09
352
+ ngram_lm_scale_1.5_attention_scale_1.2 3.1
353
+ ngram_lm_scale_1.2_attention_scale_0.7 3.12
354
+ ngram_lm_scale_2.0_attention_scale_2.0 3.12
355
+ ngram_lm_scale_1.7_attention_scale_1.5 3.13
356
+ ngram_lm_scale_0.7_attention_scale_0.01 3.15
357
+ ngram_lm_scale_2.3_attention_scale_2.5 3.15
358
+ ngram_lm_scale_2.2_attention_scale_2.3 3.16
359
+ ngram_lm_scale_2.1_attention_scale_2.1 3.23
360
+ ngram_lm_scale_1.1_attention_scale_0.5 3.29
361
+ ngram_lm_scale_2.0_attention_scale_1.9 3.3
362
+ ngram_lm_scale_1.5_attention_scale_1.1 3.31
363
+ ngram_lm_scale_2.2_attention_scale_2.2 3.33
364
+ ngram_lm_scale_1.9_attention_scale_1.7 3.36
365
+ ngram_lm_scale_4.0_attention_scale_5.0 3.37
366
+ ngram_lm_scale_2.1_attention_scale_2.0 3.4
367
+ ngram_lm_scale_2.3_attention_scale_2.3 3.41
368
+ ngram_lm_scale_1.2_attention_scale_0.6 3.46
369
+ ngram_lm_scale_2.2_attention_scale_2.1 3.49
370
+ ngram_lm_scale_2.5_attention_scale_2.5 3.55
371
+ ngram_lm_scale_1.0_attention_scale_0.3 3.56
372
+ ngram_lm_scale_2.1_attention_scale_1.9 3.56
373
+ ngram_lm_scale_2.3_attention_scale_2.2 3.56
374
+ ngram_lm_scale_1.7_attention_scale_1.3 3.58
375
+ ngram_lm_scale_1.5_attention_scale_1.0 3.59
376
+ ngram_lm_scale_1.3_attention_scale_0.7 3.62
377
+ ngram_lm_scale_2.2_attention_scale_2.0 3.65
378
+ ngram_lm_scale_2.0_attention_scale_1.7 3.67
379
+ ngram_lm_scale_2.3_attention_scale_2.1 3.74
380
+ ngram_lm_scale_1.9_attention_scale_1.5 3.82
381
+ ngram_lm_scale_2.2_attention_scale_1.9 3.86
382
+ ngram_lm_scale_1.2_attention_scale_0.5 3.88
383
+ ngram_lm_scale_1.7_attention_scale_1.2 3.9
384
+ ngram_lm_scale_3.0_attention_scale_3.0 3.91
385
+ ngram_lm_scale_0.9_attention_scale_0.1 3.92
386
+ ngram_lm_scale_2.5_attention_scale_2.3 3.94
387
+ ngram_lm_scale_1.5_attention_scale_0.9 3.98
388
+ ngram_lm_scale_2.3_attention_scale_2.0 4.0
389
+ ngram_lm_scale_0.9_attention_scale_0.08 4.05
390
+ ngram_lm_scale_2.1_attention_scale_1.7 4.08
391
+ ngram_lm_scale_1.3_attention_scale_0.6 4.1
392
+ ngram_lm_scale_2.5_attention_scale_2.2 4.19
393
+ ngram_lm_scale_1.1_attention_scale_0.3 4.26
394
+ ngram_lm_scale_0.9_attention_scale_0.05 4.27
395
+ ngram_lm_scale_1.7_attention_scale_1.1 4.27
396
+ ngram_lm_scale_2.3_attention_scale_1.9 4.27
397
+ ngram_lm_scale_2.0_attention_scale_1.5 4.28
398
+ ngram_lm_scale_2.5_attention_scale_2.1 4.47
399
+ ngram_lm_scale_2.2_attention_scale_1.7 4.49
400
+ ngram_lm_scale_1.9_attention_scale_1.3 4.53
401
+ ngram_lm_scale_4.0_attention_scale_4.0 4.55
402
+ ngram_lm_scale_0.9_attention_scale_0.01 4.58
403
+ ngram_lm_scale_1.3_attention_scale_0.5 4.65
404
+ ngram_lm_scale_1.7_attention_scale_1.0 4.76
405
+ ngram_lm_scale_2.1_attention_scale_1.5 4.8
406
+ ngram_lm_scale_2.5_attention_scale_2.0 4.83
407
+ ngram_lm_scale_1.0_attention_scale_0.1 4.89
408
+ ngram_lm_scale_1.9_attention_scale_1.2 5.04
409
+ ngram_lm_scale_2.3_attention_scale_1.7 5.04
410
+ ngram_lm_scale_1.0_attention_scale_0.08 5.06
411
+ ngram_lm_scale_1.5_attention_scale_0.7 5.06
412
+ ngram_lm_scale_5.0_attention_scale_5.0 5.08
413
+ ngram_lm_scale_2.0_attention_scale_1.3 5.2
414
+ ngram_lm_scale_2.5_attention_scale_1.9 5.26
415
+ ngram_lm_scale_1.2_attention_scale_0.3 5.29
416
+ ngram_lm_scale_3.0_attention_scale_2.5 5.31
417
+ ngram_lm_scale_1.0_attention_scale_0.05 5.33
418
+ ngram_lm_scale_1.7_attention_scale_0.9 5.39
419
+ ngram_lm_scale_2.2_attention_scale_1.5 5.44
420
+ ngram_lm_scale_1.9_attention_scale_1.1 5.71
421
+ ngram_lm_scale_1.0_attention_scale_0.01 5.75
422
+ ngram_lm_scale_1.5_attention_scale_0.6 5.8
423
+ ngram_lm_scale_2.0_attention_scale_1.2 5.81
424
+ ngram_lm_scale_2.1_attention_scale_1.3 5.91
425
+ ngram_lm_scale_1.1_attention_scale_0.1 6.0
426
+ ngram_lm_scale_2.3_attention_scale_1.5 6.07
427
+ ngram_lm_scale_3.0_attention_scale_2.3 6.12
428
+ ngram_lm_scale_1.1_attention_scale_0.08 6.18
429
+ ngram_lm_scale_2.5_attention_scale_1.7 6.23
430
+ ngram_lm_scale_1.9_attention_scale_1.0 6.27
431
+ ngram_lm_scale_1.3_attention_scale_0.3 6.3
432
+ ngram_lm_scale_2.0_attention_scale_1.1 6.36
433
+ ngram_lm_scale_1.1_attention_scale_0.05 6.44
434
+ ngram_lm_scale_2.1_attention_scale_1.2 6.45
435
+ ngram_lm_scale_2.2_attention_scale_1.3 6.52
436
+ ngram_lm_scale_1.5_attention_scale_0.5 6.55
437
+ ngram_lm_scale_3.0_attention_scale_2.2 6.58
438
+ ngram_lm_scale_1.7_attention_scale_0.7 6.68
439
+ ngram_lm_scale_1.1_attention_scale_0.01 6.79
440
+ ngram_lm_scale_1.9_attention_scale_0.9 6.84
441
+ ngram_lm_scale_2.0_attention_scale_1.0 6.91
442
+ ngram_lm_scale_1.2_attention_scale_0.1 6.97
443
+ ngram_lm_scale_2.1_attention_scale_1.1 6.99
444
+ ngram_lm_scale_3.0_attention_scale_2.1 7.07
445
+ ngram_lm_scale_2.2_attention_scale_1.2 7.08
446
+ ngram_lm_scale_1.2_attention_scale_0.08 7.14
447
+ ngram_lm_scale_2.3_attention_scale_1.3 7.14
448
+ ngram_lm_scale_2.5_attention_scale_1.5 7.24
449
+ ngram_lm_scale_1.7_attention_scale_0.6 7.36
450
+ ngram_lm_scale_1.2_attention_scale_0.05 7.4
451
+ ngram_lm_scale_3.0_attention_scale_2.0 7.43
452
+ ngram_lm_scale_2.0_attention_scale_0.9 7.47
453
+ ngram_lm_scale_2.1_attention_scale_1.0 7.51
454
+ ngram_lm_scale_2.2_attention_scale_1.1 7.56
455
+ ngram_lm_scale_2.3_attention_scale_1.2 7.58
456
+ ngram_lm_scale_4.0_attention_scale_3.0 7.68
457
+ ngram_lm_scale_1.2_attention_scale_0.01 7.73
458
+ ngram_lm_scale_3.0_attention_scale_1.9 7.78
459
+ ngram_lm_scale_1.3_attention_scale_0.1 7.81
460
+ ngram_lm_scale_5.0_attention_scale_4.0 7.81
461
+ ngram_lm_scale_1.5_attention_scale_0.3 7.87
462
+ ngram_lm_scale_1.7_attention_scale_0.5 7.89
463
+ ngram_lm_scale_1.9_attention_scale_0.7 7.91
464
+ ngram_lm_scale_1.3_attention_scale_0.08 7.92
465
+ ngram_lm_scale_2.1_attention_scale_0.9 7.94
466
+ ngram_lm_scale_2.2_attention_scale_1.0 7.96
467
+ ngram_lm_scale_2.3_attention_scale_1.1 7.97
468
+ ngram_lm_scale_2.5_attention_scale_1.3 7.98
469
+ ngram_lm_scale_1.3_attention_scale_0.05 8.07
470
+ ngram_lm_scale_2.5_attention_scale_1.2 8.26
471
+ ngram_lm_scale_3.0_attention_scale_1.7 8.26
472
+ ngram_lm_scale_1.3_attention_scale_0.01 8.27
473
+ ngram_lm_scale_2.3_attention_scale_1.0 8.29
474
+ ngram_lm_scale_2.2_attention_scale_0.9 8.3
475
+ ngram_lm_scale_2.0_attention_scale_0.7 8.31
476
+ ngram_lm_scale_1.9_attention_scale_0.6 8.32
477
+ ngram_lm_scale_4.0_attention_scale_2.5 8.41
478
+ ngram_lm_scale_2.5_attention_scale_1.1 8.45
479
+ ngram_lm_scale_2.3_attention_scale_0.9 8.48
480
+ ngram_lm_scale_3.0_attention_scale_1.5 8.51
481
+ ngram_lm_scale_2.1_attention_scale_0.7 8.52
482
+ ngram_lm_scale_2.0_attention_scale_0.6 8.55
483
+ ngram_lm_scale_1.9_attention_scale_0.5 8.56
484
+ ngram_lm_scale_4.0_attention_scale_2.3 8.58
485
+ ngram_lm_scale_2.5_attention_scale_1.0 8.61
486
+ ngram_lm_scale_1.7_attention_scale_0.3 8.62
487
+ ngram_lm_scale_4.0_attention_scale_2.2 8.65
488
+ ngram_lm_scale_5.0_attention_scale_3.0 8.67
489
+ ngram_lm_scale_1.5_attention_scale_0.1 8.68
490
+ ngram_lm_scale_2.2_attention_scale_0.7 8.68
491
+ ngram_lm_scale_2.1_attention_scale_0.6 8.72
492
+ ngram_lm_scale_4.0_attention_scale_2.1 8.73
493
+ ngram_lm_scale_3.0_attention_scale_1.3 8.74
494
+ ngram_lm_scale_1.5_attention_scale_0.08 8.75
495
+ ngram_lm_scale_2.0_attention_scale_0.5 8.76
496
+ ngram_lm_scale_2.5_attention_scale_0.9 8.77
497
+ ngram_lm_scale_1.5_attention_scale_0.05 8.83
498
+ ngram_lm_scale_2.3_attention_scale_0.7 8.83
499
+ ngram_lm_scale_4.0_attention_scale_2.0 8.83
500
+ ngram_lm_scale_2.2_attention_scale_0.6 8.86
501
+ ngram_lm_scale_3.0_attention_scale_1.2 8.86
502
+ ngram_lm_scale_2.1_attention_scale_0.5 8.89
503
+ ngram_lm_scale_1.5_attention_scale_0.01 8.91
504
+ ngram_lm_scale_4.0_attention_scale_1.9 8.91
505
+ ngram_lm_scale_2.3_attention_scale_0.6 8.95
506
+ ngram_lm_scale_3.0_attention_scale_1.1 8.95
507
+ ngram_lm_scale_1.9_attention_scale_0.3 8.96
508
+ ngram_lm_scale_2.2_attention_scale_0.5 8.98
509
+ ngram_lm_scale_2.5_attention_scale_0.7 9.0
510
+ ngram_lm_scale_5.0_attention_scale_2.5 9.0
511
+ ngram_lm_scale_1.7_attention_scale_0.1 9.01
512
+ ngram_lm_scale_1.7_attention_scale_0.08 9.04
513
+ ngram_lm_scale_3.0_attention_scale_1.0 9.04
514
+ ngram_lm_scale_2.0_attention_scale_0.3 9.05
515
+ ngram_lm_scale_2.3_attention_scale_0.5 9.05
516
+ ngram_lm_scale_4.0_attention_scale_1.7 9.05
517
+ ngram_lm_scale_2.5_attention_scale_0.6 9.09
518
+ ngram_lm_scale_5.0_attention_scale_2.3 9.1
519
+ ngram_lm_scale_1.7_attention_scale_0.05 9.11
520
+ ngram_lm_scale_3.0_attention_scale_0.9 9.11
521
+ ngram_lm_scale_2.1_attention_scale_0.3 9.12
522
+ ngram_lm_scale_5.0_attention_scale_2.2 9.13
523
+ ngram_lm_scale_4.0_attention_scale_1.5 9.15
524
+ ngram_lm_scale_5.0_attention_scale_2.1 9.17
525
+ ngram_lm_scale_1.7_attention_scale_0.01 9.18
526
+ ngram_lm_scale_2.2_attention_scale_0.3 9.19
527
+ ngram_lm_scale_2.5_attention_scale_0.5 9.19
528
+ ngram_lm_scale_1.9_attention_scale_0.1 9.2
529
+ ngram_lm_scale_5.0_attention_scale_2.0 9.21
530
+ ngram_lm_scale_1.9_attention_scale_0.08 9.22
531
+ ngram_lm_scale_3.0_attention_scale_0.7 9.23
532
+ ngram_lm_scale_2.3_attention_scale_0.3 9.24
533
+ ngram_lm_scale_4.0_attention_scale_1.3 9.24
534
+ ngram_lm_scale_1.9_attention_scale_0.05 9.25
535
+ ngram_lm_scale_2.0_attention_scale_0.1 9.25
536
+ ngram_lm_scale_5.0_attention_scale_1.9 9.25
537
+ ngram_lm_scale_1.9_attention_scale_0.01 9.26
538
+ ngram_lm_scale_2.0_attention_scale_0.08 9.26
539
+ ngram_lm_scale_2.0_attention_scale_0.05 9.28
540
+ ngram_lm_scale_2.1_attention_scale_0.1 9.28
541
+ ngram_lm_scale_4.0_attention_scale_1.2 9.28
542
+ ngram_lm_scale_5.0_attention_scale_1.7 9.29
543
+ ngram_lm_scale_2.1_attention_scale_0.08 9.3
544
+ ngram_lm_scale_2.5_attention_scale_0.3 9.3
545
+ ngram_lm_scale_3.0_attention_scale_0.6 9.3
546
+ ngram_lm_scale_4.0_attention_scale_1.1 9.3
547
+ ngram_lm_scale_2.0_attention_scale_0.01 9.31
548
+ ngram_lm_scale_3.0_attention_scale_0.5 9.32
549
+ ngram_lm_scale_4.0_attention_scale_1.0 9.32
550
+ ngram_lm_scale_5.0_attention_scale_1.5 9.32
551
+ ngram_lm_scale_2.1_attention_scale_0.05 9.33
552
+ ngram_lm_scale_2.2_attention_scale_0.1 9.33
553
+ ngram_lm_scale_2.1_attention_scale_0.01 9.35
554
+ ngram_lm_scale_2.2_attention_scale_0.08 9.35
555
+ ngram_lm_scale_2.3_attention_scale_0.1 9.35
556
+ ngram_lm_scale_4.0_attention_scale_0.9 9.35
557
+ ngram_lm_scale_5.0_attention_scale_1.3 9.35
558
+ ngram_lm_scale_2.2_attention_scale_0.05 9.36
559
+ ngram_lm_scale_2.3_attention_scale_0.08 9.37
560
+ ngram_lm_scale_5.0_attention_scale_1.2 9.37
561
+ ngram_lm_scale_2.2_attention_scale_0.01 9.38
562
+ ngram_lm_scale_2.3_attention_scale_0.05 9.38
563
+ ngram_lm_scale_5.0_attention_scale_1.1 9.38
564
+ ngram_lm_scale_4.0_attention_scale_0.7 9.39
565
+ ngram_lm_scale_2.3_attention_scale_0.01 9.4
566
+ ngram_lm_scale_2.5_attention_scale_0.08 9.4
567
+ ngram_lm_scale_2.5_attention_scale_0.1 9.4
568
+ ngram_lm_scale_3.0_attention_scale_0.3 9.4
569
+ ngram_lm_scale_4.0_attention_scale_0.6 9.4
570
+ ngram_lm_scale_5.0_attention_scale_0.9 9.4
571
+ ngram_lm_scale_5.0_attention_scale_1.0 9.4
572
+ ngram_lm_scale_2.5_attention_scale_0.05 9.42
573
+ ngram_lm_scale_4.0_attention_scale_0.5 9.42
574
+ ngram_lm_scale_5.0_attention_scale_0.7 9.42
575
+ ngram_lm_scale_2.5_attention_scale_0.01 9.43
576
+ ngram_lm_scale_5.0_attention_scale_0.6 9.43
577
+ ngram_lm_scale_4.0_attention_scale_0.3 9.44
578
+ ngram_lm_scale_5.0_attention_scale_0.5 9.45
579
+ ngram_lm_scale_3.0_attention_scale_0.01 9.46
580
+ ngram_lm_scale_3.0_attention_scale_0.05 9.46
581
+ ngram_lm_scale_3.0_attention_scale_0.08 9.46
582
+ ngram_lm_scale_3.0_attention_scale_0.1 9.46
583
+ ngram_lm_scale_5.0_attention_scale_0.3 9.46
584
+ ngram_lm_scale_4.0_attention_scale_0.05 9.48
585
+ ngram_lm_scale_4.0_attention_scale_0.08 9.48
586
+ ngram_lm_scale_4.0_attention_scale_0.1 9.48
587
+ ngram_lm_scale_4.0_attention_scale_0.01 9.49
588
+ ngram_lm_scale_5.0_attention_scale_0.1 9.49
589
+ ngram_lm_scale_5.0_attention_scale_0.08 9.5
590
+ ngram_lm_scale_5.0_attention_scale_0.01 9.51
591
+ ngram_lm_scale_5.0_attention_scale_0.05 9.51
592
+
593
+ 2023-03-10 16:26:56,393 INFO [decode.py:580] batch 0/?, cuts processed until now is 17
594
+ 2023-03-10 16:29:21,300 INFO [zipformer.py:1455] attn_weights_entropy = tensor([3.7346, 3.8901, 3.6083, 3.9171, 3.5037, 3.9391, 3.9041, 3.8373],
595
+ device='cuda:0'), covar=tensor([0.0486, 0.0328, 0.0562, 0.0435, 0.0383, 0.0169, 0.0287, 0.0198],
596
+ device='cuda:0'), in_proj_covar=tensor([0.0390, 0.0327, 0.0367, 0.0362, 0.0325, 0.0234, 0.0307, 0.0288],
597
+ device='cuda:0'), out_proj_covar=tensor([0.0006, 0.0006, 0.0005, 0.0006, 0.0005, 0.0004, 0.0005, 0.0005],
598
+ device='cuda:0')
599
+ 2023-03-10 16:32:59,546 INFO [decode.py:580] batch 100/?, cuts processed until now is 2560
600
+ 2023-03-10 16:33:13,559 INFO [zipformer.py:1455] attn_weights_entropy = tensor([2.5211, 2.4382, 2.4224, 2.3565, 2.4605, 2.2951, 2.5959, 1.9337],
601
+ device='cuda:0'), covar=tensor([0.0807, 0.1321, 0.2179, 0.3759, 0.1536, 0.1748, 0.1180, 0.3484],
602
+ device='cuda:0'), in_proj_covar=tensor([0.0186, 0.0193, 0.0209, 0.0260, 0.0168, 0.0270, 0.0191, 0.0219],
603
+ device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002],
604
+ device='cuda:0')
605
+ 2023-03-10 16:36:32,675 INFO [decode.py:626]
606
+ For test-other, WER of different settings are:
607
+ ngram_lm_scale_0.1_attention_scale_5.0 5.16 best for test-other
608
+ ngram_lm_scale_0.3_attention_scale_5.0 5.16
609
+ ngram_lm_scale_0.08_attention_scale_5.0 5.17
610
+ ngram_lm_scale_0.01_attention_scale_2.2 5.18
611
+ ngram_lm_scale_0.01_attention_scale_2.3 5.18
612
+ ngram_lm_scale_0.01_attention_scale_2.5 5.18
613
+ ngram_lm_scale_0.01_attention_scale_3.0 5.18
614
+ ngram_lm_scale_0.01_attention_scale_4.0 5.18
615
+ ngram_lm_scale_0.01_attention_scale_5.0 5.18
616
+ ngram_lm_scale_0.05_attention_scale_1.9 5.18
617
+ ngram_lm_scale_0.05_attention_scale_2.2 5.18
618
+ ngram_lm_scale_0.05_attention_scale_2.3 5.18
619
+ ngram_lm_scale_0.05_attention_scale_2.5 5.18
620
+ ngram_lm_scale_0.05_attention_scale_3.0 5.18
621
+ ngram_lm_scale_0.05_attention_scale_4.0 5.18
622
+ ngram_lm_scale_0.05_attention_scale_5.0 5.18
623
+ ngram_lm_scale_0.08_attention_scale_2.5 5.18
624
+ ngram_lm_scale_0.08_attention_scale_3.0 5.18
625
+ ngram_lm_scale_0.08_attention_scale_4.0 5.18
626
+ ngram_lm_scale_0.1_attention_scale_2.5 5.18
627
+ ngram_lm_scale_0.1_attention_scale_3.0 5.18
628
+ ngram_lm_scale_0.1_attention_scale_4.0 5.18
629
+ ngram_lm_scale_0.3_attention_scale_4.0 5.18
630
+ ngram_lm_scale_0.01_attention_scale_1.1 5.19
631
+ ngram_lm_scale_0.01_attention_scale_1.2 5.19
632
+ ngram_lm_scale_0.01_attention_scale_1.3 5.19
633
+ ngram_lm_scale_0.01_attention_scale_1.5 5.19
634
+ ngram_lm_scale_0.01_attention_scale_1.7 5.19
635
+ ngram_lm_scale_0.01_attention_scale_1.9 5.19
636
+ ngram_lm_scale_0.01_attention_scale_2.0 5.19
637
+ ngram_lm_scale_0.01_attention_scale_2.1 5.19
638
+ ngram_lm_scale_0.05_attention_scale_1.2 5.19
639
+ ngram_lm_scale_0.05_attention_scale_1.3 5.19
640
+ ngram_lm_scale_0.05_attention_scale_1.5 5.19
641
+ ngram_lm_scale_0.05_attention_scale_1.7 5.19
642
+ ngram_lm_scale_0.05_attention_scale_2.0 5.19
643
+ ngram_lm_scale_0.05_attention_scale_2.1 5.19
644
+ ngram_lm_scale_0.08_attention_scale_1.3 5.19
645
+ ngram_lm_scale_0.08_attention_scale_1.5 5.19
646
+ ngram_lm_scale_0.08_attention_scale_1.7 5.19
647
+ ngram_lm_scale_0.08_attention_scale_2.0 5.19
648
+ ngram_lm_scale_0.08_attention_scale_2.1 5.19
649
+ ngram_lm_scale_0.08_attention_scale_2.2 5.19
650
+ ngram_lm_scale_0.08_attention_scale_2.3 5.19
651
+ ngram_lm_scale_0.1_attention_scale_1.0 5.19
652
+ ngram_lm_scale_0.1_attention_scale_1.1 5.19
653
+ ngram_lm_scale_0.1_attention_scale_1.2 5.19
654
+ ngram_lm_scale_0.1_attention_scale_1.5 5.19
655
+ ngram_lm_scale_0.1_attention_scale_2.1 5.19
656
+ ngram_lm_scale_0.1_attention_scale_2.2 5.19
657
+ ngram_lm_scale_0.1_attention_scale_2.3 5.19
658
+ ngram_lm_scale_0.5_attention_scale_5.0 5.19
659
+ ngram_lm_scale_0.7_attention_scale_5.0 5.19
660
+ ngram_lm_scale_0.01_attention_scale_0.9 5.2
661
+ ngram_lm_scale_0.05_attention_scale_0.9 5.2
662
+ ngram_lm_scale_0.05_attention_scale_1.0 5.2
663
+ ngram_lm_scale_0.05_attention_scale_1.1 5.2
664
+ ngram_lm_scale_0.08_attention_scale_0.9 5.2
665
+ ngram_lm_scale_0.08_attention_scale_1.0 5.2
666
+ ngram_lm_scale_0.08_attention_scale_1.1 5.2
667
+ ngram_lm_scale_0.08_attention_scale_1.2 5.2
668
+ ngram_lm_scale_0.08_attention_scale_1.9 5.2
669
+ ngram_lm_scale_0.1_attention_scale_0.9 5.2
670
+ ngram_lm_scale_0.1_attention_scale_1.3 5.2
671
+ ngram_lm_scale_0.1_attention_scale_1.7 5.2
672
+ ngram_lm_scale_0.1_attention_scale_1.9 5.2
673
+ ngram_lm_scale_0.1_attention_scale_2.0 5.2
674
+ ngram_lm_scale_0.3_attention_scale_3.0 5.2
675
+ ngram_lm_scale_0.5_attention_scale_4.0 5.2
676
+ ngram_lm_scale_0.6_attention_scale_5.0 5.2
677
+ ngram_lm_scale_0.7_attention_scale_4.0 5.2
678
+ ngram_lm_scale_0.9_attention_scale_5.0 5.2
679
+ ngram_lm_scale_0.01_attention_scale_0.7 5.21
680
+ ngram_lm_scale_0.01_attention_scale_1.0 5.21
681
+ ngram_lm_scale_0.5_attention_scale_1.3 5.21
682
+ ngram_lm_scale_0.6_attention_scale_4.0 5.21
683
+ ngram_lm_scale_0.7_attention_scale_3.0 5.21
684
+ ngram_lm_scale_0.9_attention_scale_4.0 5.21
685
+ ngram_lm_scale_1.0_attention_scale_5.0 5.21
686
+ ngram_lm_scale_0.05_attention_scale_0.6 5.22
687
+ ngram_lm_scale_0.05_attention_scale_0.7 5.22
688
+ ngram_lm_scale_0.08_attention_scale_0.7 5.22
689
+ ngram_lm_scale_0.1_attention_scale_0.6 5.22
690
+ ngram_lm_scale_0.1_attention_scale_0.7 5.22
691
+ ngram_lm_scale_0.3_attention_scale_0.9 5.22
692
+ ngram_lm_scale_0.3_attention_scale_1.0 5.22
693
+ ngram_lm_scale_0.3_attention_scale_1.1 5.22
694
+ ngram_lm_scale_0.3_attention_scale_1.2 5.22
695
+ ngram_lm_scale_0.3_attention_scale_1.3 5.22
696
+ ngram_lm_scale_0.3_attention_scale_1.5 5.22
697
+ ngram_lm_scale_0.3_attention_scale_2.1 5.22
698
+ ngram_lm_scale_0.3_attention_scale_2.2 5.22
699
+ ngram_lm_scale_0.3_attention_scale_2.3 5.22
700
+ ngram_lm_scale_0.3_attention_scale_2.5 5.22
701
+ ngram_lm_scale_0.5_attention_scale_1.2 5.22
702
+ ngram_lm_scale_0.5_attention_scale_1.5 5.22
703
+ ngram_lm_scale_0.5_attention_scale_2.1 5.22
704
+ ngram_lm_scale_0.5_attention_scale_2.2 5.22
705
+ ngram_lm_scale_0.5_attention_scale_2.5 5.22
706
+ ngram_lm_scale_0.5_attention_scale_3.0 5.22
707
+ ngram_lm_scale_0.6_attention_scale_1.7 5.22
708
+ ngram_lm_scale_0.6_attention_scale_2.0 5.22
709
+ ngram_lm_scale_0.6_attention_scale_2.1 5.22
710
+ ngram_lm_scale_0.6_attention_scale_2.2 5.22
711
+ ngram_lm_scale_0.6_attention_scale_2.5 5.22
712
+ ngram_lm_scale_0.7_attention_scale_2.1 5.22
713
+ ngram_lm_scale_0.7_attention_scale_2.5 5.22
714
+ ngram_lm_scale_1.0_attention_scale_4.0 5.22
715
+ ngram_lm_scale_1.1_attention_scale_5.0 5.22
716
+ ngram_lm_scale_1.2_attention_scale_5.0 5.22
717
+ ngram_lm_scale_0.01_attention_scale_0.6 5.23
718
+ ngram_lm_scale_0.05_attention_scale_0.5 5.23
719
+ ngram_lm_scale_0.08_attention_scale_0.5 5.23
720
+ ngram_lm_scale_0.08_attention_scale_0.6 5.23
721
+ ngram_lm_scale_0.1_attention_scale_0.5 5.23
722
+ ngram_lm_scale_0.3_attention_scale_1.7 5.23
723
+ ngram_lm_scale_0.3_attention_scale_1.9 5.23
724
+ ngram_lm_scale_0.3_attention_scale_2.0 5.23
725
+ ngram_lm_scale_0.5_attention_scale_1.1 5.23
726
+ ngram_lm_scale_0.5_attention_scale_1.7 5.23
727
+ ngram_lm_scale_0.5_attention_scale_1.9 5.23
728
+ ngram_lm_scale_0.5_attention_scale_2.0 5.23
729
+ ngram_lm_scale_0.5_attention_scale_2.3 5.23
730
+ ngram_lm_scale_0.6_attention_scale_1.5 5.23
731
+ ngram_lm_scale_0.6_attention_scale_1.9 5.23
732
+ ngram_lm_scale_0.6_attention_scale_2.3 5.23
733
+ ngram_lm_scale_0.6_attention_scale_3.0 5.23
734
+ ngram_lm_scale_0.7_attention_scale_1.7 5.23
735
+ ngram_lm_scale_0.7_attention_scale_1.9 5.23
736
+ ngram_lm_scale_0.7_attention_scale_2.0 5.23
737
+ ngram_lm_scale_0.7_attention_scale_2.2 5.23
738
+ ngram_lm_scale_0.7_attention_scale_2.3 5.23
739
+ ngram_lm_scale_1.3_attention_scale_5.0 5.23
740
+ ngram_lm_scale_0.01_attention_scale_0.5 5.24
741
+ ngram_lm_scale_0.05_attention_scale_0.3 5.24
742
+ ngram_lm_scale_0.6_attention_scale_1.3 5.24
743
+ ngram_lm_scale_0.7_attention_scale_1.5 5.24
744
+ ngram_lm_scale_0.9_attention_scale_2.5 5.24
745
+ ngram_lm_scale_0.9_attention_scale_3.0 5.24
746
+ ngram_lm_scale_1.0_attention_scale_3.0 5.24
747
+ ngram_lm_scale_1.1_attention_scale_4.0 5.24
748
+ ngram_lm_scale_1.2_attention_scale_4.0 5.24
749
+ ngram_lm_scale_1.3_attention_scale_4.0 5.24
750
+ ngram_lm_scale_0.08_attention_scale_0.3 5.25
751
+ ngram_lm_scale_0.3_attention_scale_0.7 5.25
752
+ ngram_lm_scale_0.5_attention_scale_1.0 5.25
753
+ ngram_lm_scale_0.7_attention_scale_1.3 5.25
754
+ ngram_lm_scale_0.9_attention_scale_2.2 5.25
755
+ ngram_lm_scale_1.0_attention_scale_2.5 5.25
756
+ ngram_lm_scale_1.1_attention_scale_3.0 5.25
757
+ ngram_lm_scale_1.5_attention_scale_5.0 5.25
758
+ ngram_lm_scale_0.01_attention_scale_0.3 5.26
759
+ ngram_lm_scale_0.5_attention_scale_0.9 5.26
760
+ ngram_lm_scale_0.6_attention_scale_1.1 5.26
761
+ ngram_lm_scale_0.6_attention_scale_1.2 5.26
762
+ ngram_lm_scale_0.9_attention_scale_2.1 5.26
763
+ ngram_lm_scale_0.9_attention_scale_2.3 5.26
764
+ ngram_lm_scale_1.0_attention_scale_2.3 5.26
765
+ ngram_lm_scale_1.7_attention_scale_5.0 5.26
766
+ ngram_lm_scale_0.1_attention_scale_0.3 5.27
767
+ ngram_lm_scale_0.6_attention_scale_0.9 5.27
768
+ ngram_lm_scale_0.6_attention_scale_1.0 5.27
769
+ ngram_lm_scale_0.7_attention_scale_1.2 5.27
770
+ ngram_lm_scale_0.7_attention_scale_1.1 5.28
771
+ ngram_lm_scale_0.9_attention_scale_1.7 5.28
772
+ ngram_lm_scale_0.9_attention_scale_1.9 5.28
773
+ ngram_lm_scale_0.9_attention_scale_2.0 5.28
774
+ ngram_lm_scale_1.0_attention_scale_2.2 5.28
775
+ ngram_lm_scale_1.1_attention_scale_2.5 5.28
776
+ ngram_lm_scale_1.2_attention_scale_3.0 5.28
777
+ ngram_lm_scale_0.3_attention_scale_0.5 5.29
778
+ ngram_lm_scale_0.3_attention_scale_0.6 5.29
779
+ ngram_lm_scale_0.5_attention_scale_0.7 5.29
780
+ ngram_lm_scale_1.0_attention_scale_2.1 5.29
781
+ ngram_lm_scale_1.5_attention_scale_4.0 5.29
782
+ ngram_lm_scale_1.3_attention_scale_3.0 5.3
783
+ ngram_lm_scale_1.9_attention_scale_5.0 5.3
784
+ ngram_lm_scale_0.01_attention_scale_0.1 5.31
785
+ ngram_lm_scale_0.05_attention_scale_0.08 5.31
786
+ ngram_lm_scale_0.05_attention_scale_0.1 5.31
787
+ ngram_lm_scale_0.5_attention_scale_0.6 5.31
788
+ ngram_lm_scale_0.7_attention_scale_1.0 5.31
789
+ ngram_lm_scale_1.0_attention_scale_2.0 5.31
790
+ ngram_lm_scale_2.0_attention_scale_5.0 5.31
791
+ ngram_lm_scale_0.01_attention_scale_0.08 5.32
792
+ ngram_lm_scale_0.08_attention_scale_0.1 5.32
793
+ ngram_lm_scale_0.5_attention_scale_0.5 5.32
794
+ ngram_lm_scale_0.6_attention_scale_0.7 5.32
795
+ ngram_lm_scale_1.1_attention_scale_2.2 5.32
796
+ ngram_lm_scale_1.1_attention_scale_2.3 5.32
797
+ ngram_lm_scale_0.08_attention_scale_0.08 5.33
798
+ ngram_lm_scale_0.1_attention_scale_0.1 5.33
799
+ ngram_lm_scale_0.3_attention_scale_0.3 5.33
800
+ ngram_lm_scale_1.0_attention_scale_1.9 5.33
801
+ ngram_lm_scale_1.2_attention_scale_2.5 5.33
802
+ ngram_lm_scale_1.7_attention_scale_4.0 5.33
803
+ ngram_lm_scale_0.05_attention_scale_0.05 5.34
804
+ ngram_lm_scale_0.08_attention_scale_0.05 5.34
805
+ ngram_lm_scale_0.1_attention_scale_0.08 5.34
806
+ ngram_lm_scale_0.7_attention_scale_0.9 5.34
807
+ ngram_lm_scale_0.9_attention_scale_1.5 5.34
808
+ ngram_lm_scale_1.1_attention_scale_2.1 5.34
809
+ ngram_lm_scale_2.1_attention_scale_5.0 5.34
810
+ ngram_lm_scale_0.01_attention_scale_0.05 5.35
811
+ ngram_lm_scale_0.6_attention_scale_0.6 5.35
812
+ ngram_lm_scale_1.0_attention_scale_1.7 5.35
813
+ ngram_lm_scale_1.1_attention_scale_2.0 5.35
814
+ ngram_lm_scale_1.2_attention_scale_2.3 5.35
815
+ ngram_lm_scale_0.3_attention_scale_0.1 5.36
816
+ ngram_lm_scale_2.2_attention_scale_5.0 5.36
817
+ ngram_lm_scale_0.1_attention_scale_0.05 5.37
818
+ ngram_lm_scale_0.9_attention_scale_1.2 5.37
819
+ ngram_lm_scale_0.9_attention_scale_1.3 5.37
820
+ ngram_lm_scale_1.1_attention_scale_1.9 5.37
821
+ ngram_lm_scale_1.2_attention_scale_2.2 5.37
822
+ ngram_lm_scale_1.3_attention_scale_2.5 5.37
823
+ ngram_lm_scale_0.01_attention_scale_0.01 5.38
824
+ ngram_lm_scale_0.05_attention_scale_0.01 5.38
825
+ ngram_lm_scale_0.08_attention_scale_0.01 5.38
826
+ ngram_lm_scale_0.7_attention_scale_0.7 5.38
827
+ ngram_lm_scale_1.0_attention_scale_1.5 5.38
828
+ ngram_lm_scale_1.2_attention_scale_2.1 5.38
829
+ ngram_lm_scale_0.1_attention_scale_0.01 5.39
830
+ ngram_lm_scale_0.3_attention_scale_0.08 5.39
831
+ ngram_lm_scale_0.5_attention_scale_0.3 5.39
832
+ ngram_lm_scale_0.6_attention_scale_0.5 5.39
833
+ ngram_lm_scale_1.1_attention_scale_1.7 5.39
834
+ ngram_lm_scale_0.3_attention_scale_0.05 5.4
835
+ ngram_lm_scale_0.9_attention_scale_1.1 5.4
836
+ ngram_lm_scale_1.2_attention_scale_2.0 5.4
837
+ ngram_lm_scale_1.3_attention_scale_2.2 5.4
838
+ ngram_lm_scale_1.3_attention_scale_2.3 5.4
839
+ ngram_lm_scale_1.5_attention_scale_3.0 5.4
840
+ ngram_lm_scale_1.9_attention_scale_4.0 5.4
841
+ ngram_lm_scale_0.7_attention_scale_0.6 5.41
842
+ ngram_lm_scale_1.0_attention_scale_1.3 5.41
843
+ ngram_lm_scale_1.2_attention_scale_1.9 5.41
844
+ ngram_lm_scale_0.9_attention_scale_1.0 5.42
845
+ ngram_lm_scale_1.3_attention_scale_2.1 5.42
846
+ ngram_lm_scale_2.3_attention_scale_5.0 5.42
847
+ ngram_lm_scale_0.3_attention_scale_0.01 5.43
848
+ ngram_lm_scale_1.1_attention_scale_1.5 5.43
849
+ ngram_lm_scale_1.2_attention_scale_1.7 5.43
850
+ ngram_lm_scale_1.3_attention_scale_2.0 5.43
851
+ ngram_lm_scale_1.0_attention_scale_1.2 5.44
852
+ ngram_lm_scale_1.3_attention_scale_1.9 5.44
853
+ ngram_lm_scale_1.5_attention_scale_2.5 5.44
854
+ ngram_lm_scale_1.7_attention_scale_3.0 5.44
855
+ ngram_lm_scale_2.0_attention_scale_4.0 5.44
856
+ ngram_lm_scale_2.1_attention_scale_4.0 5.46
857
+ ngram_lm_scale_0.9_attention_scale_0.9 5.47
858
+ ngram_lm_scale_1.0_attention_scale_1.1 5.47
859
+ ngram_lm_scale_1.5_attention_scale_2.3 5.47
860
+ ngram_lm_scale_0.7_attention_scale_0.5 5.48
861
+ ngram_lm_scale_1.1_attention_scale_1.3 5.48
862
+ ngram_lm_scale_2.5_attention_scale_5.0 5.48
863
+ ngram_lm_scale_1.2_attention_scale_1.5 5.49
864
+ ngram_lm_scale_1.5_attention_scale_2.2 5.49
865
+ ngram_lm_scale_2.2_attention_scale_4.0 5.49
866
+ ngram_lm_scale_0.6_attention_scale_0.3 5.51
867
+ ngram_lm_scale_1.3_attention_scale_1.7 5.51
868
+ ngram_lm_scale_1.5_attention_scale_2.1 5.52
869
+ ngram_lm_scale_1.1_attention_scale_1.2 5.54
870
+ ngram_lm_scale_2.3_attention_scale_4.0 5.54
871
+ ngram_lm_scale_1.0_attention_scale_1.0 5.55
872
+ ngram_lm_scale_1.9_attention_scale_3.0 5.55
873
+ ngram_lm_scale_1.7_attention_scale_2.5 5.56
874
+ ngram_lm_scale_1.5_attention_scale_2.0 5.57
875
+ ngram_lm_scale_0.5_attention_scale_0.1 5.6
876
+ ngram_lm_scale_1.3_attention_scale_1.5 5.61
877
+ ngram_lm_scale_1.1_attention_scale_1.1 5.62
878
+ ngram_lm_scale_1.2_attention_scale_1.3 5.62
879
+ ngram_lm_scale_0.5_attention_scale_0.08 5.63
880
+ ngram_lm_scale_1.0_attention_scale_0.9 5.63
881
+ ngram_lm_scale_1.5_attention_scale_1.9 5.64
882
+ ngram_lm_scale_2.0_attention_scale_3.0 5.65
883
+ ngram_lm_scale_0.9_attention_scale_0.7 5.66
884
+ ngram_lm_scale_0.5_attention_scale_0.05 5.67
885
+ ngram_lm_scale_1.7_attention_scale_2.3 5.67
886
+ ngram_lm_scale_0.7_attention_scale_0.3 5.73
887
+ ngram_lm_scale_1.2_attention_scale_1.2 5.73
888
+ ngram_lm_scale_2.5_attention_scale_4.0 5.73
889
+ ngram_lm_scale_1.1_attention_scale_1.0 5.74
890
+ ngram_lm_scale_0.5_attention_scale_0.01 5.75
891
+ ngram_lm_scale_1.7_attention_scale_2.2 5.77
892
+ ngram_lm_scale_0.9_attention_scale_0.6 5.79
893
+ ngram_lm_scale_2.1_attention_scale_3.0 5.82
894
+ ngram_lm_scale_0.6_attention_scale_0.1 5.83
895
+ ngram_lm_scale_1.2_attention_scale_1.1 5.83
896
+ ngram_lm_scale_3.0_attention_scale_5.0 5.83
897
+ ngram_lm_scale_1.3_attention_scale_1.3 5.84
898
+ ngram_lm_scale_1.5_attention_scale_1.7 5.87
899
+ ngram_lm_scale_0.6_attention_scale_0.08 5.88
900
+ ngram_lm_scale_1.1_attention_scale_0.9 5.88
901
+ ngram_lm_scale_1.7_attention_scale_2.1 5.89
902
+ ngram_lm_scale_1.0_attention_scale_0.7 5.9
903
+ ngram_lm_scale_1.9_attention_scale_2.5 5.91
904
+ ngram_lm_scale_0.9_attention_scale_0.5 5.95
905
+ ngram_lm_scale_0.6_attention_scale_0.05 5.97
906
+ ngram_lm_scale_1.7_attention_scale_2.0 6.0
907
+ ngram_lm_scale_1.3_attention_scale_1.2 6.01
908
+ ngram_lm_scale_1.2_attention_scale_1.0 6.02
909
+ ngram_lm_scale_2.2_attention_scale_3.0 6.04
910
+ ngram_lm_scale_0.6_attention_scale_0.01 6.09
911
+ ngram_lm_scale_2.0_attention_scale_2.5 6.11
912
+ ngram_lm_scale_1.0_attention_scale_0.6 6.12
913
+ ngram_lm_scale_1.7_attention_scale_1.9 6.13
914
+ ngram_lm_scale_1.9_attention_scale_2.3 6.13
915
+ ngram_lm_scale_1.5_attention_scale_1.5 6.16
916
+ ngram_lm_scale_1.3_attention_scale_1.1 6.17
917
+ ngram_lm_scale_1.2_attention_scale_0.9 6.21
918
+ ngram_lm_scale_0.7_attention_scale_0.1 6.23
919
+ ngram_lm_scale_1.1_attention_scale_0.7 6.26
920
+ ngram_lm_scale_1.9_attention_scale_2.2 6.29
921
+ ngram_lm_scale_2.3_attention_scale_3.0 6.3
922
+ ngram_lm_scale_0.7_attention_scale_0.08 6.32
923
+ ngram_lm_scale_1.0_attention_scale_0.5 6.35
924
+ ngram_lm_scale_1.3_attention_scale_1.0 6.38
925
+ ngram_lm_scale_2.0_attention_scale_2.3 6.43
926
+ ngram_lm_scale_2.1_attention_scale_2.5 6.43
927
+ ngram_lm_scale_1.9_attention_scale_2.1 6.46
928
+ ngram_lm_scale_0.7_attention_scale_0.05 6.47
929
+ ngram_lm_scale_1.7_attention_scale_1.7 6.49
930
+ ngram_lm_scale_1.5_attention_scale_1.3 6.56
931
+ ngram_lm_scale_0.9_attention_scale_0.3 6.59
932
+ ngram_lm_scale_1.1_attention_scale_0.6 6.61
933
+ ngram_lm_scale_1.9_attention_scale_2.0 6.63
934
+ ngram_lm_scale_2.0_attention_scale_2.2 6.63
935
+ ngram_lm_scale_0.7_attention_scale_0.01 6.69
936
+ ngram_lm_scale_1.3_attention_scale_0.9 6.71
937
+ ngram_lm_scale_2.2_attention_scale_2.5 6.72
938
+ ngram_lm_scale_3.0_attention_scale_4.0 6.73
939
+ ngram_lm_scale_2.1_attention_scale_2.3 6.76
940
+ ngram_lm_scale_2.5_attention_scale_3.0 6.79
941
+ ngram_lm_scale_2.0_attention_scale_2.1 6.81
942
+ ngram_lm_scale_1.9_attention_scale_1.9 6.84
943
+ ngram_lm_scale_1.5_attention_scale_1.2 6.85
944
+ ngram_lm_scale_1.2_attention_scale_0.7 6.87
945
+ ngram_lm_scale_2.1_attention_scale_2.2 6.92
946
+ ngram_lm_scale_1.7_attention_scale_1.5 7.0
947
+ ngram_lm_scale_2.0_attention_scale_2.0 7.0
948
+ ngram_lm_scale_2.3_attention_scale_2.5 7.0
949
+ ngram_lm_scale_2.2_attention_scale_2.3 7.06
950
+ ngram_lm_scale_1.1_attention_scale_0.5 7.12
951
+ ngram_lm_scale_2.1_attention_scale_2.1 7.15
952
+ ngram_lm_scale_2.0_attention_scale_1.9 7.23
953
+ ngram_lm_scale_1.5_attention_scale_1.1 7.24
954
+ ngram_lm_scale_2.2_attention_scale_2.2 7.31
955
+ ngram_lm_scale_1.9_attention_scale_1.7 7.32
956
+ ngram_lm_scale_1.2_attention_scale_0.6 7.35
957
+ ngram_lm_scale_4.0_attention_scale_5.0 7.36
958
+ ngram_lm_scale_2.1_attention_scale_2.0 7.39
959
+ ngram_lm_scale_2.3_attention_scale_2.3 7.42
960
+ ngram_lm_scale_1.0_attention_scale_0.3 7.44
961
+ ngram_lm_scale_2.2_attention_scale_2.1 7.53
962
+ ngram_lm_scale_2.3_attention_scale_2.2 7.63
963
+ ngram_lm_scale_1.3_attention_scale_0.7 7.64
964
+ ngram_lm_scale_1.7_attention_scale_1.3 7.64
965
+ ngram_lm_scale_1.5_attention_scale_1.0 7.65
966
+ ngram_lm_scale_2.5_attention_scale_2.5 7.65
967
+ ngram_lm_scale_2.1_attention_scale_1.9 7.66
968
+ ngram_lm_scale_2.2_attention_scale_2.0 7.76
969
+ ngram_lm_scale_2.0_attention_scale_1.7 7.81
970
+ ngram_lm_scale_2.3_attention_scale_2.1 7.91
971
+ ngram_lm_scale_0.9_attention_scale_0.1 7.92
972
+ ngram_lm_scale_1.2_attention_scale_0.5 7.96
973
+ ngram_lm_scale_1.9_attention_scale_1.5 7.99
974
+ ngram_lm_scale_1.7_attention_scale_1.2 8.02
975
+ ngram_lm_scale_2.2_attention_scale_1.9 8.09
976
+ ngram_lm_scale_0.9_attention_scale_0.08 8.11
977
+ ngram_lm_scale_1.5_attention_scale_0.9 8.12
978
+ ngram_lm_scale_2.5_attention_scale_2.3 8.17
979
+ ngram_lm_scale_3.0_attention_scale_3.0 8.18
980
+ ngram_lm_scale_2.3_attention_scale_2.0 8.23
981
+ ngram_lm_scale_1.3_attention_scale_0.6 8.26
982
+ ngram_lm_scale_2.1_attention_scale_1.7 8.29
983
+ ngram_lm_scale_0.9_attention_scale_0.05 8.41
984
+ ngram_lm_scale_1.1_attention_scale_0.3 8.43
985
+ ngram_lm_scale_2.5_attention_scale_2.2 8.49
986
+ ngram_lm_scale_2.0_attention_scale_1.5 8.58
987
+ ngram_lm_scale_1.7_attention_scale_1.1 8.59
988
+ ngram_lm_scale_2.3_attention_scale_1.9 8.59
989
+ ngram_lm_scale_0.9_attention_scale_0.01 8.83
990
+ ngram_lm_scale_2.5_attention_scale_2.1 8.83
991
+ ngram_lm_scale_2.2_attention_scale_1.7 8.87
992
+ ngram_lm_scale_4.0_attention_scale_4.0 8.91
993
+ ngram_lm_scale_1.9_attention_scale_1.3 8.92
994
+ ngram_lm_scale_1.3_attention_scale_0.5 9.01
995
+ ngram_lm_scale_1.7_attention_scale_1.0 9.14
996
+ ngram_lm_scale_2.1_attention_scale_1.5 9.19
997
+ ngram_lm_scale_2.5_attention_scale_2.0 9.19
998
+ ngram_lm_scale_1.0_attention_scale_0.1 9.23
999
+ ngram_lm_scale_1.0_attention_scale_0.08 9.4
1000
+ ngram_lm_scale_2.3_attention_scale_1.7 9.44
1001
+ ngram_lm_scale_1.5_attention_scale_0.7 9.48
1002
+ ngram_lm_scale_1.9_attention_scale_1.2 9.48
1003
+ ngram_lm_scale_5.0_attention_scale_5.0 9.51
1004
+ ngram_lm_scale_2.0_attention_scale_1.3 9.63
1005
+ ngram_lm_scale_1.2_attention_scale_0.3 9.69
1006
+ ngram_lm_scale_2.5_attention_scale_1.9 9.69
1007
+ ngram_lm_scale_3.0_attention_scale_2.5 9.71
1008
+ ngram_lm_scale_1.0_attention_scale_0.05 9.74
1009
+ ngram_lm_scale_1.7_attention_scale_0.9 9.86
1010
+ ngram_lm_scale_2.2_attention_scale_1.5 9.9
1011
+ ngram_lm_scale_1.9_attention_scale_1.1 10.18
1012
+ ngram_lm_scale_1.0_attention_scale_0.01 10.22
1013
+ ngram_lm_scale_2.0_attention_scale_1.2 10.35
1014
+ ngram_lm_scale_1.5_attention_scale_0.6 10.39
1015
+ ngram_lm_scale_2.1_attention_scale_1.3 10.42
1016
+ ngram_lm_scale_1.1_attention_scale_0.1 10.54
1017
+ ngram_lm_scale_2.3_attention_scale_1.5 10.67
1018
+ ngram_lm_scale_1.1_attention_scale_0.08 10.77
1019
+ ngram_lm_scale_3.0_attention_scale_2.3 10.77
1020
+ ngram_lm_scale_2.5_attention_scale_1.7 10.85
1021
+ ngram_lm_scale_1.9_attention_scale_1.0 10.9
1022
+ ngram_lm_scale_1.3_attention_scale_0.3 10.92
1023
+ ngram_lm_scale_2.0_attention_scale_1.1 11.01
1024
+ ngram_lm_scale_1.1_attention_scale_0.05 11.09
1025
+ ngram_lm_scale_2.1_attention_scale_1.2 11.09
1026
+ ngram_lm_scale_2.2_attention_scale_1.3 11.19
1027
+ ngram_lm_scale_1.5_attention_scale_0.5 11.22
1028
+ ngram_lm_scale_3.0_attention_scale_2.2 11.23
1029
+ ngram_lm_scale_1.7_attention_scale_0.7 11.48
1030
+ ngram_lm_scale_1.1_attention_scale_0.01 11.56
1031
+ ngram_lm_scale_1.9_attention_scale_0.9 11.59
1032
+ ngram_lm_scale_2.0_attention_scale_1.0 11.65
1033
+ ngram_lm_scale_3.0_attention_scale_2.1 11.68
1034
+ ngram_lm_scale_2.1_attention_scale_1.1 11.71
1035
+ ngram_lm_scale_1.2_attention_scale_0.1 11.75
1036
+ ngram_lm_scale_2.2_attention_scale_1.2 11.75
1037
+ ngram_lm_scale_2.3_attention_scale_1.3 11.8
1038
+ ngram_lm_scale_2.5_attention_scale_1.5 11.92
1039
+ ngram_lm_scale_1.2_attention_scale_0.08 11.96
1040
+ ngram_lm_scale_3.0_attention_scale_2.0 12.05
1041
+ ngram_lm_scale_1.7_attention_scale_0.6 12.14
1042
+ ngram_lm_scale_1.2_attention_scale_0.05 12.24
1043
+ ngram_lm_scale_4.0_attention_scale_3.0 12.26
1044
+ ngram_lm_scale_2.0_attention_scale_0.9 12.28
1045
+ ngram_lm_scale_2.1_attention_scale_1.0 12.3
1046
+ ngram_lm_scale_2.2_attention_scale_1.1 12.32
1047
+ ngram_lm_scale_2.3_attention_scale_1.2 12.33
1048
+ ngram_lm_scale_3.0_attention_scale_1.9 12.41
1049
+ ngram_lm_scale_5.0_attention_scale_4.0 12.42
1050
+ ngram_lm_scale_1.2_attention_scale_0.01 12.54
1051
+ ngram_lm_scale_1.3_attention_scale_0.1 12.66
1052
+ ngram_lm_scale_1.5_attention_scale_0.3 12.66
1053
+ ngram_lm_scale_1.7_attention_scale_0.5 12.68
1054
+ ngram_lm_scale_1.9_attention_scale_0.7 12.74
1055
+ ngram_lm_scale_2.1_attention_scale_0.9 12.75
1056
+ ngram_lm_scale_2.2_attention_scale_1.0 12.76
1057
+ ngram_lm_scale_2.3_attention_scale_1.1 12.76
1058
+ ngram_lm_scale_2.5_attention_scale_1.3 12.76
1059
+ ngram_lm_scale_1.3_attention_scale_0.08 12.77
1060
+ ngram_lm_scale_1.3_attention_scale_0.05 12.91
1061
+ ngram_lm_scale_3.0_attention_scale_1.7 12.91
1062
+ ngram_lm_scale_2.5_attention_scale_1.2 13.0
1063
+ ngram_lm_scale_2.3_attention_scale_1.0 13.03
1064
+ ngram_lm_scale_2.2_attention_scale_0.9 13.04
1065
+ ngram_lm_scale_4.0_attention_scale_2.5 13.07
1066
+ ngram_lm_scale_2.0_attention_scale_0.7 13.08
1067
+ ngram_lm_scale_1.9_attention_scale_0.6 13.1
1068
+ ngram_lm_scale_1.3_attention_scale_0.01 13.18
1069
+ ngram_lm_scale_2.5_attention_scale_1.1 13.2
1070
+ ngram_lm_scale_3.0_attention_scale_1.5 13.24
1071
+ ngram_lm_scale_2.3_attention_scale_0.9 13.26
1072
+ ngram_lm_scale_2.1_attention_scale_0.7 13.31
1073
+ ngram_lm_scale_4.0_attention_scale_2.3 13.31
1074
+ ngram_lm_scale_2.0_attention_scale_0.6 13.36
1075
+ ngram_lm_scale_1.9_attention_scale_0.5 13.37
1076
+ ngram_lm_scale_2.5_attention_scale_1.0 13.38
1077
+ ngram_lm_scale_4.0_attention_scale_2.2 13.4
1078
+ ngram_lm_scale_5.0_attention_scale_3.0 13.41
1079
+ ngram_lm_scale_1.7_attention_scale_0.3 13.45
1080
+ ngram_lm_scale_2.2_attention_scale_0.7 13.5
1081
+ ngram_lm_scale_4.0_attention_scale_2.1 13.5
1082
+ ngram_lm_scale_3.0_attention_scale_1.3 13.51
1083
+ ngram_lm_scale_2.1_attention_scale_0.6 13.52
1084
+ ngram_lm_scale_1.5_attention_scale_0.1 13.54
1085
+ ngram_lm_scale_2.0_attention_scale_0.5 13.56
1086
+ ngram_lm_scale_2.5_attention_scale_0.9 13.56
1087
+ ngram_lm_scale_4.0_attention_scale_2.0 13.56
1088
+ ngram_lm_scale_1.5_attention_scale_0.08 13.58
1089
+ ngram_lm_scale_2.3_attention_scale_0.7 13.64
1090
+ ngram_lm_scale_3.0_attention_scale_1.2 13.64
1091
+ ngram_lm_scale_4.0_attention_scale_1.9 13.64
1092
+ ngram_lm_scale_1.5_attention_scale_0.05 13.66
1093
+ ngram_lm_scale_2.2_attention_scale_0.6 13.67
1094
+ ngram_lm_scale_2.1_attention_scale_0.5 13.69
1095
+ ngram_lm_scale_5.0_attention_scale_2.5 13.74
1096
+ ngram_lm_scale_1.5_attention_scale_0.01 13.76
1097
+ ngram_lm_scale_2.3_attention_scale_0.6 13.77
1098
+ ngram_lm_scale_3.0_attention_scale_1.1 13.77
1099
+ ngram_lm_scale_1.9_attention_scale_0.3 13.8
1100
+ ngram_lm_scale_2.2_attention_scale_0.5 13.8
1101
+ ngram_lm_scale_2.5_attention_scale_0.7 13.84
1102
+ ngram_lm_scale_4.0_attention_scale_1.7 13.86
1103
+ ngram_lm_scale_5.0_attention_scale_2.3 13.88
1104
+ ngram_lm_scale_1.7_attention_scale_0.1 13.89
1105
+ ngram_lm_scale_2.0_attention_scale_0.3 13.89
1106
+ ngram_lm_scale_1.7_attention_scale_0.08 13.9
1107
+ ngram_lm_scale_3.0_attention_scale_1.0 13.9
1108
+ ngram_lm_scale_2.3_attention_scale_0.5 13.92
1109
+ ngram_lm_scale_2.5_attention_scale_0.6 13.94
1110
+ ngram_lm_scale_5.0_attention_scale_2.2 13.95
1111
+ ngram_lm_scale_1.7_attention_scale_0.05 13.96
1112
+ ngram_lm_scale_3.0_attention_scale_0.9 13.97
1113
+ ngram_lm_scale_2.1_attention_scale_0.3 13.98
1114
+ ngram_lm_scale_4.0_attention_scale_1.5 13.99
1115
+ ngram_lm_scale_5.0_attention_scale_2.1 14.0
1116
+ ngram_lm_scale_1.7_attention_scale_0.01 14.01
1117
+ ngram_lm_scale_2.5_attention_scale_0.5 14.04
1118
+ ngram_lm_scale_2.2_attention_scale_0.3 14.05
1119
+ ngram_lm_scale_5.0_attention_scale_2.0 14.06
1120
+ ngram_lm_scale_1.9_attention_scale_0.1 14.08
1121
+ ngram_lm_scale_2.3_attention_scale_0.3 14.09
1122
+ ngram_lm_scale_5.0_attention_scale_1.9 14.09
1123
+ ngram_lm_scale_1.9_attention_scale_0.08 14.1
1124
+ ngram_lm_scale_3.0_attention_scale_0.7 14.1
1125
+ ngram_lm_scale_4.0_attention_scale_1.3 14.11
1126
+ ngram_lm_scale_1.9_attention_scale_0.05 14.13
1127
+ ngram_lm_scale_2.0_attention_scale_0.1 14.13
1128
+ ngram_lm_scale_2.0_attention_scale_0.08 14.14
1129
+ ngram_lm_scale_1.9_attention_scale_0.01 14.15
1130
+ ngram_lm_scale_4.0_attention_scale_1.2 14.15
1131
+ ngram_lm_scale_2.0_attention_scale_0.05 14.16
1132
+ ngram_lm_scale_5.0_attention_scale_1.7 14.16
1133
+ ngram_lm_scale_2.5_attention_scale_0.3 14.17
1134
+ ngram_lm_scale_3.0_attention_scale_0.6 14.17
1135
+ ngram_lm_scale_4.0_attention_scale_1.1 14.17
1136
+ ngram_lm_scale_2.1_attention_scale_0.1 14.18
1137
+ ngram_lm_scale_2.0_attention_scale_0.01 14.2
1138
+ ngram_lm_scale_2.1_attention_scale_0.08 14.2
1139
+ ngram_lm_scale_4.0_attention_scale_1.0 14.22
1140
+ ngram_lm_scale_2.2_attention_scale_0.1 14.23
1141
+ ngram_lm_scale_3.0_attention_scale_0.5 14.23
1142
+ ngram_lm_scale_5.0_attention_scale_1.5 14.23
1143
+ ngram_lm_scale_2.1_attention_scale_0.05 14.24
1144
+ ngram_lm_scale_2.2_attention_scale_0.08 14.25
1145
+ ngram_lm_scale_2.1_attention_scale_0.01 14.26
1146
+ ngram_lm_scale_2.2_attention_scale_0.05 14.28
1147
+ ngram_lm_scale_2.3_attention_scale_0.1 14.28
1148
+ ngram_lm_scale_4.0_attention_scale_0.9 14.28
1149
+ ngram_lm_scale_5.0_attention_scale_1.3 14.28
1150
+ ngram_lm_scale_2.3_attention_scale_0.08 14.29
1151
+ ngram_lm_scale_2.2_attention_scale_0.01 14.31
1152
+ ngram_lm_scale_2.3_attention_scale_0.05 14.31
1153
+ ngram_lm_scale_5.0_attention_scale_1.2 14.31
1154
+ ngram_lm_scale_2.3_attention_scale_0.01 14.33
1155
+ ngram_lm_scale_2.5_attention_scale_0.1 14.34
1156
+ ngram_lm_scale_3.0_attention_scale_0.3 14.34
1157
+ ngram_lm_scale_4.0_attention_scale_0.7 14.34
1158
+ ngram_lm_scale_2.5_attention_scale_0.08 14.35
1159
+ ngram_lm_scale_5.0_attention_scale_1.1 14.35
1160
+ ngram_lm_scale_2.5_attention_scale_0.05 14.36
1161
+ ngram_lm_scale_4.0_attention_scale_0.6 14.36
1162
+ ngram_lm_scale_5.0_attention_scale_1.0 14.36
1163
+ ngram_lm_scale_2.5_attention_scale_0.01 14.38
1164
+ ngram_lm_scale_5.0_attention_scale_0.9 14.38
1165
+ ngram_lm_scale_3.0_attention_scale_0.08 14.39
1166
+ ngram_lm_scale_3.0_attention_scale_0.1 14.39
1167
+ ngram_lm_scale_4.0_attention_scale_0.5 14.39
1168
+ ngram_lm_scale_3.0_attention_scale_0.05 14.41
1169
+ ngram_lm_scale_5.0_attention_scale_0.7 14.41
1170
+ ngram_lm_scale_3.0_attention_scale_0.01 14.42
1171
+ ngram_lm_scale_4.0_attention_scale_0.3 14.42
1172
+ ngram_lm_scale_5.0_attention_scale_0.6 14.42
1173
+ ngram_lm_scale_5.0_attention_scale_0.5 14.43
1174
+ ngram_lm_scale_4.0_attention_scale_0.08 14.45
1175
+ ngram_lm_scale_4.0_attention_scale_0.1 14.45
1176
+ ngram_lm_scale_5.0_attention_scale_0.3 14.46
1177
+ ngram_lm_scale_4.0_attention_scale_0.01 14.47
1178
+ ngram_lm_scale_4.0_attention_scale_0.05 14.47
1179
+ ngram_lm_scale_5.0_attention_scale_0.05 14.48
1180
+ ngram_lm_scale_5.0_attention_scale_0.08 14.48
1181
+ ngram_lm_scale_5.0_attention_scale_0.1 14.48
1182
+ ngram_lm_scale_5.0_attention_scale_0.01 14.5
1183
+
1184
+ 2023-03-10 16:36:32,676 INFO [decode.py:882] Done!
log/ctc_decoding/log-decode-2023-03-09-01-20-40 ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-03-09 01:20:40,285 INFO [decode.py:657] Decoding started
2
+ 2023-03-09 01:20:40,285 INFO [decode.py:658] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'surt', 'icefall-git-sha1': 'e9931b7-dirty', 'icefall-git-date': 'Fri Mar 3 16:27:17 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r8n03', 'IP address': '10.1.8.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 21, 'iter': 0, 'avg': 5, 'use_averaged_model': True, 'method': 'ctc-decoding', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc_att/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'num_decoder_layers': 6, 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
3
+ 2023-03-09 01:20:40,464 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
4
+ 2023-03-09 01:20:40,857 INFO [decode.py:669] device: cuda:0
5
+ 2023-03-09 01:20:45,992 INFO [decode.py:757] About to create model
6
+ 2023-03-09 01:20:46,623 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
7
+ 2023-03-09 01:20:46,709 INFO [decode.py:824] Calculating the averaged model over epoch range from 16 (excluded) to 21
8
+ 2023-03-09 01:21:10,542 INFO [decode.py:840] Number of model parameters: 86083707
9
+ 2023-03-09 01:21:10,542 INFO [asr_datamodule.py:440] About to get dev-clean cuts
10
+ 2023-03-09 01:21:10,609 INFO [asr_datamodule.py:454] About to get dev-other cuts
11
+ 2023-03-09 01:21:10,610 INFO [asr_datamodule.py:468] About to get test-clean cuts
12
+ 2023-03-09 01:21:10,610 INFO [asr_datamodule.py:482] About to get test-other cuts
13
+ 2023-03-09 01:21:12,241 INFO [decode.py:595] batch 0/?, cuts processed until now is 16
14
+ 2023-03-09 01:22:03,615 INFO [decode.py:595] batch 100/?, cuts processed until now is 2335
15
+ 2023-03-09 01:22:10,131 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-dev-clean-ctc-decoding.txt
16
+ 2023-03-09 01:22:10,200 INFO [utils.py:538] [dev-clean-ctc-decoding] %WER 2.48% [1350 / 54402, 121 ins, 114 del, 1115 sub ]
17
+ 2023-03-09 01:22:10,350 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-dev-clean-ctc-decoding.txt
18
+ 2023-03-09 01:22:10,351 INFO [decode.py:641]
19
+ For dev-clean, WER of different settings are:
20
+ ctc-decoding 2.48 best for dev-clean
21
+
22
+ 2023-03-09 01:22:11,351 INFO [decode.py:595] batch 0/?, cuts processed until now is 18
23
+ 2023-03-09 01:22:13,439 INFO [zipformer.py:1447] attn_weights_entropy = tensor([3.2532, 2.9490, 3.3925, 4.3052, 3.8906, 3.8377, 2.8715, 2.3639],
24
+ device='cuda:0'), covar=tensor([0.0741, 0.2031, 0.0892, 0.0517, 0.0864, 0.0483, 0.1706, 0.2449],
25
+ device='cuda:0'), in_proj_covar=tensor([0.0169, 0.0208, 0.0181, 0.0204, 0.0209, 0.0165, 0.0193, 0.0180],
26
+ device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0003, 0.0002, 0.0002, 0.0002],
27
+ device='cuda:0')
28
+ 2023-03-09 01:22:41,747 INFO [zipformer.py:1447] attn_weights_entropy = tensor([5.9773, 6.1870, 5.7736, 5.9844, 5.8950, 5.6403, 5.6171, 5.5847],
29
+ device='cuda:0'), covar=tensor([0.0838, 0.0432, 0.0575, 0.0440, 0.0393, 0.0988, 0.1716, 0.1633],
30
+ device='cuda:0'), in_proj_covar=tensor([0.0494, 0.0577, 0.0433, 0.0428, 0.0406, 0.0445, 0.0587, 0.0504],
31
+ device='cuda:0'), out_proj_covar=tensor([0.0003, 0.0004, 0.0003, 0.0003, 0.0003, 0.0003, 0.0004, 0.0003],
32
+ device='cuda:0')
33
+ 2023-03-09 01:22:53,505 INFO [zipformer.py:1447] attn_weights_entropy = tensor([4.2329, 4.1956, 4.1419, 4.0666, 4.6500, 4.2362, 4.0969, 2.4006],
34
+ device='cuda:0'), covar=tensor([0.0272, 0.0398, 0.0414, 0.0302, 0.0936, 0.0228, 0.0368, 0.1957],
35
+ device='cuda:0'), in_proj_covar=tensor([0.0140, 0.0161, 0.0165, 0.0181, 0.0356, 0.0137, 0.0152, 0.0208],
36
+ device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0002, 0.0002, 0.0002, 0.0003, 0.0001, 0.0002, 0.0002],
37
+ device='cuda:0')
38
+ 2023-03-09 01:22:55,821 INFO [zipformer.py:1447] attn_weights_entropy = tensor([3.8753, 4.1602, 3.9796, 3.9890, 4.1755, 3.9942, 3.1298, 4.0274],
39
+ device='cuda:0'), covar=tensor([0.0157, 0.0136, 0.0176, 0.0131, 0.0120, 0.0147, 0.0660, 0.0244],
40
+ device='cuda:0'), in_proj_covar=tensor([0.0086, 0.0082, 0.0104, 0.0064, 0.0069, 0.0081, 0.0099, 0.0103],
41
+ device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0003, 0.0003, 0.0002, 0.0002, 0.0002, 0.0003, 0.0003],
42
+ device='cuda:0')
43
+ 2023-03-09 01:23:01,448 INFO [decode.py:595] batch 100/?, cuts processed until now is 2625
44
+ 2023-03-09 01:23:05,727 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-dev-other-ctc-decoding.txt
45
+ 2023-03-09 01:23:05,787 INFO [utils.py:538] [dev-other-ctc-decoding] %WER 6.36% [3238 / 50948, 275 ins, 255 del, 2708 sub ]
46
+ 2023-03-09 01:23:05,928 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-dev-other-ctc-decoding.txt
47
+ 2023-03-09 01:23:05,929 INFO [decode.py:641]
48
+ For dev-other, WER of different settings are:
49
+ ctc-decoding 6.36 best for dev-other
50
+
51
+ 2023-03-09 01:23:07,031 INFO [decode.py:595] batch 0/?, cuts processed until now is 14
52
+ 2023-03-09 01:23:59,819 INFO [decode.py:595] batch 100/?, cuts processed until now is 2293
53
+ 2023-03-09 01:24:03,002 INFO [zipformer.py:1447] attn_weights_entropy = tensor([4.2997, 4.3643, 4.0564, 2.7896, 4.1000, 4.1336, 3.6739, 2.6991],
54
+ device='cuda:0'), covar=tensor([0.0108, 0.0111, 0.0289, 0.0952, 0.0129, 0.0232, 0.0338, 0.1326],
55
+ device='cuda:0'), in_proj_covar=tensor([0.0069, 0.0096, 0.0096, 0.0107, 0.0079, 0.0105, 0.0094, 0.0101],
56
+ device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0003, 0.0003, 0.0004, 0.0003, 0.0004, 0.0004, 0.0004],
57
+ device='cuda:0')
58
+ 2023-03-09 01:24:06,967 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-test-clean-ctc-decoding.txt
59
+ 2023-03-09 01:24:07,032 INFO [utils.py:538] [test-clean-ctc-decoding] %WER 2.68% [1410 / 52576, 136 ins, 114 del, 1160 sub ]
60
+ 2023-03-09 01:24:07,178 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-test-clean-ctc-decoding.txt
61
+ 2023-03-09 01:24:07,179 INFO [decode.py:641]
62
+ For test-clean, WER of different settings are:
63
+ ctc-decoding 2.68 best for test-clean
64
+
65
+ 2023-03-09 01:24:08,272 INFO [decode.py:595] batch 0/?, cuts processed until now is 17
66
+ 2023-03-09 01:24:59,720 INFO [decode.py:595] batch 100/?, cuts processed until now is 2560
67
+ 2023-03-09 01:25:06,602 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-test-other-ctc-decoding.txt
68
+ 2023-03-09 01:25:06,673 INFO [utils.py:538] [test-other-ctc-decoding] %WER 6.42% [3362 / 52343, 305 ins, 277 del, 2780 sub ]
69
+ 2023-03-09 01:25:06,823 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-test-other-ctc-decoding.txt
70
+ 2023-03-09 01:25:06,824 INFO [decode.py:641]
71
+ For test-other, WER of different settings are:
72
+ ctc-decoding 6.42 best for test-other
73
+
74
+ 2023-03-09 01:25:06,824 INFO [decode.py:901] Done!
log/ctc_decoding/log-decode-2023-03-09-04-23-24 ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-03-09 04:23:24,501 INFO [decode.py:657] Decoding started
2
+ 2023-03-09 04:23:24,501 INFO [decode.py:658] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'surt', 'icefall-git-sha1': 'e9931b7-dirty', 'icefall-git-date': 'Fri Mar 3 16:27:17 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r8n03', 'IP address': '10.1.8.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 23, 'iter': 0, 'avg': 5, 'use_averaged_model': True, 'method': 'ctc-decoding', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc_att/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'num_decoder_layers': 6, 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
3
+ 2023-03-09 04:23:24,610 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
4
+ 2023-03-09 04:23:24,725 INFO [decode.py:669] device: cuda:0
5
+ 2023-03-09 04:23:29,169 INFO [decode.py:757] About to create model
6
+ 2023-03-09 04:23:29,625 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
7
+ 2023-03-09 04:23:29,683 INFO [decode.py:824] Calculating the averaged model over epoch range from 18 (excluded) to 23
8
+ 2023-03-09 04:23:59,034 INFO [decode.py:840] Number of model parameters: 86083707
9
+ 2023-03-09 04:23:59,035 INFO [asr_datamodule.py:440] About to get dev-clean cuts
10
+ 2023-03-09 04:23:59,102 INFO [asr_datamodule.py:454] About to get dev-other cuts
11
+ 2023-03-09 04:23:59,103 INFO [asr_datamodule.py:468] About to get test-clean cuts
12
+ 2023-03-09 04:23:59,104 INFO [asr_datamodule.py:482] About to get test-other cuts
13
+ 2023-03-09 04:24:00,793 INFO [decode.py:595] batch 0/?, cuts processed until now is 16
14
+ 2023-03-09 04:24:20,887 INFO [zipformer.py:1447] attn_weights_entropy = tensor([3.5097, 2.4544, 3.7387, 3.2820, 2.6631, 3.5698, 3.6508, 3.5118],
15
+ device='cuda:0'), covar=tensor([0.0233, 0.1487, 0.0209, 0.0739, 0.1421, 0.0285, 0.0247, 0.0240],
16
+ device='cuda:0'), in_proj_covar=tensor([0.0183, 0.0236, 0.0176, 0.0306, 0.0256, 0.0204, 0.0164, 0.0194],
17
+ device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0003, 0.0002, 0.0002, 0.0002, 0.0002],
18
+ device='cuda:0')
19
+ 2023-03-09 04:24:23,072 INFO [zipformer.py:1447] attn_weights_entropy = tensor([2.5664, 2.2849, 2.5186, 3.0238, 2.7956, 2.9528, 2.4076, 2.0466],
20
+ device='cuda:0'), covar=tensor([0.0793, 0.2076, 0.0952, 0.0847, 0.0986, 0.0889, 0.1785, 0.2259],
21
+ device='cuda:0'), in_proj_covar=tensor([0.0173, 0.0209, 0.0183, 0.0211, 0.0217, 0.0170, 0.0196, 0.0182],
22
+ device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0003, 0.0002, 0.0002, 0.0002],
23
+ device='cuda:0')
24
+ 2023-03-09 04:24:49,384 INFO [zipformer.py:1447] attn_weights_entropy = tensor([4.8208, 5.4436, 5.4218, 4.8623, 5.9272, 4.8507, 5.3783, 3.3480],
25
+ device='cuda:0'), covar=tensor([0.0181, 0.0106, 0.0117, 0.0305, 0.0505, 0.0170, 0.0146, 0.1411],
26
+ device='cuda:0'), in_proj_covar=tensor([0.0151, 0.0176, 0.0177, 0.0193, 0.0361, 0.0147, 0.0166, 0.0209],
27
+ device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0003, 0.0001, 0.0002, 0.0002],
28
+ device='cuda:0')
29
+ 2023-03-09 04:24:52,404 INFO [decode.py:595] batch 100/?, cuts processed until now is 2335
30
+ 2023-03-09 04:24:59,003 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-dev-clean-ctc-decoding.txt
31
+ 2023-03-09 04:24:59,072 INFO [utils.py:538] [dev-clean-ctc-decoding] %WER 2.44% [1325 / 54402, 115 ins, 113 del, 1097 sub ]
32
+ 2023-03-09 04:24:59,222 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-dev-clean-ctc-decoding.txt
33
+ 2023-03-09 04:24:59,223 INFO [decode.py:641]
34
+ For dev-clean, WER of different settings are:
35
+ ctc-decoding 2.44 best for dev-clean
36
+
37
+ 2023-03-09 04:25:00,276 INFO [decode.py:595] batch 0/?, cuts processed until now is 18
38
+ 2023-03-09 04:25:20,446 INFO [zipformer.py:1447] attn_weights_entropy = tensor([3.1746, 3.6242, 3.1356, 3.6365, 2.3967, 3.4838, 2.4663, 1.7018],
39
+ device='cuda:0'), covar=tensor([0.0603, 0.0347, 0.0963, 0.0240, 0.1707, 0.0248, 0.1535, 0.1882],
40
+ device='cuda:0'), in_proj_covar=tensor([0.0182, 0.0154, 0.0252, 0.0147, 0.0215, 0.0134, 0.0225, 0.0198],
41
+ device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002],
42
+ device='cuda:0')
43
+ 2023-03-09 04:25:50,986 INFO [decode.py:595] batch 100/?, cuts processed until now is 2625
44
+ 2023-03-09 04:25:55,314 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-dev-other-ctc-decoding.txt
45
+ 2023-03-09 04:25:55,383 INFO [utils.py:538] [dev-other-ctc-decoding] %WER 6.20% [3157 / 50948, 254 ins, 245 del, 2658 sub ]
46
+ 2023-03-09 04:25:55,534 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-dev-other-ctc-decoding.txt
47
+ 2023-03-09 04:25:55,536 INFO [decode.py:641]
48
+ For dev-other, WER of different settings are:
49
+ ctc-decoding 6.2 best for dev-other
50
+
51
+ 2023-03-09 04:25:56,598 INFO [decode.py:595] batch 0/?, cuts processed until now is 14
52
+ 2023-03-09 04:26:01,569 INFO [zipformer.py:1447] attn_weights_entropy = tensor([4.4120, 5.0760, 5.2997, 5.1498, 3.5879, 4.8010, 3.7668, 2.6052],
53
+ device='cuda:0'), covar=tensor([0.0291, 0.0159, 0.0397, 0.0115, 0.1199, 0.0151, 0.1023, 0.1435],
54
+ device='cuda:0'), in_proj_covar=tensor([0.0182, 0.0154, 0.0252, 0.0147, 0.0215, 0.0134, 0.0225, 0.0198],
55
+ device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002],
56
+ device='cuda:0')
57
+ 2023-03-09 04:26:16,340 INFO [zipformer.py:1447] attn_weights_entropy = tensor([3.1817, 3.9030, 3.9128, 3.6124, 3.7950, 3.8524, 3.9487, 3.2508],
58
+ device='cuda:0'), covar=tensor([0.0674, 0.0929, 0.1161, 0.1590, 0.1837, 0.0824, 0.0429, 0.2261],
59
+ device='cuda:0'), in_proj_covar=tensor([0.0162, 0.0177, 0.0189, 0.0245, 0.0149, 0.0250, 0.0169, 0.0209],
60
+ device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0002],
61
+ device='cuda:0')
62
+ 2023-03-09 04:26:49,057 INFO [decode.py:595] batch 100/?, cuts processed until now is 2293
63
+ 2023-03-09 04:26:56,021 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-test-clean-ctc-decoding.txt
64
+ 2023-03-09 04:26:56,086 INFO [utils.py:538] [test-clean-ctc-decoding] %WER 2.58% [1354 / 52576, 134 ins, 101 del, 1119 sub ]
65
+ 2023-03-09 04:26:56,224 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-test-clean-ctc-decoding.txt
66
+ 2023-03-09 04:26:56,225 INFO [decode.py:641]
67
+ For test-clean, WER of different settings are:
68
+ ctc-decoding 2.58 best for test-clean
69
+
70
+ 2023-03-09 04:26:57,298 INFO [decode.py:595] batch 0/?, cuts processed until now is 17
71
+ 2023-03-09 04:27:36,606 INFO [zipformer.py:1447] attn_weights_entropy = tensor([3.5775, 2.5343, 3.2675, 2.5832, 3.1080, 3.7384, 3.6521, 2.7340],
72
+ device='cuda:0'), covar=tensor([0.0503, 0.1965, 0.1334, 0.1462, 0.1432, 0.1233, 0.0734, 0.1428],
73
+ device='cuda:0'), in_proj_covar=tensor([0.0237, 0.0237, 0.0272, 0.0212, 0.0257, 0.0360, 0.0253, 0.0225],
74
+ device='cuda:0'), out_proj_covar=tensor([0.0003, 0.0003, 0.0003, 0.0002, 0.0003, 0.0004, 0.0003, 0.0003],
75
+ device='cuda:0')
76
+ 2023-03-09 04:27:44,448 INFO [zipformer.py:1447] attn_weights_entropy = tensor([4.1154, 4.9219, 4.8740, 2.4294, 2.1290, 3.0700, 2.4395, 3.8819],
77
+ device='cuda:0'), covar=tensor([0.0583, 0.0207, 0.0217, 0.5031, 0.5416, 0.2327, 0.3603, 0.1347],
78
+ device='cuda:0'), in_proj_covar=tensor([0.0346, 0.0263, 0.0258, 0.0238, 0.0335, 0.0328, 0.0247, 0.0356],
79
+ device='cuda:0'), out_proj_covar=tensor([1.4699e-04, 9.7060e-05, 1.0949e-04, 1.0262e-04, 1.4174e-04, 1.2850e-04,
80
+ 9.9139e-05, 1.4624e-04], device='cuda:0')
81
+ 2023-03-09 04:27:48,477 INFO [decode.py:595] batch 100/?, cuts processed until now is 2560
82
+ 2023-03-09 04:27:55,425 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-test-other-ctc-decoding.txt
83
+ 2023-03-09 04:27:55,496 INFO [utils.py:538] [test-other-ctc-decoding] %WER 6.25% [3271 / 52343, 306 ins, 273 del, 2692 sub ]
84
+ 2023-03-09 04:27:55,651 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-test-other-ctc-decoding.txt
85
+ 2023-03-09 04:27:55,652 INFO [decode.py:641]
86
+ For test-other, WER of different settings are:
87
+ ctc-decoding 6.25 best for test-other
88
+
89
+ 2023-03-09 04:27:55,652 INFO [decode.py:901] Done!
log/ctc_decoding/log-decode-2023-03-09-16-35-15 ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-03-09 16:35:15,181 INFO [decode.py:657] Decoding started
2
+ 2023-03-09 16:35:15,181 INFO [decode.py:658] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'surt', 'icefall-git-sha1': 'e9931b7-dirty', 'icefall-git-date': 'Fri Mar 3 16:27:17 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n03', 'IP address': '10.1.7.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 30, 'iter': 0, 'avg': 9, 'use_averaged_model': True, 'method': 'ctc-decoding', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc_att/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500_new'), 'num_decoder_layers': 6, 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
3
+ 2023-03-09 16:35:15,311 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500_new/Linv.pt
4
+ 2023-03-09 16:35:15,402 INFO [decode.py:669] device: cuda:0
5
+ 2023-03-09 16:35:19,651 INFO [decode.py:757] About to create model
6
+ 2023-03-09 16:35:20,131 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
7
+ 2023-03-09 16:35:20,189 INFO [decode.py:824] Calculating the averaged model over epoch range from 21 (excluded) to 30
8
+ 2023-03-09 16:35:40,878 INFO [decode.py:840] Number of model parameters: 86083707
9
+ 2023-03-09 16:35:40,879 INFO [asr_datamodule.py:468] About to get test-clean cuts
10
+ 2023-03-09 16:35:41,777 INFO [asr_datamodule.py:482] About to get test-other cuts
11
+ 2023-03-09 16:35:43,833 INFO [decode.py:595] batch 0/?, cuts processed until now is 14
12
+ 2023-03-09 16:36:35,032 INFO [decode.py:595] batch 100/?, cuts processed until now is 2293
13
+ 2023-03-09 16:36:41,874 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-test-clean-ctc-decoding.txt
14
+ 2023-03-09 16:36:41,975 INFO [utils.py:538] [test-clean-ctc-decoding] %WER 98.49% [51780 / 52576, 6107 ins, 4221 del, 41452 sub ]
15
+ 2023-03-09 16:36:42,252 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-test-clean-ctc-decoding.txt
16
+ 2023-03-09 16:36:42,253 INFO [decode.py:641]
17
+ For test-clean, WER of different settings are:
18
+ ctc-decoding 98.49 best for test-clean
19
+
20
+ 2023-03-09 16:36:43,652 INFO [decode.py:595] batch 0/?, cuts processed until now is 17
log/ctc_decoding/log-decode-2023-03-09-16-37-47 ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-03-09 16:37:47,751 INFO [decode.py:657] Decoding started
2
+ 2023-03-09 16:37:47,752 INFO [decode.py:658] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'surt', 'icefall-git-sha1': 'e9931b7-dirty', 'icefall-git-date': 'Fri Mar 3 16:27:17 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n03', 'IP address': '10.1.7.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 30, 'iter': 0, 'avg': 9, 'use_averaged_model': True, 'method': 'ctc-decoding', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc_att/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'num_decoder_layers': 6, 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
3
+ 2023-03-09 16:37:48,092 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
4
+ 2023-03-09 16:37:48,491 INFO [decode.py:669] device: cuda:0
5
+ 2023-03-09 16:37:52,667 INFO [decode.py:757] About to create model
6
+ 2023-03-09 16:37:53,158 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
7
+ 2023-03-09 16:37:53,216 INFO [decode.py:824] Calculating the averaged model over epoch range from 21 (excluded) to 30
8
+ 2023-03-09 16:37:56,231 INFO [decode.py:840] Number of model parameters: 86083707
9
+ 2023-03-09 16:37:56,232 INFO [asr_datamodule.py:468] About to get test-clean cuts
10
+ 2023-03-09 16:37:56,325 INFO [asr_datamodule.py:482] About to get test-other cuts
11
+ 2023-03-09 16:37:57,801 INFO [decode.py:595] batch 0/?, cuts processed until now is 14
12
+ 2023-03-09 16:38:21,953 INFO [zipformer.py:1447] attn_weights_entropy = tensor([3.8734, 4.8359, 4.7836, 2.2005, 1.9394, 3.1305, 2.3672, 3.7309],
13
+ device='cuda:0'), covar=tensor([0.0726, 0.0255, 0.0251, 0.5680, 0.6138, 0.2288, 0.4314, 0.1432],
14
+ device='cuda:0'), in_proj_covar=tensor([0.0351, 0.0282, 0.0266, 0.0244, 0.0333, 0.0327, 0.0254, 0.0360],
15
+ device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001],
16
+ device='cuda:0')
17
+ 2023-03-09 16:38:36,815 INFO [zipformer.py:1447] attn_weights_entropy = tensor([2.9556, 3.3917, 2.8934, 3.1775, 3.5526, 3.3754, 2.8833, 3.5053],
18
+ device='cuda:0'), covar=tensor([0.0973, 0.0680, 0.1121, 0.0759, 0.0776, 0.0769, 0.0865, 0.0496],
19
+ device='cuda:0'), in_proj_covar=tensor([0.0201, 0.0218, 0.0225, 0.0201, 0.0282, 0.0242, 0.0198, 0.0288],
20
+ device='cuda:0'), out_proj_covar=tensor([0.0003, 0.0003, 0.0003, 0.0003, 0.0004, 0.0004, 0.0003, 0.0004],
21
+ device='cuda:0')
22
+ 2023-03-09 16:38:42,569 INFO [zipformer.py:1447] attn_weights_entropy = tensor([3.9828, 4.9623, 4.8838, 2.2937, 1.9373, 3.3023, 2.4284, 3.7700],
23
+ device='cuda:0'), covar=tensor([0.0650, 0.0265, 0.0272, 0.5707, 0.6273, 0.2079, 0.4437, 0.1474],
24
+ device='cuda:0'), in_proj_covar=tensor([0.0351, 0.0282, 0.0266, 0.0244, 0.0333, 0.0327, 0.0254, 0.0360],
25
+ device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001],
26
+ device='cuda:0')
27
+ 2023-03-09 16:38:47,820 INFO [decode.py:595] batch 100/?, cuts processed until now is 2293
28
+ 2023-03-09 16:38:54,624 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-test-clean-ctc-decoding.txt
29
+ 2023-03-09 16:38:54,683 INFO [utils.py:538] [test-clean-ctc-decoding] %WER 2.50% [1316 / 52576, 140 ins, 94 del, 1082 sub ]
30
+ 2023-03-09 16:38:54,821 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-test-clean-ctc-decoding.txt
31
+ 2023-03-09 16:38:54,822 INFO [decode.py:641]
32
+ For test-clean, WER of different settings are:
33
+ ctc-decoding 2.5 best for test-clean
34
+
35
+ 2023-03-09 16:38:55,805 INFO [decode.py:595] batch 0/?, cuts processed until now is 17
36
+ 2023-03-09 16:39:20,752 INFO [zipformer.py:1447] attn_weights_entropy = tensor([4.9714, 5.3511, 4.9382, 5.1933, 5.0431, 4.6623, 4.8124, 4.6678],
37
+ device='cuda:0'), covar=tensor([0.1602, 0.0753, 0.0770, 0.0644, 0.0709, 0.1634, 0.2040, 0.2010],
38
+ device='cuda:0'), in_proj_covar=tensor([0.0535, 0.0618, 0.0469, 0.0458, 0.0433, 0.0468, 0.0622, 0.0530],
39
+ device='cuda:0'), out_proj_covar=tensor([0.0004, 0.0004, 0.0003, 0.0003, 0.0003, 0.0003, 0.0004, 0.0004],
40
+ device='cuda:0')
41
+ 2023-03-09 16:39:36,652 INFO [zipformer.py:1447] attn_weights_entropy = tensor([2.9433, 3.5919, 3.1227, 3.3415, 3.7766, 3.5015, 2.9274, 3.8561],
42
+ device='cuda:0'), covar=tensor([0.0918, 0.0514, 0.1023, 0.0648, 0.0696, 0.0717, 0.0854, 0.0489],
43
+ device='cuda:0'), in_proj_covar=tensor([0.0201, 0.0218, 0.0225, 0.0201, 0.0282, 0.0242, 0.0198, 0.0288],
44
+ device='cuda:0'), out_proj_covar=tensor([0.0003, 0.0003, 0.0003, 0.0003, 0.0004, 0.0004, 0.0003, 0.0004],
45
+ device='cuda:0')
46
+ 2023-03-09 16:39:44,942 INFO [decode.py:595] batch 100/?, cuts processed until now is 2560
47
+ 2023-03-09 16:39:51,805 INFO [decode.py:615] The transcripts are stored in zipformer_ctc_att/exp/v0/recogs-test-other-ctc-decoding.txt
48
+ 2023-03-09 16:39:51,868 INFO [utils.py:538] [test-other-ctc-decoding] %WER 5.86% [3068 / 52343, 278 ins, 243 del, 2547 sub ]
49
+ 2023-03-09 16:39:52,010 INFO [decode.py:627] Wrote detailed error stats to zipformer_ctc_att/exp/v0/errs-test-other-ctc-decoding.txt
50
+ 2023-03-09 16:39:52,011 INFO [decode.py:641]
51
+ For test-other, WER of different settings are:
52
+ ctc-decoding 5.86 best for test-other
53
+
54
+ 2023-03-09 16:39:52,011 INFO [decode.py:897] Done!
log/log-train-2023-03-07-10-14-36-0 ADDED
The diff for this file is too large to render. See raw diff
 
log/log-train-2023-03-07-10-14-36-1 ADDED
The diff for this file is too large to render. See raw diff
 
log/log-train-2023-03-07-10-14-36-2 ADDED
The diff for this file is too large to render. See raw diff
 
log/log-train-2023-03-07-10-14-36-3 ADDED
The diff for this file is too large to render. See raw diff
 
log/whole_lattice_rescoring/log-decode-2023-03-09-16-44-16 ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-03-09 16:44:16,315 INFO [decode.py:657] Decoding started
2
+ 2023-03-09 16:44:16,315 INFO [decode.py:658] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'surt', 'icefall-git-sha1': 'e9931b7-dirty', 'icefall-git-date': 'Fri Mar 3 16:27:17 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n04', 'IP address': '10.1.7.4'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 30, 'iter': 0, 'avg': 9, 'use_averaged_model': True, 'method': 'whole-lattice-rescoring', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc_att/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'num_decoder_layers': 6, 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
3
+ 2023-03-09 16:44:16,539 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
4
+ 2023-03-09 16:44:16,650 INFO [decode.py:669] device: cuda:0
5
+ 2023-03-09 16:44:25,215 INFO [decode.py:736] Loading pre-compiled G_4_gram.pt
6
+ 2023-03-09 16:44:25,879 INFO [decode.py:757] About to create model
7
+ 2023-03-09 16:44:26,383 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
8
+ 2023-03-09 16:44:26,451 INFO [decode.py:824] Calculating the averaged model over epoch range from 21 (excluded) to 30
9
+ 2023-03-09 16:44:40,859 INFO [decode.py:840] Number of model parameters: 86083707
10
+ 2023-03-09 16:44:40,859 INFO [asr_datamodule.py:468] About to get test-clean cuts
11
+ 2023-03-09 16:44:40,922 INFO [asr_datamodule.py:482] About to get test-other cuts
log/whole_lattice_rescoring/log-decode-2023-03-10-09-28-13 ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-03-10 09:28:13,659 INFO [decode.py:643] Decoding started
2
+ 2023-03-10 09:28:13,660 INFO [decode.py:644] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_ctc', 'icefall-git-sha1': '11e21f3-dirty', 'icefall-git-date': 'Thu Mar 9 19:58:30 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n03', 'IP address': '10.1.7.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'method': 'whole-lattice-rescoring', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'num_decoder_layers': 6, 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
3
+ 2023-03-10 09:28:13,904 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
4
+ 2023-03-10 09:28:14,020 INFO [decode.py:655] device: cuda:0
5
+ 2023-03-10 09:28:19,411 INFO [decode.py:722] Loading pre-compiled G_4_gram.pt
6
+ 2023-03-10 09:28:21,556 INFO [decode.py:743] About to create model
7
+ 2023-03-10 09:28:22,044 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
8
+ 2023-03-10 09:28:22,105 INFO [checkpoint.py:112] Loading checkpoint from zipformer_ctc/exp/v0/epoch-99.pt
9
+ 2023-03-10 09:28:24,568 INFO [decode.py:826] Number of model parameters: 86083707
10
+ 2023-03-10 09:28:24,568 INFO [asr_datamodule.py:443] About to get test-clean cuts
11
+ 2023-03-10 09:28:24,847 INFO [asr_datamodule.py:450] About to get test-other cuts
log/whole_lattice_rescoring/log-decode-2023-03-10-09-44-58 ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-03-10 09:44:58,872 INFO [decode.py:643] Decoding started
2
+ 2023-03-10 09:44:58,873 INFO [decode.py:644] {'frame_shift_ms': 10.0, 'allowed_excess_duration_ratio': 0.1, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.3', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': '3b81ac9686aee539d447bb2085b2cdfc131c7c91', 'k2-git-date': 'Thu Jan 26 20:40:25 2023', 'lhotse-version': '1.9.0.dev+git.97bf4b0.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_ctc', 'icefall-git-sha1': '11e21f3-dirty', 'icefall-git-date': 'Thu Mar 9 19:58:30 2023', 'icefall-path': '/exp/draj/mini_scale_2022/icefall', 'k2-path': '/exp/draj/mini_scale_2022/k2/k2/python/k2/__init__.py', 'lhotse-path': '/exp/draj/mini_scale_2022/lhotse/lhotse/__init__.py', 'hostname': 'r7n03', 'IP address': '10.1.7.3'}, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'epoch': 99, 'iter': 0, 'avg': 1, 'use_averaged_model': False, 'method': 'whole-lattice-rescoring', 'num_paths': 100, 'nbest_scale': 0.5, 'exp_dir': PosixPath('zipformer_ctc/exp/v0'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'rnn_lm_exp_dir': 'rnn_lm/exp', 'rnn_lm_epoch': 7, 'rnn_lm_avg': 2, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 4, 'rnn_lm_tie_weights': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'num_decoder_layers': 6, 'full_libri': True, 'manifest_dir': PosixPath('data/manifests'), 'max_duration': 200.0, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures'}
3
+ 2023-03-10 09:44:59,114 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
4
+ 2023-03-10 09:44:59,229 INFO [decode.py:655] device: cuda:0
5
+ 2023-03-10 09:45:04,903 INFO [decode.py:697] Loading G_4_gram.fst.txt
6
+ 2023-03-10 09:45:04,904 WARNING [decode.py:698] It may take 8 minutes.
7
+ 2023-03-10 09:48:46,802 INFO [decode.py:743] About to create model
8
+ 2023-03-10 09:48:47,199 INFO [zipformer.py:178] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
9
+ 2023-03-10 09:48:47,247 INFO [checkpoint.py:112] Loading checkpoint from zipformer_ctc/exp/v0/epoch-99.pt
10
+ 2023-03-10 09:48:47,792 INFO [decode.py:826] Number of model parameters: 86083707
11
+ 2023-03-10 09:48:47,792 INFO [asr_datamodule.py:443] About to get test-clean cuts
12
+ 2023-03-10 09:48:47,895 INFO [asr_datamodule.py:450] About to get test-other cuts
13
+ 2023-03-10 09:48:50,410 INFO [decode.py:581] batch 0/?, cuts processed until now is 14
14
+ 2023-03-10 09:48:52,452 INFO [zipformer.py:1455] attn_weights_entropy = tensor([2.4185, 2.8395, 2.4086, 2.6454, 2.8039, 2.8219, 2.4147, 2.4832],
15
+ device='cuda:0'), covar=tensor([0.1030, 0.0560, 0.1220, 0.0820, 0.0797, 0.0761, 0.0948, 0.0353],
16
+ device='cuda:0'), in_proj_covar=tensor([0.0201, 0.0218, 0.0225, 0.0201, 0.0282, 0.0242, 0.0198, 0.0288],
17
+ device='cuda:0'), out_proj_covar=tensor([0.0003, 0.0003, 0.0003, 0.0003, 0.0004, 0.0004, 0.0003, 0.0004],
18
+ device='cuda:0')
19
+ 2023-03-10 09:50:31,259 INFO [zipformer.py:1455] attn_weights_entropy = tensor([4.1906, 4.5374, 4.0955, 4.3857, 4.7103, 4.4173, 4.2439, 4.9290],
20
+ device='cuda:0'), covar=tensor([0.0660, 0.0368, 0.0880, 0.0456, 0.0623, 0.0703, 0.0533, 0.0846],
21
+ device='cuda:0'), in_proj_covar=tensor([0.0201, 0.0218, 0.0225, 0.0201, 0.0282, 0.0242, 0.0198, 0.0288],
22
+ device='cuda:0'), out_proj_covar=tensor([0.0003, 0.0003, 0.0003, 0.0003, 0.0004, 0.0004, 0.0003, 0.0004],
23
+ device='cuda:0')
24
+ 2023-03-10 09:50:35,365 INFO [zipformer.py:1455] attn_weights_entropy = tensor([4.4905, 2.8404, 4.9623, 4.1641, 3.0908, 4.2355, 4.7916, 4.6903],
25
+ device='cuda:0'), covar=tensor([0.0290, 0.1696, 0.0221, 0.0668, 0.1630, 0.0267, 0.0223, 0.0264],
26
+ device='cuda:0'), in_proj_covar=tensor([0.0209, 0.0240, 0.0202, 0.0315, 0.0260, 0.0221, 0.0192, 0.0219],
27
+ device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0003, 0.0003, 0.0002, 0.0002, 0.0002],
28
+ device='cuda:0')
29
+ 2023-03-10 09:51:08,487 INFO [decode.py:581] batch 100/?, cuts processed until now is 2293
30
+ 2023-03-10 09:51:27,701 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_0.1.txt
31
+ 2023-03-10 09:51:27,766 INFO [utils.py:558] [test-clean-lm_scale_0.1] %WER 2.46% [1291 / 52576, 191 ins, 107 del, 993 sub ]
32
+ 2023-03-10 09:51:27,917 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_0.1.txt
33
+ 2023-03-10 09:51:27,941 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_0.2.txt
34
+ 2023-03-10 09:51:28,004 INFO [utils.py:558] [test-clean-lm_scale_0.2] %WER 2.44% [1285 / 52576, 175 ins, 120 del, 990 sub ]
35
+ 2023-03-10 09:51:28,157 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_0.2.txt
36
+ 2023-03-10 09:51:28,179 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_0.3.txt
37
+ 2023-03-10 09:51:28,238 INFO [utils.py:558] [test-clean-lm_scale_0.3] %WER 2.46% [1293 / 52576, 158 ins, 146 del, 989 sub ]
38
+ 2023-03-10 09:51:28,375 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_0.3.txt
39
+ 2023-03-10 09:51:28,397 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_0.4.txt
40
+ 2023-03-10 09:51:28,453 INFO [utils.py:558] [test-clean-lm_scale_0.4] %WER 2.51% [1321 / 52576, 147 ins, 185 del, 989 sub ]
41
+ 2023-03-10 09:51:28,591 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_0.4.txt
42
+ 2023-03-10 09:51:28,611 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_0.5.txt
43
+ 2023-03-10 09:51:28,666 INFO [utils.py:558] [test-clean-lm_scale_0.5] %WER 2.61% [1373 / 52576, 138 ins, 239 del, 996 sub ]
44
+ 2023-03-10 09:51:28,803 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_0.5.txt
45
+ 2023-03-10 09:51:28,825 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_0.6.txt
46
+ 2023-03-10 09:51:28,885 INFO [utils.py:558] [test-clean-lm_scale_0.6] %WER 2.80% [1473 / 52576, 125 ins, 351 del, 997 sub ]
47
+ 2023-03-10 09:51:29,223 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_0.6.txt
48
+ 2023-03-10 09:51:29,245 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_0.7.txt
49
+ 2023-03-10 09:51:29,304 INFO [utils.py:558] [test-clean-lm_scale_0.7] %WER 3.19% [1678 / 52576, 110 ins, 566 del, 1002 sub ]
50
+ 2023-03-10 09:51:29,444 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_0.7.txt
51
+ 2023-03-10 09:51:29,466 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_0.8.txt
52
+ 2023-03-10 09:51:29,528 INFO [utils.py:558] [test-clean-lm_scale_0.8] %WER 3.81% [2001 / 52576, 95 ins, 908 del, 998 sub ]
53
+ 2023-03-10 09:51:29,673 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_0.8.txt
54
+ 2023-03-10 09:51:29,695 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_0.9.txt
55
+ 2023-03-10 09:51:29,762 INFO [utils.py:558] [test-clean-lm_scale_0.9] %WER 4.81% [2530 / 52576, 87 ins, 1449 del, 994 sub ]
56
+ 2023-03-10 09:51:29,915 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_0.9.txt
57
+ 2023-03-10 09:51:29,939 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.0.txt
58
+ 2023-03-10 09:51:30,006 INFO [utils.py:558] [test-clean-lm_scale_1.0] %WER 6.33% [3328 / 52576, 73 ins, 2273 del, 982 sub ]
59
+ 2023-03-10 09:51:30,168 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.0.txt
60
+ 2023-03-10 09:51:30,191 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.1.txt
61
+ 2023-03-10 09:51:30,248 INFO [utils.py:558] [test-clean-lm_scale_1.1] %WER 8.13% [4272 / 52576, 64 ins, 3237 del, 971 sub ]
62
+ 2023-03-10 09:51:30,385 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.1.txt
63
+ 2023-03-10 09:51:30,407 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.2.txt
64
+ 2023-03-10 09:51:30,467 INFO [utils.py:558] [test-clean-lm_scale_1.2] %WER 10.16% [5340 / 52576, 56 ins, 4321 del, 963 sub ]
65
+ 2023-03-10 09:51:30,603 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.2.txt
66
+ 2023-03-10 09:51:30,627 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.3.txt
67
+ 2023-03-10 09:51:30,690 INFO [utils.py:558] [test-clean-lm_scale_1.3] %WER 12.17% [6396 / 52576, 45 ins, 5400 del, 951 sub ]
68
+ 2023-03-10 09:51:31,002 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.3.txt
69
+ 2023-03-10 09:51:31,021 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.4.txt
70
+ 2023-03-10 09:51:31,078 INFO [utils.py:558] [test-clean-lm_scale_1.4] %WER 13.82% [7264 / 52576, 41 ins, 6282 del, 941 sub ]
71
+ 2023-03-10 09:51:31,226 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.4.txt
72
+ 2023-03-10 09:51:31,247 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.5.txt
73
+ 2023-03-10 09:51:31,318 INFO [utils.py:558] [test-clean-lm_scale_1.5] %WER 15.01% [7893 / 52576, 33 ins, 6939 del, 921 sub ]
74
+ 2023-03-10 09:51:31,460 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.5.txt
75
+ 2023-03-10 09:51:31,481 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.6.txt
76
+ 2023-03-10 09:51:31,541 INFO [utils.py:558] [test-clean-lm_scale_1.6] %WER 15.78% [8295 / 52576, 27 ins, 7352 del, 916 sub ]
77
+ 2023-03-10 09:51:31,680 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.6.txt
78
+ 2023-03-10 09:51:31,700 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.7.txt
79
+ 2023-03-10 09:51:31,758 INFO [utils.py:558] [test-clean-lm_scale_1.7] %WER 16.35% [8596 / 52576, 26 ins, 7653 del, 917 sub ]
80
+ 2023-03-10 09:51:31,899 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.7.txt
81
+ 2023-03-10 09:51:31,918 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.8.txt
82
+ 2023-03-10 09:51:31,972 INFO [utils.py:558] [test-clean-lm_scale_1.8] %WER 16.80% [8835 / 52576, 25 ins, 7886 del, 924 sub ]
83
+ 2023-03-10 09:51:32,121 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.8.txt
84
+ 2023-03-10 09:51:32,140 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_1.9.txt
85
+ 2023-03-10 09:51:32,196 INFO [utils.py:558] [test-clean-lm_scale_1.9] %WER 17.12% [9003 / 52576, 25 ins, 8052 del, 926 sub ]
86
+ 2023-03-10 09:51:32,335 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_1.9.txt
87
+ 2023-03-10 09:51:32,355 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-clean-lm_scale_2.0.txt
88
+ 2023-03-10 09:51:32,412 INFO [utils.py:558] [test-clean-lm_scale_2.0] %WER 17.42% [9161 / 52576, 24 ins, 8205 del, 932 sub ]
89
+ 2023-03-10 09:51:32,722 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-clean-lm_scale_2.0.txt
90
+ 2023-03-10 09:51:32,723 INFO [decode.py:627]
91
+ For test-clean, WER of different settings are:
92
+ lm_scale_0.2 2.44 best for test-clean
93
+ lm_scale_0.1 2.46
94
+ lm_scale_0.3 2.46
95
+ lm_scale_0.4 2.51
96
+ lm_scale_0.5 2.61
97
+ lm_scale_0.6 2.8
98
+ lm_scale_0.7 3.19
99
+ lm_scale_0.8 3.81
100
+ lm_scale_0.9 4.81
101
+ lm_scale_1.0 6.33
102
+ lm_scale_1.1 8.13
103
+ lm_scale_1.2 10.16
104
+ lm_scale_1.3 12.17
105
+ lm_scale_1.4 13.82
106
+ lm_scale_1.5 15.01
107
+ lm_scale_1.6 15.78
108
+ lm_scale_1.7 16.35
109
+ lm_scale_1.8 16.8
110
+ lm_scale_1.9 17.12
111
+ lm_scale_2.0 17.42
112
+
113
+ 2023-03-10 09:51:34,860 INFO [decode.py:581] batch 0/?, cuts processed until now is 17
114
+ 2023-03-10 09:52:09,534 INFO [zipformer.py:1455] attn_weights_entropy = tensor([3.6229, 3.2254, 3.7114, 4.5989, 4.0629, 3.9987, 3.1179, 2.7495],
115
+ device='cuda:0'), covar=tensor([0.0634, 0.1673, 0.0805, 0.0403, 0.0807, 0.0389, 0.1392, 0.1981],
116
+ device='cuda:0'), in_proj_covar=tensor([0.0178, 0.0213, 0.0182, 0.0217, 0.0226, 0.0179, 0.0198, 0.0185],
117
+ device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0003, 0.0003, 0.0002, 0.0002, 0.0002],
118
+ device='cuda:0')
119
+ 2023-03-10 09:53:06,108 INFO [zipformer.py:1455] attn_weights_entropy = tensor([5.0127, 4.0324, 4.2679, 3.9797, 4.2217, 5.0873, 4.9086, 4.1711],
120
+ device='cuda:0'), covar=tensor([0.0340, 0.1178, 0.0924, 0.0920, 0.0887, 0.0680, 0.0421, 0.0949],
121
+ device='cuda:0'), in_proj_covar=tensor([0.0239, 0.0241, 0.0280, 0.0214, 0.0261, 0.0372, 0.0262, 0.0227],
122
+ device='cuda:0'), out_proj_covar=tensor([0.0003, 0.0003, 0.0003, 0.0002, 0.0003, 0.0004, 0.0003, 0.0003],
123
+ device='cuda:0')
124
+ 2023-03-10 09:53:46,341 INFO [zipformer.py:1455] attn_weights_entropy = tensor([4.7764, 5.4848, 5.2078, 3.5640, 3.2814, 4.2858, 3.7191, 4.6062],
125
+ device='cuda:0'), covar=tensor([0.0498, 0.0254, 0.0225, 0.3783, 0.3929, 0.1468, 0.2853, 0.1094],
126
+ device='cuda:0'), in_proj_covar=tensor([0.0351, 0.0282, 0.0266, 0.0244, 0.0333, 0.0327, 0.0254, 0.0360],
127
+ device='cuda:0'), out_proj_covar=tensor([0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001],
128
+ device='cuda:0')
129
+ 2023-03-10 09:53:49,513 INFO [decode.py:581] batch 100/?, cuts processed until now is 2560
130
+ 2023-03-10 09:54:08,539 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_0.1.txt
131
+ 2023-03-10 09:54:08,609 INFO [utils.py:558] [test-other-lm_scale_0.1] %WER 5.38% [2814 / 52343, 336 ins, 224 del, 2254 sub ]
132
+ 2023-03-10 09:54:08,764 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_0.1.txt
133
+ 2023-03-10 09:54:08,790 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_0.2.txt
134
+ 2023-03-10 09:54:08,856 INFO [utils.py:558] [test-other-lm_scale_0.2] %WER 5.38% [2814 / 52343, 304 ins, 271 del, 2239 sub ]
135
+ 2023-03-10 09:54:09,009 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_0.2.txt
136
+ 2023-03-10 09:54:09,032 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_0.3.txt
137
+ 2023-03-10 09:54:09,101 INFO [utils.py:558] [test-other-lm_scale_0.3] %WER 5.42% [2835 / 52343, 274 ins, 342 del, 2219 sub ]
138
+ 2023-03-10 09:54:09,249 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_0.3.txt
139
+ 2023-03-10 09:54:09,270 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_0.4.txt
140
+ 2023-03-10 09:54:09,328 INFO [utils.py:558] [test-other-lm_scale_0.4] %WER 5.53% [2895 / 52343, 244 ins, 442 del, 2209 sub ]
141
+ 2023-03-10 09:54:09,473 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_0.4.txt
142
+ 2023-03-10 09:54:09,496 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_0.5.txt
143
+ 2023-03-10 09:54:09,555 INFO [utils.py:558] [test-other-lm_scale_0.5] %WER 5.76% [3014 / 52343, 211 ins, 596 del, 2207 sub ]
144
+ 2023-03-10 09:54:09,693 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_0.5.txt
145
+ 2023-03-10 09:54:09,714 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_0.6.txt
146
+ 2023-03-10 09:54:09,775 INFO [utils.py:558] [test-other-lm_scale_0.6] %WER 6.10% [3194 / 52343, 184 ins, 832 del, 2178 sub ]
147
+ 2023-03-10 09:54:09,926 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_0.6.txt
148
+ 2023-03-10 09:54:09,949 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_0.7.txt
149
+ 2023-03-10 09:54:10,010 INFO [utils.py:558] [test-other-lm_scale_0.7] %WER 6.79% [3552 / 52343, 166 ins, 1234 del, 2152 sub ]
150
+ 2023-03-10 09:54:10,166 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_0.7.txt
151
+ 2023-03-10 09:54:10,190 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_0.8.txt
152
+ 2023-03-10 09:54:10,420 INFO [utils.py:558] [test-other-lm_scale_0.8] %WER 7.86% [4113 / 52343, 140 ins, 1849 del, 2124 sub ]
153
+ 2023-03-10 09:54:10,578 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_0.8.txt
154
+ 2023-03-10 09:54:10,624 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_0.9.txt
155
+ 2023-03-10 09:54:10,681 INFO [utils.py:558] [test-other-lm_scale_0.9] %WER 9.31% [4872 / 52343, 119 ins, 2698 del, 2055 sub ]
156
+ 2023-03-10 09:54:10,826 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_0.9.txt
157
+ 2023-03-10 09:54:10,847 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.0.txt
158
+ 2023-03-10 09:54:10,906 INFO [utils.py:558] [test-other-lm_scale_1.0] %WER 11.30% [5916 / 52343, 94 ins, 3842 del, 1980 sub ]
159
+ 2023-03-10 09:54:11,073 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.0.txt
160
+ 2023-03-10 09:54:11,097 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.1.txt
161
+ 2023-03-10 09:54:11,167 INFO [utils.py:558] [test-other-lm_scale_1.1] %WER 13.80% [7221 / 52343, 78 ins, 5220 del, 1923 sub ]
162
+ 2023-03-10 09:54:11,330 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.1.txt
163
+ 2023-03-10 09:54:11,352 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.2.txt
164
+ 2023-03-10 09:54:11,426 INFO [utils.py:558] [test-other-lm_scale_1.2] %WER 16.36% [8564 / 52343, 62 ins, 6654 del, 1848 sub ]
165
+ 2023-03-10 09:54:11,580 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.2.txt
166
+ 2023-03-10 09:54:11,606 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.3.txt
167
+ 2023-03-10 09:54:11,665 INFO [utils.py:558] [test-other-lm_scale_1.3] %WER 18.62% [9745 / 52343, 46 ins, 7906 del, 1793 sub ]
168
+ 2023-03-10 09:54:11,849 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.3.txt
169
+ 2023-03-10 09:54:11,872 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.4.txt
170
+ 2023-03-10 09:54:11,933 INFO [utils.py:558] [test-other-lm_scale_1.4] %WER 20.37% [10662 / 52343, 37 ins, 8865 del, 1760 sub ]
171
+ 2023-03-10 09:54:12,092 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.4.txt
172
+ 2023-03-10 09:54:12,117 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.5.txt
173
+ 2023-03-10 09:54:12,183 INFO [utils.py:558] [test-other-lm_scale_1.5] %WER 21.53% [11270 / 52343, 31 ins, 9513 del, 1726 sub ]
174
+ 2023-03-10 09:54:12,533 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.5.txt
175
+ 2023-03-10 09:54:12,571 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.6.txt
176
+ 2023-03-10 09:54:12,634 INFO [utils.py:558] [test-other-lm_scale_1.6] %WER 22.38% [11714 / 52343, 26 ins, 9977 del, 1711 sub ]
177
+ 2023-03-10 09:54:12,800 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.6.txt
178
+ 2023-03-10 09:54:12,819 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.7.txt
179
+ 2023-03-10 09:54:12,881 INFO [utils.py:558] [test-other-lm_scale_1.7] %WER 22.98% [12027 / 52343, 22 ins, 10317 del, 1688 sub ]
180
+ 2023-03-10 09:54:13,031 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.7.txt
181
+ 2023-03-10 09:54:13,051 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.8.txt
182
+ 2023-03-10 09:54:13,116 INFO [utils.py:558] [test-other-lm_scale_1.8] %WER 23.46% [12278 / 52343, 21 ins, 10578 del, 1679 sub ]
183
+ 2023-03-10 09:54:13,280 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.8.txt
184
+ 2023-03-10 09:54:13,301 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_1.9.txt
185
+ 2023-03-10 09:54:13,362 INFO [utils.py:558] [test-other-lm_scale_1.9] %WER 23.87% [12494 / 52343, 21 ins, 10793 del, 1680 sub ]
186
+ 2023-03-10 09:54:13,530 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_1.9.txt
187
+ 2023-03-10 09:54:13,552 INFO [decode.py:601] The transcripts are stored in zipformer_ctc/exp/v0/recogs-test-other-lm_scale_2.0.txt
188
+ 2023-03-10 09:54:13,613 INFO [utils.py:558] [test-other-lm_scale_2.0] %WER 24.19% [12662 / 52343, 20 ins, 10954 del, 1688 sub ]
189
+ 2023-03-10 09:54:13,774 INFO [decode.py:613] Wrote detailed error stats to zipformer_ctc/exp/v0/errs-test-other-lm_scale_2.0.txt
190
+ 2023-03-10 09:54:13,775 INFO [decode.py:627]
191
+ For test-other, WER of different settings are:
192
+ lm_scale_0.1 5.38 best for test-other
193
+ lm_scale_0.2 5.38
194
+ lm_scale_0.3 5.42
195
+ lm_scale_0.4 5.53
196
+ lm_scale_0.5 5.76
197
+ lm_scale_0.6 6.1
198
+ lm_scale_0.7 6.79
199
+ lm_scale_0.8 7.86
200
+ lm_scale_0.9 9.31
201
+ lm_scale_1.0 11.3
202
+ lm_scale_1.1 13.8
203
+ lm_scale_1.2 16.36
204
+ lm_scale_1.3 18.62
205
+ lm_scale_1.4 20.37
206
+ lm_scale_1.5 21.53
207
+ lm_scale_1.6 22.38
208
+ lm_scale_1.7 22.98
209
+ lm_scale_1.8 23.46
210
+ lm_scale_1.9 23.87
211
+ lm_scale_2.0 24.19
212
+
213
+ 2023-03-10 09:54:13,775 INFO [decode.py:883] Done!
test_wavs/1089-134686-0001.wav ADDED
Binary file (212 kB). View file
 
test_wavs/1221-135766-0001.wav ADDED
Binary file (535 kB). View file
 
test_wavs/1221-135766-0002.wav ADDED
Binary file (154 kB). View file
 
test_wavs/trans.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ 1089-134686-0001 AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
2
+ 1221-135766-0001 GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
3
+ 1221-135766-0002 YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION