Commit
·
3d9d407
1
Parent(s):
0730aee
Upload model
Browse files- config.json +32 -0
- configuration_custom4.py +182 -0
- modeling_custom4.py +56 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "EleutherAI/pythia-160m",
|
3 |
+
"architectures": [
|
4 |
+
"CustomModel4"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoModel": "modeling_custom4.CustomModel4"
|
9 |
+
},
|
10 |
+
"bos_token_id": 0,
|
11 |
+
"classifier_dropout": 0.1,
|
12 |
+
"eos_token_id": 0,
|
13 |
+
"hidden_act": "gelu",
|
14 |
+
"hidden_dropout": 0.0,
|
15 |
+
"hidden_size": 768,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 3072,
|
18 |
+
"layer_norm_eps": 1e-05,
|
19 |
+
"max_position_embeddings": 2048,
|
20 |
+
"model_type": "gpt_neox",
|
21 |
+
"num_attention_heads": 12,
|
22 |
+
"num_hidden_layers": 12,
|
23 |
+
"rope_scaling": null,
|
24 |
+
"rotary_emb_base": 10000,
|
25 |
+
"rotary_pct": 0.25,
|
26 |
+
"tie_word_embeddings": false,
|
27 |
+
"torch_dtype": "float16",
|
28 |
+
"transformers_version": "4.31.0",
|
29 |
+
"use_cache": true,
|
30 |
+
"use_parallel_residual": true,
|
31 |
+
"vocab_size": 50304
|
32 |
+
}
|
configuration_custom4.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# """ GPTNeoX model configuration"""
|
16 |
+
|
17 |
+
# from ...configuration_utils import PretrainedConfig
|
18 |
+
# from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
# logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
# GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
# "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json",
|
25 |
+
# # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox
|
26 |
+
# }
|
27 |
+
|
28 |
+
|
29 |
+
# class GPTNeoXConfig(PretrainedConfig):
|
30 |
+
# r"""
|
31 |
+
# This is the configuration class to store the configuration of a [`GPTNeoXModel`]. It is used to instantiate an
|
32 |
+
# GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
33 |
+
# with the defaults will yield a similar configuration to that of the GPTNeoX
|
34 |
+
# [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture.
|
35 |
+
|
36 |
+
# Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
# documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
|
40 |
+
# Args:
|
41 |
+
# vocab_size (`int`, *optional*, defaults to 50432):
|
42 |
+
# Vocabulary size of the GPTNeoX model. Defines the number of different tokens that can be represented by the
|
43 |
+
# `inputs_ids` passed when calling [`GPTNeoXModel`].
|
44 |
+
# hidden_size (`int`, *optional*, defaults to 6144):
|
45 |
+
# Dimension of the encoder layers and the pooler layer.
|
46 |
+
# num_hidden_layers (`int`, *optional*, defaults to 44):
|
47 |
+
# Number of hidden layers in the Transformer encoder.
|
48 |
+
# num_attention_heads (`int`, *optional*, defaults to 64):
|
49 |
+
# Number of attention heads for each attention layer in the Transformer encoder.
|
50 |
+
# intermediate_size (`int`, *optional*, defaults to 24576):
|
51 |
+
# Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
52 |
+
# hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
53 |
+
# The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
54 |
+
# `"relu"`, `"selu"` and `"gelu_new"` are supported.
|
55 |
+
# rotary_pct (`float`, *optional*, defaults to 0.25):
|
56 |
+
# percentage of hidden dimensions to allocate to rotary embeddings
|
57 |
+
# rotary_emb_base (`int`, *optional*, defaults to 10000)
|
58 |
+
# base for computing rotary embeddings frequency
|
59 |
+
# attention_dropout (`float`, *optional*, defaults to 0.0):
|
60 |
+
# The dropout ratio probability of the attention score.
|
61 |
+
# hidden_dropout (`float`, *optional*, defaults to 0.0):
|
62 |
+
# The dropout ratio of (1) the word embeddings, (2) the post-attention hidden states, and (3) the post-mlp
|
63 |
+
# hidden states.
|
64 |
+
# classifier_dropout (`float`, *optional*, defaults to 0.1):
|
65 |
+
# Argument used when doing token classification, used in the model [`GPTNeoXForTokenClassification`].
|
66 |
+
|
67 |
+
# The dropout ratio for the hidden layer.
|
68 |
+
# max_position_embeddings (`int`, *optional*, defaults to 2048):
|
69 |
+
# The maximum sequence length that this model might ever be used with. Typically set this to something large
|
70 |
+
# just in case (e.g., 512 or 1024 or 2048).
|
71 |
+
# initializer_range (`float`, *optional*, defaults to 1e-5):
|
72 |
+
# The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
73 |
+
# layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
74 |
+
# The epsilon used by the layer normalization layers.
|
75 |
+
# use_cache (`bool`, *optional*, defaults to `True`):
|
76 |
+
# Whether or not the model should return the last key/values attentions (not used by all models). Only
|
77 |
+
# relevant if `config.is_decoder=True`.
|
78 |
+
# use_parallel_residual (`bool`, *optional*, defaults to `True`):
|
79 |
+
# Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training
|
80 |
+
# speedup at large scales (e.g. 20B).
|
81 |
+
# rope_scaling (`Dict`, *optional*):
|
82 |
+
# Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
83 |
+
# strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
|
84 |
+
# is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
85 |
+
# `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
86 |
+
# these scaling strategies behave:
|
87 |
+
# https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
88 |
+
# experimental feature, subject to breaking API changes in future versions.
|
89 |
+
|
90 |
+
# Example:
|
91 |
+
|
92 |
+
# ```python
|
93 |
+
# >>> from transformers import GPTNeoXConfig, GPTNeoXModel
|
94 |
+
|
95 |
+
# >>> # Initializing a GPTNeoX gpt-neox-20b style configuration
|
96 |
+
# >>> configuration = GPTNeoXConfig()
|
97 |
+
|
98 |
+
# >>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration
|
99 |
+
# >>> model = GPTNeoXModel(configuration) # doctest: +SKIP
|
100 |
+
|
101 |
+
# >>> # Accessing the model configuration
|
102 |
+
# >>> configuration = model.config # doctest: +SKIP
|
103 |
+
# ```"""
|
104 |
+
# model_type = "gpt_neox"
|
105 |
+
|
106 |
+
from transformers import PretrainedConfig
|
107 |
+
|
108 |
+
class CustomConfig4(PretrainedConfig):
|
109 |
+
model_type = "custom4"
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
vocab_size=50432,
|
114 |
+
hidden_size=6144,
|
115 |
+
num_hidden_layers=44,
|
116 |
+
num_attention_heads=64,
|
117 |
+
intermediate_size=24576,
|
118 |
+
hidden_act="gelu",
|
119 |
+
rotary_pct=0.25,
|
120 |
+
rotary_emb_base=10000,
|
121 |
+
attention_dropout=0.0,
|
122 |
+
hidden_dropout=0.0,
|
123 |
+
classifier_dropout=0.1,
|
124 |
+
max_position_embeddings=2048,
|
125 |
+
initializer_range=0.02,
|
126 |
+
layer_norm_eps=1e-5,
|
127 |
+
use_cache=True,
|
128 |
+
bos_token_id=0,
|
129 |
+
eos_token_id=2,
|
130 |
+
tie_word_embeddings=False,
|
131 |
+
use_parallel_residual=True,
|
132 |
+
rope_scaling=None,
|
133 |
+
**kwargs,
|
134 |
+
):
|
135 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
136 |
+
self.vocab_size = vocab_size
|
137 |
+
self.max_position_embeddings = max_position_embeddings
|
138 |
+
self.hidden_size = hidden_size
|
139 |
+
self.num_hidden_layers = num_hidden_layers
|
140 |
+
self.num_attention_heads = num_attention_heads
|
141 |
+
self.intermediate_size = intermediate_size
|
142 |
+
self.hidden_act = hidden_act
|
143 |
+
self.rotary_pct = rotary_pct
|
144 |
+
self.rotary_emb_base = rotary_emb_base
|
145 |
+
self.attention_dropout = attention_dropout
|
146 |
+
self.hidden_dropout = hidden_dropout
|
147 |
+
self.classifier_dropout = classifier_dropout
|
148 |
+
self.initializer_range = initializer_range
|
149 |
+
self.layer_norm_eps = layer_norm_eps
|
150 |
+
self.use_cache = use_cache
|
151 |
+
self.tie_word_embeddings = tie_word_embeddings
|
152 |
+
self.use_parallel_residual = use_parallel_residual
|
153 |
+
self.rope_scaling = rope_scaling
|
154 |
+
self._rope_scaling_validation()
|
155 |
+
|
156 |
+
if self.hidden_size % self.num_attention_heads != 0:
|
157 |
+
raise ValueError(
|
158 |
+
"The hidden size is not divisble by the number of attention heads! Make sure to update them!"
|
159 |
+
)
|
160 |
+
|
161 |
+
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
162 |
+
def _rope_scaling_validation(self):
|
163 |
+
"""
|
164 |
+
Validate the `rope_scaling` configuration.
|
165 |
+
"""
|
166 |
+
if self.rope_scaling is None:
|
167 |
+
return
|
168 |
+
|
169 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
170 |
+
raise ValueError(
|
171 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
172 |
+
f"got {self.rope_scaling}"
|
173 |
+
)
|
174 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
175 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
176 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
177 |
+
raise ValueError(
|
178 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
179 |
+
)
|
180 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
181 |
+
raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
|
182 |
+
|
modeling_custom4.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://huggingface.co/docs/transformers/custom_models
|
2 |
+
|
3 |
+
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoTokenizer, AutoModel, AutoConfig
|
4 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
5 |
+
from torch.nn.functional import log_softmax
|
6 |
+
from torch.nn.modules.container import ModuleList
|
7 |
+
from .configuration_custom4 import CustomConfig4
|
8 |
+
|
9 |
+
class CustomModel4(PreTrainedModel):
|
10 |
+
config_class = CustomConfig4
|
11 |
+
|
12 |
+
def __init__(self, config):
|
13 |
+
super().__init__(config)
|
14 |
+
|
15 |
+
def forward(self, *args, labels=None, **kwargs):
|
16 |
+
loss = None
|
17 |
+
logits = None
|
18 |
+
for model, coeff in zip(self.models, self.coeffs):
|
19 |
+
logp = log_softmax(model.forward(*args, **kwargs).logits, dim=-1)
|
20 |
+
logits = coeff * logp if logits is None else logits + coeff * logp
|
21 |
+
# The rest copied from modeling_llama.py:
|
22 |
+
if labels is not None:
|
23 |
+
# Shift so that tokens < n predict n
|
24 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
25 |
+
shift_labels = labels[..., 1:].contiguous()
|
26 |
+
# Flatten the tokens
|
27 |
+
loss_fct = CrossEntropyLoss()
|
28 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
29 |
+
shift_labels = shift_labels.view(-1)
|
30 |
+
# Enable model parallelism
|
31 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
32 |
+
loss = loss_fct(shift_logits, shift_labels)
|
33 |
+
|
34 |
+
return CausalLMOutputWithPast(loss=loss, logits=logits)
|
35 |
+
|
36 |
+
|
37 |
+
@classmethod
|
38 |
+
def combine_models(cls, *args, coeffs = [], **kwargs):
|
39 |
+
models = []
|
40 |
+
for model in args:
|
41 |
+
models.append(AutoModelForCausalLM.from_pretrained(model, **kwargs).eval())
|
42 |
+
if coeffs == []:
|
43 |
+
coeffs = [1/len(args)] * len(args)
|
44 |
+
m = cls(models[0].config)
|
45 |
+
m.models = ModuleList(models)
|
46 |
+
m.coeffs = coeffs
|
47 |
+
return m
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
CustomConfig4.register_for_auto_class()
|
52 |
+
CustomModel4.register_for_auto_class('AutoModelForCausalLM')
|
53 |
+
CustomModel4.register_for_auto_class('AutoModel')
|
54 |
+
AutoConfig.register("custom4", CustomConfig4)
|
55 |
+
AutoModel.register(CustomConfig4, CustomModel4)
|
56 |
+
AutoModelForCausalLM.register(CustomConfig4, CustomModel4)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ffa03b589263eccf2e09157196fab7b2abdaece84c8ed0f4b18f06540f48fd0
|
3 |
+
size 465579541
|