denizspynk
commited on
Commit
•
c67405b
1
Parent(s):
94e4c8a
update model card README.md
Browse files
README.md
CHANGED
@@ -10,12 +10,6 @@ metrics:
|
|
10 |
model-index:
|
11 |
- name: req_mod_ner_modelv2
|
12 |
results: []
|
13 |
-
widget:
|
14 |
-
- text: "De Oplossing ondersteunt het zoeken op de metadata van zaken, documenten en objecten en op gegevens uit de basisregistraties die gekoppeld zijn aan een zaak."
|
15 |
-
- text: "De Oplossing ondersteunt parafering en het plaatsen van een gecertificeerde elektronische handtekening."
|
16 |
-
- text: "De Aangeboden oplossing stelt de medewerker in staat een zaak te registreren."
|
17 |
-
- text: "Het Financieel systeem heeft functionaliteit om een debiteurenadministratie te voeren."
|
18 |
-
- text: "Als gebruiker wil ik dat de oplossing mij naar zaken laat zoeken op basis van zaaknummer, zaaktitel, omschrijving en datum."
|
19 |
---
|
20 |
|
21 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -25,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
25 |
|
26 |
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-ner](https://huggingface.co/pdelobelle/robbert-v2-dutch-ner) on the None dataset.
|
27 |
It achieves the following results on the evaluation set:
|
28 |
-
- Loss: 0.
|
29 |
-
- Precision: 0.
|
30 |
-
- Recall: 0.
|
31 |
-
- F1: 0.
|
32 |
-
- Accuracy: 0.
|
33 |
|
34 |
## Model description
|
35 |
|
@@ -60,22 +54,22 @@ The following hyperparameters were used during training:
|
|
60 |
|
61 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
62 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
63 |
-
| No log | 1.0 |
|
64 |
-
|
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
|
80 |
|
81 |
### Framework versions
|
|
|
10 |
model-index:
|
11 |
- name: req_mod_ner_modelv2
|
12 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-ner](https://huggingface.co/pdelobelle/robbert-v2-dutch-ner) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.6759
|
23 |
+
- Precision: 0.7112
|
24 |
+
- Recall: 0.7644
|
25 |
+
- F1: 0.7368
|
26 |
+
- Accuracy: 0.9261
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 270 | 0.4543 | 0.6111 | 0.6322 | 0.6215 | 0.8989 |
|
58 |
+
| 0.4703 | 2.0 | 540 | 0.4260 | 0.5129 | 0.6839 | 0.5862 | 0.8740 |
|
59 |
+
| 0.4703 | 3.0 | 810 | 0.3841 | 0.6034 | 0.6207 | 0.6119 | 0.9020 |
|
60 |
+
| 0.1808 | 4.0 | 1080 | 0.5177 | 0.6124 | 0.6264 | 0.6193 | 0.8974 |
|
61 |
+
| 0.1808 | 5.0 | 1350 | 0.4433 | 0.6911 | 0.7586 | 0.7233 | 0.9168 |
|
62 |
+
| 0.0933 | 6.0 | 1620 | 0.4377 | 0.7207 | 0.7414 | 0.7309 | 0.9253 |
|
63 |
+
| 0.0933 | 7.0 | 1890 | 0.5752 | 0.6333 | 0.6552 | 0.6441 | 0.9114 |
|
64 |
+
| 0.0551 | 8.0 | 2160 | 0.5671 | 0.6684 | 0.7529 | 0.7081 | 0.9191 |
|
65 |
+
| 0.0551 | 9.0 | 2430 | 0.5356 | 0.6862 | 0.7414 | 0.7127 | 0.9253 |
|
66 |
+
| 0.0394 | 10.0 | 2700 | 0.6103 | 0.6736 | 0.7471 | 0.7084 | 0.9152 |
|
67 |
+
| 0.0394 | 11.0 | 2970 | 0.6029 | 0.6885 | 0.7241 | 0.7059 | 0.9246 |
|
68 |
+
| 0.0286 | 12.0 | 3240 | 0.5353 | 0.6995 | 0.7356 | 0.7171 | 0.9277 |
|
69 |
+
| 0.0219 | 13.0 | 3510 | 0.6057 | 0.7120 | 0.7529 | 0.7318 | 0.9261 |
|
70 |
+
| 0.0219 | 14.0 | 3780 | 0.6601 | 0.7167 | 0.7414 | 0.7288 | 0.9261 |
|
71 |
+
| 0.0144 | 15.0 | 4050 | 0.6678 | 0.7090 | 0.7701 | 0.7383 | 0.9261 |
|
72 |
+
| 0.0144 | 16.0 | 4320 | 0.6759 | 0.7112 | 0.7644 | 0.7368 | 0.9261 |
|
73 |
|
74 |
|
75 |
### Framework versions
|