dennistrujillo
commited on
Commit
•
c59d416
1
Parent(s):
bbf4478
added inference.py
Browse files- inference.py +41 -0
inference.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from model import model_init, BraggNN
|
2 |
+
from torch.utils.data import DataLoader
|
3 |
+
from dataset import PatchWiseDataset
|
4 |
+
import torch, argparse, os
|
5 |
+
from util import str2bool, str2tuple, s2ituple
|
6 |
+
from plot import plot_loss, plot_error
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
parser = argparse.ArgumentParser(description='Bragg peak finding for HEDM.')
|
10 |
+
parser.add_argument('-p_file', type=str, default="debug", help='frame/patch metadata h5 file')
|
11 |
+
parser.add_argument('-f_file', type=str, default="debug", help='frame/patch h5 file')
|
12 |
+
parser.add_argument('-m_file', type=str, help='model state_dict file')
|
13 |
+
parser.add_argument('-psz', type=int, default=15, help='working patch size')
|
14 |
+
parser.add_argument('-fcsz', type=s2ituple, default='16_8_4_2', help='size of dense layers')
|
15 |
+
parser.add_argument('-expName',type=str, default="debug", help='Experiment name')
|
16 |
+
args, unparsed = parser.parse_known_args()
|
17 |
+
|
18 |
+
def main(args):
|
19 |
+
device = torch.device("cpu")#"cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
#model = BraggNN(imgsz=args.psz, fcsz=args.fcsz)
|
21 |
+
if device.type == 'cpu':
|
22 |
+
model=torch.load(args.m_file,map_location=torch.device('cpu'))
|
23 |
+
else:
|
24 |
+
model=torch.load(args.m_file)
|
25 |
+
model.eval()
|
26 |
+
|
27 |
+
ds_valid = PatchWiseDataset(psz=args.psz, rnd_shift=0, use='validation', pfile=args.p_file, ffile=args.f_file)
|
28 |
+
dl_valid = DataLoader(dataset=ds_valid, batch_size=len(ds_valid), shuffle=True, \
|
29 |
+
num_workers=4, drop_last=False, pin_memory=True)
|
30 |
+
mse=0.0
|
31 |
+
with torch.no_grad():
|
32 |
+
for i, (inputs, labels) in enumerate(dl_valid):
|
33 |
+
inputs = inputs.to(device)
|
34 |
+
y_pred = model(inputs)
|
35 |
+
y_pred = y_pred.cpu().numpy()
|
36 |
+
labels = labels.cpu().numpy()
|
37 |
+
plot_error(y_pred,labels,args.expName)
|
38 |
+
mse += np.power(y_pred[:,0] - labels[:,0],2) + np.power(y_pred[:,1] - labels[:,1],2)
|
39 |
+
if __name__ == "__main__":
|
40 |
+
main(args)
|
41 |
+
|