|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch BART model.""" |
|
|
import math |
|
|
from collections.abc import Iterable |
|
|
from typing import Optional |
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
from transformers import BartConfig |
|
|
from transformers.utils import logging |
|
|
|
|
|
from vllm.attention import Attention, AttentionType |
|
|
from vllm.config import CacheConfig, LoRAConfig, VllmConfig |
|
|
from vllm.distributed import get_tensor_model_parallel_world_size |
|
|
from vllm.model_executor.layers.activation import get_act_fn |
|
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear, |
|
|
QKVCrossParallelLinear, |
|
|
QKVParallelLinear, |
|
|
RowParallelLinear) |
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor |
|
|
from vllm.model_executor.layers.quantization.base_config import ( |
|
|
QuantizationConfig) |
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import ( |
|
|
ParallelLMHead, VocabParallelEmbedding) |
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader |
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata |
|
|
from vllm.sequence import IntermediateTensors |
|
|
|
|
|
from .interfaces import SupportsQuant, SupportsV0Only |
|
|
from .utils import maybe_prefix |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
def get_bsz_seq_len(input_ids): |
|
|
shp = input_ids.shape |
|
|
ndim = len(shp) |
|
|
if ndim == 1: |
|
|
return 1, input_ids.numel() |
|
|
else: |
|
|
return shp[:2] |
|
|
|
|
|
|
|
|
class BartLearnedPositionalEmbedding(VocabParallelEmbedding): |
|
|
""" |
|
|
This module learns positional embeddings up to a fixed maximum size. |
|
|
""" |
|
|
|
|
|
def __init__(self, num_embeddings: int, embedding_dim: int): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.offset = 2 |
|
|
super().__init__(num_embeddings + self.offset, embedding_dim) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
positions: torch.Tensor, |
|
|
) -> torch.Tensor: |
|
|
"""`input_ids' shape is expected to be [bsz x seqlen].""" |
|
|
return super().forward(positions + self.offset) |
|
|
|
|
|
|
|
|
class BartScaledWordEmbedding(VocabParallelEmbedding): |
|
|
""" |
|
|
This module overrides VocabParallelEmbedding's |
|
|
forward by multiplying with embeddings scale. |
|
|
""" |
|
|
|
|
|
def __init__(self, |
|
|
num_embeddings: int, |
|
|
embedding_dim: int, |
|
|
embed_scale: float = 1.0): |
|
|
super().__init__(num_embeddings, embedding_dim) |
|
|
self.embed_scale = embed_scale |
|
|
|
|
|
def forward(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
|
return super().forward(input_ids) * self.embed_scale |
|
|
|
|
|
|
|
|
class BartParallelLMHead(ParallelLMHead): |
|
|
""" |
|
|
This module overrides ParallelLMHead's |
|
|
forward by dividing by embeddings scale, |
|
|
yielding effectively the inverse of |
|
|
BartScaledWordEmbedding |
|
|
""" |
|
|
|
|
|
def __init__(self, |
|
|
num_embeddings: int, |
|
|
embedding_dim: int, |
|
|
embed_scale: float = 1.0): |
|
|
super().__init__(num_embeddings, embedding_dim) |
|
|
self.embed_scale = embed_scale |
|
|
|
|
|
def forward(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
|
return super().forward(input_ids) / self.embed_scale |
|
|
|
|
|
|
|
|
class BartEncoderAttention(nn.Module): |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
embed_dim: int, |
|
|
num_heads: int, |
|
|
bias: bool = True, |
|
|
config: Optional[BartConfig] = None, |
|
|
cache_config: Optional[CacheConfig] = None, |
|
|
quant_config: Optional[QuantizationConfig] = None, |
|
|
prefix: str = "", |
|
|
): |
|
|
super().__init__() |
|
|
self.d_model = config.d_model |
|
|
self.embed_dim = embed_dim |
|
|
self.total_num_heads = num_heads |
|
|
self.total_num_kv_heads = self.total_num_heads |
|
|
self.head_dim = embed_dim // num_heads |
|
|
self.config = config |
|
|
|
|
|
if (self.head_dim * num_heads) != self.embed_dim: |
|
|
raise ValueError(f"embed_dim must be divisible by num_heads " |
|
|
f"(got `embed_dim`: {self.embed_dim}" |
|
|
f" and `num_heads`: {num_heads}).") |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
|
|
|
self.qkv_proj = QKVParallelLinear( |
|
|
self.d_model, |
|
|
self.d_model // self.total_num_heads, |
|
|
self.total_num_heads, |
|
|
self.total_num_kv_heads, |
|
|
bias=bias, |
|
|
quant_config=quant_config, |
|
|
) |
|
|
|
|
|
self.out_proj = RowParallelLinear( |
|
|
embed_dim, |
|
|
embed_dim, |
|
|
bias=bias, |
|
|
quant_config=quant_config, |
|
|
) |
|
|
|
|
|
tp_world_size = get_tensor_model_parallel_world_size() |
|
|
assert self.total_num_heads % tp_world_size == 0 |
|
|
self.num_heads = self.total_num_heads // tp_world_size |
|
|
|
|
|
if self.total_num_kv_heads >= tp_world_size: |
|
|
|
|
|
|
|
|
assert self.total_num_kv_heads % tp_world_size == 0 |
|
|
else: |
|
|
|
|
|
|
|
|
assert tp_world_size % self.total_num_kv_heads == 0 |
|
|
self.num_kv_heads = self.num_heads |
|
|
self.q_size = self.num_heads * self.head_dim |
|
|
self.kv_size = self.num_kv_heads * self.head_dim |
|
|
|
|
|
self.attn = Attention(self.num_heads, |
|
|
self.head_dim, |
|
|
self.scaling, |
|
|
num_kv_heads=self.num_kv_heads, |
|
|
cache_config=cache_config, |
|
|
quant_config=quant_config, |
|
|
prefix=f"{prefix}.attn", |
|
|
attn_type=AttentionType.ENCODER) |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
|
|
qkv, _ = self.qkv_proj(hidden_states) |
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) |
|
|
|
|
|
attn_output = self.attn(q, k, v) |
|
|
|
|
|
output, _ = self.out_proj(attn_output) |
|
|
return output |
|
|
|
|
|
|
|
|
class BartDecoderSelfAttention(nn.Module): |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
embed_dim: int, |
|
|
num_heads: int, |
|
|
bias: bool = True, |
|
|
config: Optional[BartConfig] = None, |
|
|
cache_config: Optional[CacheConfig] = None, |
|
|
quant_config: Optional[QuantizationConfig] = None, |
|
|
prefix: str = "", |
|
|
): |
|
|
super().__init__() |
|
|
self.d_model = config.d_model |
|
|
self.embed_dim = embed_dim |
|
|
self.total_num_heads = num_heads |
|
|
self.total_num_kv_heads = self.total_num_heads |
|
|
self.head_dim = embed_dim // num_heads |
|
|
self.config = config |
|
|
|
|
|
if (self.head_dim * num_heads) != self.embed_dim: |
|
|
raise ValueError(f"embed_dim must be divisible by num_heads " |
|
|
f"(got `embed_dim`: {self.embed_dim}" |
|
|
f" and `num_heads`: {num_heads}).") |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
|
|
|
self.qkv_proj = QKVParallelLinear( |
|
|
self.d_model, |
|
|
self.d_model // self.total_num_heads, |
|
|
self.total_num_heads, |
|
|
self.total_num_kv_heads, |
|
|
bias=bias, |
|
|
quant_config=quant_config, |
|
|
) |
|
|
|
|
|
self.out_proj = RowParallelLinear( |
|
|
embed_dim, |
|
|
embed_dim, |
|
|
bias=bias, |
|
|
quant_config=quant_config, |
|
|
) |
|
|
|
|
|
tp_world_size = get_tensor_model_parallel_world_size() |
|
|
assert self.total_num_heads % tp_world_size == 0 |
|
|
self.num_heads = self.total_num_heads // tp_world_size |
|
|
|
|
|
if self.total_num_kv_heads >= tp_world_size: |
|
|
|
|
|
|
|
|
assert self.total_num_kv_heads % tp_world_size == 0 |
|
|
else: |
|
|
|
|
|
|
|
|
assert tp_world_size % self.total_num_kv_heads == 0 |
|
|
self.num_kv_heads = self.num_heads |
|
|
self.q_size = self.num_heads * self.head_dim |
|
|
self.kv_size = self.num_kv_heads * self.head_dim |
|
|
|
|
|
self.attn = Attention(self.num_heads, |
|
|
self.head_dim, |
|
|
self.scaling, |
|
|
num_kv_heads=self.num_kv_heads, |
|
|
cache_config=cache_config, |
|
|
quant_config=quant_config, |
|
|
prefix=f"{prefix}.attn", |
|
|
attn_type=AttentionType.DECODER) |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
|
|
qkv, _ = self.qkv_proj(hidden_states) |
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) |
|
|
|
|
|
attn_output = self.attn(q, k, v) |
|
|
|
|
|
output, _ = self.out_proj(attn_output) |
|
|
return output |
|
|
|
|
|
|
|
|
class BartCrossAttention(nn.Module): |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
embed_dim: int, |
|
|
num_heads: int, |
|
|
bias: bool = True, |
|
|
config: Optional[BartConfig] = None, |
|
|
cache_config: Optional[CacheConfig] = None, |
|
|
quant_config: Optional[QuantizationConfig] = None, |
|
|
prefix: str = "", |
|
|
): |
|
|
super().__init__() |
|
|
self.d_model = config.d_model |
|
|
self.embed_dim = embed_dim |
|
|
self.total_num_heads = num_heads |
|
|
self.total_num_kv_heads = self.total_num_heads |
|
|
self.head_dim = embed_dim // num_heads |
|
|
self.config = config |
|
|
|
|
|
if (self.head_dim * num_heads) != self.embed_dim: |
|
|
raise ValueError(f"embed_dim must be divisible by num_heads " |
|
|
f"(got `embed_dim`: {self.embed_dim}" |
|
|
f" and `num_heads`: {num_heads}).") |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
|
|
|
|
|
|
self.qkv_proj = QKVCrossParallelLinear(self.d_model, |
|
|
self.d_model // |
|
|
self.total_num_heads, |
|
|
self.total_num_heads, |
|
|
self.total_num_kv_heads, |
|
|
bias, |
|
|
quant_config=quant_config) |
|
|
|
|
|
self.out_proj = RowParallelLinear( |
|
|
embed_dim, |
|
|
embed_dim, |
|
|
bias=bias, |
|
|
quant_config=quant_config, |
|
|
) |
|
|
|
|
|
tp_world_size = get_tensor_model_parallel_world_size() |
|
|
assert self.total_num_heads % tp_world_size == 0 |
|
|
self.num_heads = self.total_num_heads // tp_world_size |
|
|
|
|
|
if self.total_num_kv_heads >= tp_world_size: |
|
|
|
|
|
|
|
|
assert self.total_num_kv_heads % tp_world_size == 0 |
|
|
else: |
|
|
|
|
|
|
|
|
assert tp_world_size % self.total_num_kv_heads == 0 |
|
|
self.num_kv_heads = self.num_heads |
|
|
self.attn = Attention(self.num_heads, |
|
|
self.head_dim, |
|
|
self.scaling, |
|
|
num_kv_heads=self.num_kv_heads, |
|
|
cache_config=cache_config, |
|
|
quant_config=quant_config, |
|
|
prefix=f"{prefix}.attn", |
|
|
attn_type=AttentionType.ENCODER_DECODER) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
decoder_hidden_states: torch.Tensor, |
|
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
|
) -> torch.Tensor: |
|
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
|
|
q, k, v = self.qkv_proj(decoder_hidden_states, encoder_hidden_states) |
|
|
|
|
|
attn_output = self.attn(q, k, v) |
|
|
|
|
|
output, _ = self.out_proj(attn_output) |
|
|
return output |
|
|
|
|
|
|
|
|
class BartEncoderLayer(nn.Module): |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
config: BartConfig, |
|
|
cache_config: Optional[CacheConfig] = None, |
|
|
quant_config: Optional[QuantizationConfig] = None, |
|
|
prefix: str = "", |
|
|
): |
|
|
super().__init__() |
|
|
self.embed_dim = config.d_model |
|
|
|
|
|
self.self_attn = BartEncoderAttention( |
|
|
embed_dim=self.embed_dim, |
|
|
num_heads=config.encoder_attention_heads, |
|
|
config=config, |
|
|
cache_config=cache_config, |
|
|
quant_config=quant_config, |
|
|
prefix=f"{prefix}.self_attn", |
|
|
) |
|
|
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) |
|
|
self.activation_fn = get_act_fn(config.activation_function) |
|
|
|
|
|
ffn_hidden_size = self.embed_dim |
|
|
ffn_intermediate_size = config.encoder_ffn_dim |
|
|
ffn_has_bias = True |
|
|
self.fc1 = ColumnParallelLinear( |
|
|
ffn_hidden_size, |
|
|
ffn_intermediate_size, |
|
|
bias=ffn_has_bias, |
|
|
quant_config=quant_config, |
|
|
) |
|
|
self.act = get_act_fn("gelu") |
|
|
self.fc2 = RowParallelLinear( |
|
|
ffn_intermediate_size, |
|
|
ffn_hidden_size, |
|
|
bias=ffn_has_bias, |
|
|
quant_config=quant_config, |
|
|
) |
|
|
|
|
|
self.final_layer_norm = nn.LayerNorm(self.embed_dim) |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
r""" |
|
|
Args: |
|
|
hidden_states |
|
|
torch.Tensor of *encoder* input embeddings. |
|
|
Returns: |
|
|
Encoder layer output torch.Tensor |
|
|
""" |
|
|
residual = hidden_states |
|
|
hidden_states = self.self_attn(hidden_states=hidden_states) |
|
|
|
|
|
hidden_states = residual + hidden_states |
|
|
hidden_states = self.self_attn_layer_norm(hidden_states) |
|
|
|
|
|
residual = hidden_states |
|
|
fc1_out, _ = self.fc1(hidden_states) |
|
|
hidden_states = self.activation_fn(fc1_out) |
|
|
|
|
|
hidden_states, _ = self.fc2(hidden_states) |
|
|
|
|
|
hidden_states = residual + hidden_states |
|
|
hidden_states = self.final_layer_norm(hidden_states) |
|
|
|
|
|
if hidden_states.dtype == torch.float16 and ( |
|
|
torch.isinf(hidden_states).any() |
|
|
or torch.isnan(hidden_states).any()): |
|
|
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 |
|
|
hidden_states = torch.clamp(hidden_states, |
|
|
min=-clamp_value, |
|
|
max=clamp_value) |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class BartDecoderLayer(nn.Module): |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
config: BartConfig, |
|
|
cache_config: Optional[CacheConfig] = None, |
|
|
quant_config: Optional[QuantizationConfig] = None, |
|
|
prefix: str = "", |
|
|
): |
|
|
super().__init__() |
|
|
self.embed_dim = config.d_model |
|
|
|
|
|
self.self_attn = BartDecoderSelfAttention( |
|
|
embed_dim=self.embed_dim, |
|
|
num_heads=config.decoder_attention_heads, |
|
|
config=config, |
|
|
cache_config=cache_config, |
|
|
quant_config=quant_config, |
|
|
prefix=f"{prefix}.self_attn", |
|
|
) |
|
|
self.activation_fn = get_act_fn(config.activation_function) |
|
|
|
|
|
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) |
|
|
''' |
|
|
afeldman-nm: personally I would call this "cross-attention", |
|
|
however I left the name as "encoder_attn" to maintain consistency |
|
|
with the name of the pretrained weights. |
|
|
''' |
|
|
self.encoder_attn = BartCrossAttention( |
|
|
self.embed_dim, |
|
|
config.decoder_attention_heads, |
|
|
config=config, |
|
|
prefix=f"{prefix}.encoder_attn", |
|
|
) |
|
|
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) |
|
|
|
|
|
ffn_hidden_size = self.embed_dim |
|
|
ffn_intermediate_size = config.encoder_ffn_dim |
|
|
ffn_has_bias = True |
|
|
self.fc1 = ColumnParallelLinear( |
|
|
ffn_hidden_size, |
|
|
ffn_intermediate_size, |
|
|
bias=ffn_has_bias, |
|
|
quant_config=quant_config, |
|
|
) |
|
|
self.fc2 = RowParallelLinear( |
|
|
ffn_intermediate_size, |
|
|
ffn_hidden_size, |
|
|
bias=ffn_has_bias, |
|
|
quant_config=quant_config, |
|
|
) |
|
|
|
|
|
self.final_layer_norm = nn.LayerNorm(self.embed_dim) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
decoder_hidden_states: torch.Tensor, |
|
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
|
) -> torch.Tensor: |
|
|
r""" |
|
|
Args: |
|
|
decoder_hidden_states |
|
|
torch.Tensor of *decoder* input embeddings. |
|
|
encoder_hidden_states |
|
|
torch.Tensor of *encoder* input embeddings. |
|
|
Returns: |
|
|
Decoder layer output torch.Tensor |
|
|
""" |
|
|
residual = decoder_hidden_states |
|
|
|
|
|
|
|
|
hidden_states = self.self_attn(hidden_states=decoder_hidden_states) |
|
|
|
|
|
hidden_states = residual + hidden_states |
|
|
hidden_states = self.self_attn_layer_norm(hidden_states) |
|
|
|
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
|
|
|
hidden_states = self.encoder_attn( |
|
|
decoder_hidden_states=hidden_states, |
|
|
encoder_hidden_states=encoder_hidden_states, |
|
|
) |
|
|
|
|
|
hidden_states = residual + hidden_states |
|
|
hidden_states = self.encoder_attn_layer_norm(hidden_states) |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
fc1_out, _ = self.fc1(hidden_states) |
|
|
hidden_states = self.activation_fn(fc1_out) |
|
|
|
|
|
hidden_states, _ = self.fc2(hidden_states) |
|
|
|
|
|
hidden_states = residual + hidden_states |
|
|
hidden_states = self.final_layer_norm(hidden_states) |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class BartEncoder(nn.Module): |
|
|
""" |
|
|
Transformer encoder consisting of *config.encoder_layers* |
|
|
self attention layers. Each layer is a [`BartEncoderLayer`]. |
|
|
Args: |
|
|
config: BartConfig |
|
|
embed_tokens (nn.Embedding): output embedding |
|
|
""" |
|
|
|
|
|
def __init__(self, |
|
|
config: BartConfig, |
|
|
cache_config: Optional[CacheConfig] = None, |
|
|
quant_config: Optional[QuantizationConfig] = None, |
|
|
lora_config: Optional[LoRAConfig] = None, |
|
|
embed_tokens: Optional[nn.Embedding] = None, |
|
|
prefix: str = ""): |
|
|
super().__init__() |
|
|
|
|
|
self.cache_config = cache_config |
|
|
self.quant_config = quant_config |
|
|
self.lora_config = lora_config |
|
|
embed_dim = config.d_model |
|
|
self.max_source_positions = config.max_position_embeddings |
|
|
embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 |
|
|
|
|
|
self.embed_tokens = BartScaledWordEmbedding(config.vocab_size, |
|
|
embed_dim, |
|
|
embed_scale=embed_scale) |
|
|
|
|
|
if embed_tokens is not None: |
|
|
self.embed_tokens.weight = embed_tokens.weight |
|
|
|
|
|
self.embed_positions = BartLearnedPositionalEmbedding( |
|
|
config.max_position_embeddings, |
|
|
embed_dim, |
|
|
) |
|
|
self.layers = nn.ModuleList([ |
|
|
BartEncoderLayer(config, |
|
|
cache_config, |
|
|
quant_config, |
|
|
prefix=f"{prefix}.layers.{layer_idx}") |
|
|
for layer_idx in range(config.encoder_layers) |
|
|
]) |
|
|
|
|
|
self.layernorm_embedding = nn.LayerNorm(embed_dim) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.Tensor, |
|
|
positions: torch.Tensor, |
|
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
|
) -> torch.Tensor: |
|
|
r""" |
|
|
Args: |
|
|
input_ids |
|
|
Indices of *encoder* input sequence tokens in the vocabulary. |
|
|
Padding will be ignored by default should you |
|
|
provide it. |
|
|
positions |
|
|
Positions of *encoder* input sequence tokens. |
|
|
Returns: |
|
|
Decoder output torch.Tensor |
|
|
""" |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
embed_pos = self.embed_positions(positions) |
|
|
embed_pos = embed_pos.to(inputs_embeds.device) |
|
|
|
|
|
hidden_states = inputs_embeds + embed_pos |
|
|
hidden_states = self.layernorm_embedding(hidden_states) |
|
|
|
|
|
for encoder_layer in self.layers: |
|
|
hidden_states = encoder_layer(hidden_states=hidden_states) |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class BartDecoder(nn.Module): |
|
|
""" |
|
|
Transformer decoder consisting of *config.decoder_layers* layers. |
|
|
Each layer is a [`BartDecoderLayer`] |
|
|
Args: |
|
|
config: BartConfig |
|
|
embed_tokens (nn.Embedding): output embedding |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
config: BartConfig, |
|
|
cache_config: Optional[CacheConfig] = None, |
|
|
quant_config: Optional[QuantizationConfig] = None, |
|
|
lora_config: Optional[LoRAConfig] = None, |
|
|
embed_tokens: Optional[nn.Embedding] = None, |
|
|
prefix: str = "", |
|
|
): |
|
|
super().__init__() |
|
|
self.cache_config = cache_config |
|
|
self.quant_config = quant_config |
|
|
self.lora_config = lora_config |
|
|
self.max_target_positions = config.max_position_embeddings |
|
|
embed_scale = math.sqrt( |
|
|
config.d_model) if config.scale_embedding else 1.0 |
|
|
|
|
|
self.embed_tokens = BartScaledWordEmbedding(config.vocab_size, |
|
|
config.d_model, |
|
|
embed_scale=embed_scale) |
|
|
|
|
|
if embed_tokens is not None: |
|
|
self.embed_tokens.weight = embed_tokens.weight |
|
|
|
|
|
self.embed_positions = BartLearnedPositionalEmbedding( |
|
|
config.max_position_embeddings, |
|
|
config.d_model, |
|
|
) |
|
|
|
|
|
self.layers = nn.ModuleList( |
|
|
[BartDecoderLayer(config,cache_config,quant_config, |
|
|
prefix=f"{prefix}.layers.{layer_idx}") \ |
|
|
for layer_idx in range(config.decoder_layers)]) |
|
|
|
|
|
self.layernorm_embedding = nn.LayerNorm(config.d_model) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
decoder_input_ids: torch.Tensor, |
|
|
decoder_positions: torch.Tensor, |
|
|
encoder_hidden_states: Optional[torch.Tensor], |
|
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
|
) -> torch.Tensor: |
|
|
r""" |
|
|
Args: |
|
|
decoder_input_ids |
|
|
Indices of *decoder* input sequence tokens in the vocabulary. |
|
|
Padding will be ignored by default should you |
|
|
provide it. |
|
|
decoder_positions |
|
|
Positions of *decoder* input sequence tokens. |
|
|
encoder_hidden_states: |
|
|
Tensor of encoder output embeddings |
|
|
Returns: |
|
|
Decoder output torch.Tensor |
|
|
""" |
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(decoder_input_ids) |
|
|
else: |
|
|
decoder_positions = inputs_embeds[:, -1] |
|
|
|
|
|
|
|
|
embed_pos = self.embed_positions(decoder_positions) |
|
|
embed_pos = embed_pos.to(inputs_embeds.device) |
|
|
|
|
|
hidden_states = inputs_embeds + embed_pos |
|
|
hidden_states = self.layernorm_embedding(hidden_states) |
|
|
|
|
|
|
|
|
|
|
|
for decoder_layer in self.layers: |
|
|
hidden_states = decoder_layer( |
|
|
decoder_hidden_states=hidden_states, |
|
|
encoder_hidden_states=encoder_hidden_states, |
|
|
) |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class BartModel(nn.Module, SupportsQuant): |
|
|
_tied_weights_keys = [ |
|
|
"encoder.embed_tokens.weight", "decoder.embed_tokens.weight" |
|
|
] |
|
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
|
super().__init__() |
|
|
|
|
|
config = vllm_config.model_config.hf_config |
|
|
cache_config = vllm_config.cache_config |
|
|
quant_config = vllm_config.quant_config |
|
|
lora_config = vllm_config.lora_config |
|
|
|
|
|
self.config = config |
|
|
|
|
|
lora_vocab = (lora_config.lora_extra_vocab_size * |
|
|
(lora_config.max_loras or 1)) if lora_config else 0 |
|
|
self.vocab_size = config.vocab_size + lora_vocab |
|
|
self.org_vocab_size = config.vocab_size |
|
|
|
|
|
self.encoder = BartEncoder(config, |
|
|
cache_config, |
|
|
quant_config=quant_config, |
|
|
prefix=f"{prefix}.encoder") |
|
|
self.decoder = BartDecoder(config, |
|
|
cache_config, |
|
|
quant_config=quant_config, |
|
|
prefix=f"{prefix}.decoder") |
|
|
|
|
|
def forward(self, input_ids: torch.Tensor, positions: torch.Tensor, |
|
|
encoder_input_ids: torch.Tensor, |
|
|
encoder_positions: torch.Tensor) -> torch.Tensor: |
|
|
r""" |
|
|
Args: |
|
|
input_ids |
|
|
Indices of *decoder* input sequence tokens in the vocabulary. |
|
|
Padding will be ignored by default should you |
|
|
provide it. |
|
|
positions |
|
|
Positions of *decoder* input sequence tokens. |
|
|
encoder_input_ids |
|
|
Indices of *encoder* input sequence tokens in the vocabulary. |
|
|
encoder_positions: |
|
|
Positions of *encoder* input sequence tokens. |
|
|
Returns: |
|
|
Model output torch.Tensor |
|
|
""" |
|
|
|
|
|
encoder_hidden_states = None |
|
|
|
|
|
if encoder_input_ids.numel() > 0: |
|
|
|
|
|
|
|
|
encoder_hidden_states = self.encoder(input_ids=encoder_input_ids, |
|
|
positions=encoder_positions) |
|
|
|
|
|
|
|
|
|
|
|
decoder_outputs = self.decoder( |
|
|
decoder_input_ids=input_ids, |
|
|
decoder_positions=positions, |
|
|
encoder_hidden_states=encoder_hidden_states) |
|
|
|
|
|
return decoder_outputs |
|
|
|
|
|
|
|
|
class BartForConditionalGeneration(nn.Module, SupportsV0Only, SupportsQuant): |
|
|
packed_modules_mapping = {"qkv_proj": ["q_proj", "k_proj", "v_proj"]} |
|
|
base_model_prefix = "model" |
|
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
|
|
|
|
super().__init__() |
|
|
config = vllm_config.model_config.hf_config |
|
|
lora_config = vllm_config.lora_config |
|
|
|
|
|
assert config.tie_word_embeddings |
|
|
self.config = config |
|
|
self.model = BartModel(vllm_config=vllm_config, |
|
|
prefix=maybe_prefix(prefix, "model")) |
|
|
|
|
|
self.unpadded_vocab_size = config.vocab_size |
|
|
if lora_config: |
|
|
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size |
|
|
|
|
|
embed_scale = math.sqrt( |
|
|
config.d_model) if config.scale_embedding else 1.0 |
|
|
|
|
|
self.lm_head = BartParallelLMHead(config.vocab_size, |
|
|
config.d_model, |
|
|
embed_scale=embed_scale) |
|
|
|
|
|
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size, |
|
|
config.vocab_size) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.Tensor, |
|
|
positions: torch.Tensor, |
|
|
intermediate_tensors: Optional[IntermediateTensors] = None, |
|
|
*, |
|
|
encoder_input_ids: torch.Tensor, |
|
|
encoder_positions: torch.Tensor, |
|
|
**kwargs, |
|
|
) -> torch.Tensor: |
|
|
r""" |
|
|
Args: |
|
|
input_ids |
|
|
torch.Tensor of *decoder* input token ids. |
|
|
positions |
|
|
torch.Tensor of *decoder* position indices. |
|
|
encoder_input_ids |
|
|
torch.Tensor of *encoder* input token ids. |
|
|
encoder_positions |
|
|
torch.Tensor of *encoder* position indices |
|
|
Returns: |
|
|
Output torch.Tensor |
|
|
""" |
|
|
return self.model(input_ids, positions, encoder_input_ids, |
|
|
encoder_positions) |
|
|
|
|
|
def compute_logits( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
sampling_metadata: SamplingMetadata, |
|
|
) -> Optional[torch.Tensor]: |
|
|
logits = self.logits_processor(self.lm_head, hidden_states, |
|
|
sampling_metadata) |
|
|
return logits |
|
|
|
|
|
stacked_params_mapping = { |
|
|
"q_proj": { |
|
|
"param_name": "qkv_proj", |
|
|
"shard_id": "q", |
|
|
}, |
|
|
"k_proj": { |
|
|
"param_name": "qkv_proj", |
|
|
"shard_id": "k", |
|
|
}, |
|
|
"v_proj": { |
|
|
"param_name": "qkv_proj", |
|
|
"shard_id": "v", |
|
|
}, |
|
|
} |
|
|
|
|
|
params_mapping = { |
|
|
"beta": "bias", |
|
|
"gamma": "weight", |
|
|
"LayerNorm": "layernorm", |
|
|
} |
|
|
|
|
|
def _rename_key(self, key: str): |
|
|
prefix = f"{self.base_model_prefix}." |
|
|
key = key[len(prefix):] if key.startswith(prefix) else key |
|
|
|
|
|
for src, dst in self.params_mapping.items(): |
|
|
key = key.replace(src, dst) |
|
|
|
|
|
return key |
|
|
|
|
|
def _rename_stacked_param( |
|
|
self, |
|
|
name: str, |
|
|
) -> tuple[str, Optional[str]]: |
|
|
for key, mapping in self.stacked_params_mapping.items(): |
|
|
if key in name: |
|
|
name = name.replace(key, mapping["param_name"]) |
|
|
return name, mapping["shard_id"] |
|
|
return name, None |
|
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]): |
|
|
|
|
|
model_params_dict = dict(self.model.named_parameters()) |
|
|
top_params_dict = dict(self.named_parameters()) |
|
|
|
|
|
weights_tuple_list = list(weights) |
|
|
|
|
|
shared_embedding_weight = None |
|
|
shared_embedding_shard_id = None |
|
|
|
|
|
for name, loaded_weight in weights_tuple_list: |
|
|
|
|
|
name = self._rename_key(name) |
|
|
name, shard_id = self._rename_stacked_param(name) |
|
|
|
|
|
if ('shared.weight' in name |
|
|
or 'encoder.embed_tokens.weight' in name |
|
|
or 'decoder.embed_tokens.weight' in name |
|
|
or 'lm_head.weight' in name): |
|
|
assert shared_embedding_weight is None, ( |
|
|
"Conflicting embedding weights.") |
|
|
shared_embedding_weight = loaded_weight |
|
|
shared_embedding_shard_id = shard_id |
|
|
else: |
|
|
|
|
|
if name.startswith('cls.'): |
|
|
continue |
|
|
|
|
|
if name.startswith('pooler.'): |
|
|
continue |
|
|
|
|
|
if name.endswith(".bias") and name not in model_params_dict: |
|
|
continue |
|
|
|
|
|
param = model_params_dict[name] |
|
|
weight_loader = getattr(param, "weight_loader", |
|
|
default_weight_loader) |
|
|
if shard_id: |
|
|
weight_loader(param, loaded_weight, shard_id) |
|
|
else: |
|
|
weight_loader(param, loaded_weight) |
|
|
|
|
|
|
|
|
encoder_in_param = model_params_dict['encoder.embed_tokens.weight'] |
|
|
encoder_in_weight_loader = getattr(encoder_in_param, "weight_loader", |
|
|
default_weight_loader) |
|
|
|
|
|
decoder_in_param = model_params_dict['decoder.embed_tokens.weight'] |
|
|
decoder_in_weight_loader = getattr(decoder_in_param, "weight_loader", |
|
|
default_weight_loader) |
|
|
|
|
|
lm_head_in_param = top_params_dict['lm_head.weight'] |
|
|
lm_head_in_weight_loader = getattr(lm_head_in_param, "weight_loader", |
|
|
default_weight_loader) |
|
|
|
|
|
assert shared_embedding_weight is not None |
|
|
|
|
|
if shared_embedding_shard_id: |
|
|
encoder_in_weight_loader(encoder_in_param, shared_embedding_weight, |
|
|
shared_embedding_shard_id) |
|
|
decoder_in_weight_loader(decoder_in_param, shared_embedding_weight, |
|
|
shared_embedding_shard_id) |
|
|
lm_head_in_weight_loader(lm_head_in_param, shared_embedding_weight, |
|
|
shared_embedding_shard_id) |
|
|
else: |
|
|
encoder_in_weight_loader(encoder_in_param, shared_embedding_weight) |
|
|
decoder_in_weight_loader(decoder_in_param, shared_embedding_weight) |
|
|
lm_head_in_weight_loader(lm_head_in_param, shared_embedding_weight) |
|
|
|