|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch Cohere model.""" |
|
|
from collections.abc import Iterable |
|
|
from typing import Optional, Union |
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
from transformers import CohereConfig |
|
|
|
|
|
from vllm.attention import Attention |
|
|
from vllm.compilation.decorators import support_torch_compile |
|
|
from vllm.config import CacheConfig, VllmConfig |
|
|
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size |
|
|
from vllm.model_executor.layers.activation import SiluAndMul |
|
|
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear, |
|
|
QKVParallelLinear, |
|
|
RowParallelLinear) |
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor |
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig |
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope |
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import ( |
|
|
VocabParallelEmbedding) |
|
|
from vllm.model_executor.model_loader.weight_utils import ( |
|
|
default_weight_loader, maybe_remap_kv_scale_name, |
|
|
row_parallel_weight_loader) |
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata |
|
|
from vllm.model_executor.utils import set_weight_attrs |
|
|
from vllm.platforms import current_platform |
|
|
from vllm.sequence import IntermediateTensors |
|
|
|
|
|
from .interfaces import SupportsLoRA, SupportsPP, SupportsQuant |
|
|
from .utils import (extract_layer_index, is_pp_missing_parameter, |
|
|
make_empty_intermediate_tensors_factory, make_layers, |
|
|
maybe_prefix) |
|
|
|
|
|
|
|
|
@torch.compile(backend=current_platform.simple_compile_backend) |
|
|
def layer_norm_func(hidden_states, weight, variance_epsilon): |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
mean = hidden_states.mean(-1, keepdim=True) |
|
|
variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = (hidden_states - mean) * torch.rsqrt(variance + |
|
|
variance_epsilon) |
|
|
hidden_states = weight.to(torch.float32) * hidden_states |
|
|
return hidden_states.to(input_dtype) |
|
|
|
|
|
|
|
|
class LayerNorm(nn.Module): |
|
|
|
|
|
def __init__(self, param_shape=None, eps=1e-5): |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(param_shape)) |
|
|
self.variance_epsilon = eps |
|
|
set_weight_attrs(self.weight, |
|
|
{"weight_loader": row_parallel_weight_loader}) |
|
|
|
|
|
def forward(self, hidden_states, residuals=None): |
|
|
hidden_states = layer_norm_func(hidden_states, self.weight, |
|
|
self.variance_epsilon) |
|
|
return hidden_states, residuals |
|
|
|
|
|
|
|
|
|
|
|
class CohereMLP(nn.Module): |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
config: CohereConfig, |
|
|
quant_config: Optional[QuantizationConfig] = None, |
|
|
prefix: str = "", |
|
|
): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.gate_up_proj = MergedColumnParallelLinear( |
|
|
self.hidden_size, |
|
|
[self.intermediate_size] * 2, |
|
|
bias=False, |
|
|
quant_config=quant_config, |
|
|
prefix=f"{prefix}.gate_up_proj", |
|
|
) |
|
|
self.down_proj = RowParallelLinear( |
|
|
self.intermediate_size, |
|
|
self.hidden_size, |
|
|
bias=False, |
|
|
quant_config=quant_config, |
|
|
prefix=f"{prefix}.down_proj", |
|
|
) |
|
|
self.act_fn = SiluAndMul() |
|
|
|
|
|
def forward(self, x): |
|
|
gate_up, _ = self.gate_up_proj(x) |
|
|
x = self.act_fn(gate_up) |
|
|
x, _ = self.down_proj(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class CohereAttention(nn.Module): |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
config: CohereConfig, |
|
|
cache_config: Optional[CacheConfig] = None, |
|
|
quant_config: Optional[QuantizationConfig] = None, |
|
|
prefix: str = "", |
|
|
): |
|
|
super().__init__() |
|
|
tp_size = get_tensor_model_parallel_world_size() |
|
|
self.config = config |
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.hidden_size = config.hidden_size |
|
|
self.total_num_heads = config.num_attention_heads |
|
|
self.num_heads = self.total_num_heads // tp_size |
|
|
self.head_dim = self.hidden_size // self.total_num_heads |
|
|
self.total_num_kv_heads = config.num_key_value_heads |
|
|
if self.total_num_kv_heads >= tp_size: |
|
|
|
|
|
|
|
|
assert self.total_num_kv_heads % tp_size == 0 |
|
|
else: |
|
|
|
|
|
|
|
|
assert tp_size % self.total_num_kv_heads == 0 |
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) |
|
|
self.q_size = self.num_heads * self.head_dim |
|
|
self.kv_size = self.num_kv_heads * self.head_dim |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.max_position_embeddings = getattr( |
|
|
config, "model_max_length", None) or getattr( |
|
|
config, "max_position_embeddings", 8192) |
|
|
self.rope_theta = config.rope_theta |
|
|
self.rope_scaling = getattr(config, "rope_scaling", None) |
|
|
self.use_qk_norm = getattr(config, "use_qk_norm", False) |
|
|
self.qkv_proj = QKVParallelLinear( |
|
|
self.hidden_size, |
|
|
self.head_dim, |
|
|
self.total_num_heads, |
|
|
self.total_num_kv_heads, |
|
|
bias=False, |
|
|
quant_config=quant_config, |
|
|
prefix=f"{prefix}.qkv_proj", |
|
|
) |
|
|
self.o_proj = RowParallelLinear( |
|
|
self.total_num_heads * self.head_dim, |
|
|
self.hidden_size, |
|
|
bias=False, |
|
|
quant_config=quant_config, |
|
|
prefix=f"{prefix}.o_proj", |
|
|
) |
|
|
self.rotary_emb = get_rope( |
|
|
self.head_dim, |
|
|
rotary_dim=self.head_dim, |
|
|
max_position=self.max_position_embeddings, |
|
|
base=self.rope_theta, |
|
|
rope_scaling=self.rope_scaling, |
|
|
is_neox_style=False, |
|
|
) |
|
|
|
|
|
|
|
|
interleaved_sliding_window = getattr(config, |
|
|
"interleaved_sliding_window", |
|
|
None) |
|
|
self.v1 = interleaved_sliding_window is None |
|
|
|
|
|
layer_idx = extract_layer_index(prefix) |
|
|
layer_has_sliding_window = ( |
|
|
getattr(config, "sliding_window_pattern", False) |
|
|
and (layer_idx + 1) % self.config.sliding_window_pattern != 0) |
|
|
|
|
|
self.sliding_window = (interleaved_sliding_window |
|
|
if layer_has_sliding_window else None) |
|
|
|
|
|
self.attn = Attention(self.num_heads, |
|
|
self.head_dim, |
|
|
self.scaling, |
|
|
num_kv_heads=self.num_kv_heads, |
|
|
cache_config=cache_config, |
|
|
quant_config=quant_config, |
|
|
per_layer_sliding_window=self.sliding_window, |
|
|
prefix=f"{prefix}.attn") |
|
|
if self.use_qk_norm: |
|
|
self.q_norm = LayerNorm(param_shape=(self.num_heads, |
|
|
self.head_dim), |
|
|
eps=config.layer_norm_eps) |
|
|
self.k_norm = LayerNorm(param_shape=(self.num_kv_heads, |
|
|
self.head_dim), |
|
|
eps=config.layer_norm_eps) |
|
|
|
|
|
def _apply_qk_norm(self, q, k): |
|
|
q = q.view(*q.shape[:-1], -1, self.head_dim) |
|
|
k = k.view(*k.shape[:-1], -1, self.head_dim) |
|
|
q, _ = self.q_norm(q) |
|
|
k, _ = self.k_norm(k) |
|
|
q = q.view(*q.shape[:-2], -1) |
|
|
k = k.view(*k.shape[:-2], -1) |
|
|
return q, k |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
positions: torch.Tensor, |
|
|
hidden_states: torch.Tensor, |
|
|
) -> torch.Tensor: |
|
|
qkv, _ = self.qkv_proj(hidden_states) |
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) |
|
|
if self.use_qk_norm: |
|
|
q, k = self._apply_qk_norm(q, k) |
|
|
if self.v1 or self.sliding_window: |
|
|
q, k = self.rotary_emb(positions, q, k) |
|
|
attn_output = self.attn(q, k, v) |
|
|
output, _ = self.o_proj(attn_output) |
|
|
return output |
|
|
|
|
|
|
|
|
class CohereDecoderLayer(nn.Module): |
|
|
|
|
|
def __init__(self, |
|
|
config: CohereConfig, |
|
|
cache_config: Optional[CacheConfig] = None, |
|
|
quant_config: Optional[QuantizationConfig] = None, |
|
|
prefix: str = ""): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
self.self_attn = CohereAttention(config, |
|
|
cache_config, |
|
|
quant_config=quant_config, |
|
|
prefix=f"{prefix}.self_attn") |
|
|
|
|
|
self.mlp = CohereMLP(config, |
|
|
quant_config=quant_config, |
|
|
prefix=f"{prefix}.mlp") |
|
|
self.input_layernorm = LayerNorm(param_shape=(config.hidden_size), |
|
|
eps=config.layer_norm_eps) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
positions: torch.Tensor, |
|
|
hidden_states: torch.Tensor, |
|
|
residual: Optional[torch.Tensor], |
|
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states, residual = self.input_layernorm(hidden_states, residual) |
|
|
hidden_states_attention = self.self_attn( |
|
|
positions=positions, |
|
|
hidden_states=hidden_states, |
|
|
) |
|
|
hidden_states_mlp = self.mlp(hidden_states) |
|
|
|
|
|
hidden_states = residual + hidden_states_attention + hidden_states_mlp |
|
|
|
|
|
return hidden_states, residual |
|
|
|
|
|
|
|
|
@support_torch_compile |
|
|
class CohereModel(nn.Module): |
|
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
|
super().__init__() |
|
|
|
|
|
config = vllm_config.model_config.hf_config |
|
|
cache_config = vllm_config.cache_config |
|
|
quant_config = vllm_config.quant_config |
|
|
lora_config = vllm_config.lora_config |
|
|
|
|
|
self.config = config |
|
|
lora_vocab = (lora_config.lora_extra_vocab_size * |
|
|
(lora_config.max_loras or 1)) if lora_config else 0 |
|
|
self.vocab_size = config.vocab_size + lora_vocab |
|
|
self.org_vocab_size = config.vocab_size |
|
|
self.embed_tokens = VocabParallelEmbedding(config.vocab_size, |
|
|
config.hidden_size) |
|
|
self.start_layer, self.end_layer, self.layers = make_layers( |
|
|
config.num_hidden_layers, |
|
|
lambda prefix: CohereDecoderLayer( |
|
|
config, cache_config, quant_config, prefix=prefix), |
|
|
prefix=f"{prefix}.layers") |
|
|
self.norm = LayerNorm(param_shape=(config.hidden_size), |
|
|
eps=config.layer_norm_eps) |
|
|
self.make_empty_intermediate_tensors = ( |
|
|
make_empty_intermediate_tensors_factory( |
|
|
["hidden_states", "residual"], config.hidden_size)) |
|
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
|
return self.embed_tokens(input_ids) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.Tensor, |
|
|
positions: torch.Tensor, |
|
|
intermediate_tensors: Optional[IntermediateTensors], |
|
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
|
) -> Union[torch.Tensor, IntermediateTensors]: |
|
|
if get_pp_group().is_first_rank: |
|
|
if inputs_embeds is not None: |
|
|
hidden_states = inputs_embeds |
|
|
else: |
|
|
hidden_states = self.get_input_embeddings(input_ids) |
|
|
residual = None |
|
|
else: |
|
|
assert intermediate_tensors is not None |
|
|
hidden_states = intermediate_tensors["hidden_states"] |
|
|
residual = intermediate_tensors["residual"] |
|
|
for layer in self.layers[self.start_layer:self.end_layer]: |
|
|
hidden_states, residual = layer( |
|
|
positions, |
|
|
hidden_states, |
|
|
residual, |
|
|
) |
|
|
if not get_pp_group().is_last_rank: |
|
|
return IntermediateTensors({ |
|
|
"hidden_states": hidden_states, |
|
|
"residual": residual |
|
|
}) |
|
|
hidden_states, _ = self.norm(hidden_states, residual) |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class CohereForCausalLM(nn.Module, SupportsLoRA, SupportsPP, SupportsQuant): |
|
|
packed_modules_mapping = { |
|
|
"qkv_proj": [ |
|
|
"q_proj", |
|
|
"k_proj", |
|
|
"v_proj", |
|
|
], |
|
|
"gate_up_proj": [ |
|
|
"gate_proj", |
|
|
"up_proj", |
|
|
], |
|
|
} |
|
|
|
|
|
embedding_modules = {"embed_tokens": "input_embeddings"} |
|
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
|
super().__init__() |
|
|
config = vllm_config.model_config.hf_config |
|
|
quant_config = vllm_config.quant_config |
|
|
lora_config = vllm_config.lora_config |
|
|
self.config = config |
|
|
|
|
|
|
|
|
assert config.tie_word_embeddings |
|
|
self.unpadded_vocab_size = config.vocab_size |
|
|
if lora_config: |
|
|
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size |
|
|
self.quant_config = quant_config |
|
|
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size, |
|
|
config.vocab_size, |
|
|
scale=config.logit_scale) |
|
|
self.model = CohereModel(vllm_config=vllm_config, |
|
|
prefix=maybe_prefix(prefix, "model")) |
|
|
self.make_empty_intermediate_tensors = ( |
|
|
self.model.make_empty_intermediate_tensors) |
|
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
|
return self.model.get_input_embeddings(input_ids) |
|
|
|
|
|
@torch.no_grad() |
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.Tensor, |
|
|
positions: torch.Tensor, |
|
|
intermediate_tensors: Optional[IntermediateTensors] = None, |
|
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
|
) -> Union[torch.Tensor, IntermediateTensors]: |
|
|
hidden_states = self.model(input_ids, positions, intermediate_tensors, |
|
|
inputs_embeds) |
|
|
return hidden_states |
|
|
|
|
|
def compute_logits( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
sampling_metadata: SamplingMetadata, |
|
|
) -> Optional[torch.Tensor]: |
|
|
is_not_lora = hasattr(self.model.embed_tokens, 'weight') |
|
|
if is_not_lora: |
|
|
logits = self.logits_processor(self.model.embed_tokens, |
|
|
hidden_states, sampling_metadata) |
|
|
else: |
|
|
logits = self.logits_processor(self.model.embed_tokens.base_layer, |
|
|
hidden_states, sampling_metadata) |
|
|
|
|
|
return logits |
|
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, |
|
|
torch.Tensor]]) -> set[str]: |
|
|
stacked_params_mapping = [ |
|
|
|
|
|
("qkv_proj", "q_proj", "q"), |
|
|
("qkv_proj", "k_proj", "k"), |
|
|
("qkv_proj", "v_proj", "v"), |
|
|
("gate_up_proj", "gate_proj", 0), |
|
|
("gate_up_proj", "up_proj", 1), |
|
|
] |
|
|
params_dict = dict(self.named_parameters()) |
|
|
loaded_params: set[str] = set() |
|
|
for name, loaded_weight in weights: |
|
|
|
|
|
|
|
|
if "rotary_emb.inv_freq" in name: |
|
|
continue |
|
|
|
|
|
if (self.quant_config is not None and |
|
|
(scale_name := self.quant_config.get_cache_scale(name))): |
|
|
|
|
|
param = params_dict[scale_name] |
|
|
weight_loader = getattr(param, "weight_loader", |
|
|
default_weight_loader) |
|
|
loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else |
|
|
loaded_weight[0]) |
|
|
weight_loader(param, loaded_weight) |
|
|
loaded_params.add(scale_name) |
|
|
continue |
|
|
|
|
|
for param_name, shard_name, shard_id in stacked_params_mapping: |
|
|
if shard_name not in name: |
|
|
continue |
|
|
name = name.replace(shard_name, param_name) |
|
|
|
|
|
if name.endswith(".bias") and name not in params_dict: |
|
|
continue |
|
|
if is_pp_missing_parameter(name, self): |
|
|
continue |
|
|
param = params_dict[name] |
|
|
weight_loader = param.weight_loader |
|
|
weight_loader(param, loaded_weight, shard_id) |
|
|
break |
|
|
else: |
|
|
|
|
|
|
|
|
if "lm_head.weight" in name: |
|
|
continue |
|
|
|
|
|
if name.endswith(".bias") and name not in params_dict: |
|
|
continue |
|
|
|
|
|
name = maybe_remap_kv_scale_name(name, params_dict) |
|
|
if name is None: |
|
|
continue |
|
|
|
|
|
if is_pp_missing_parameter(name, self): |
|
|
continue |
|
|
param = params_dict[name] |
|
|
weight_loader = getattr(param, "weight_loader", |
|
|
default_weight_loader) |
|
|
weight_loader(param, loaded_weight) |
|
|
loaded_params.add(name) |
|
|
return loaded_params |
|
|
|