rajistics commited on
Commit
3958b77
·
1 Parent(s): e494680

pushing files to the repo from the example!

Browse files
Files changed (5) hide show
  1. README.md +73 -71
  2. config.json +68 -68
  3. confusion_matrix.png +0 -0
  4. model.pkl +1 -1
  5. tree.png +0 -0
README.md CHANGED
@@ -11,97 +11,97 @@ widget:
11
  - material_7
12
  - material_7
13
  attribute_1:
14
- - material_8
15
- - material_8
16
  - material_5
 
17
  attribute_2:
18
- - 9
19
- - 9
20
  - 6
21
  attribute_3:
22
- - 5
23
- - 5
24
  - 6
 
25
  loading:
26
- - 150.15
27
- - 106.3
28
- - 117.52
29
  measurement_0:
30
- - 6
 
31
  - 11
32
- - 4
33
  measurement_1:
34
- - 7
35
- - 4
36
- - 9
37
  measurement_10:
38
- - 15.888
39
- - 15.56
40
- - 18.49
41
  measurement_11:
42
- - 21.623
43
- - 17.233
44
- - 20.193
45
  measurement_12:
46
- - 12.83
47
- - 12.926
48
- - 14.127
49
  measurement_13:
50
- - 14.738
51
- - 14.367
52
- - 15.185
53
  measurement_14:
54
- - 18.506
55
- - 16.302
56
- - 16.657
57
  measurement_15:
58
- - 14.16
59
- - 15.018
60
- - 13.326
61
  measurement_16:
62
- - 15.266
63
- - 18.297
64
- - 17.467
65
  measurement_17:
66
- - 674.165
67
- - 604.836
68
- - 648.023
69
  measurement_2:
70
- - 11
71
- - 4
72
- - 9
73
  measurement_3:
74
- - 19.637
75
- - 18.217
76
- - 19.325
77
  measurement_4:
78
- - 12.55
79
- - 10.627
80
- - 10.092
81
  measurement_5:
82
- - 17.119
83
- - 17.74
84
- - 17.218
85
  measurement_6:
86
- - .nan
87
- - 17.295
88
- - 17.962
89
  measurement_7:
90
- - 10.958
91
- - 11.732
92
- - 9.274
93
  measurement_8:
94
- - 17.93
95
- - 17.591
96
- - 18.653
97
  measurement_9:
98
- - .nan
99
- - 12.689
100
- - 13.149
101
  product_code:
102
- - A
103
- - A
104
  - D
 
105
  ---
106
 
107
  # Model description
@@ -220,7 +220,7 @@ The model is trained with below hyperparameters.
220
 
221
  The model plot is below.
222
 
223
- <style>#sk-cbcf73f3-3df0-460c-a28c-e975797de98c {color: black;background-color: white;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c pre{padding: 0;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-toggleable {background-color: white;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-estimator:hover {background-color: #d4ebff;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-item {z-index: 1;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel-item:only-child::after {width: 0;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-text-repr-fallback {display: none;}</style><div id="sk-cbcf73f3-3df0-460c-a28c-e975797de98c" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="4039f6df-38bb-4617-ac8b-f6e94de8a91c" type="checkbox" ><label for="4039f6df-38bb-4617-ac8b-f6e94de8a91c" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="61e07386-e7b7-418a-9af8-41b0261577b4" type="checkbox" ><label for="61e07386-e7b7-418a-9af8-41b0261577b4" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(), [&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;, OneHotEncoder(),[&#x27;product_code&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="543953aa-7345-4433-b640-9ebcb9cfaed6" type="checkbox" ><label for="543953aa-7345-4433-b640-9ebcb9cfaed6" class="sk-toggleable__label sk-toggleable__label-arrow">loading_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="28f1b85a-54e9-44db-b914-819af4998fd1" type="checkbox" ><label for="28f1b85a-54e9-44db-b914-819af4998fd1" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="d8710d93-e747-4796-95d5-77538856cb1d" type="checkbox" ><label for="d8710d93-e747-4796-95d5-77538856cb1d" class="sk-toggleable__label sk-toggleable__label-arrow">numerical_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;, &#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;, &#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;, &#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;, &#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;, &#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;, &#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;, &#x27;measurement_17&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="b23ea887-b3eb-4dbc-ba26-dd3e0e018c70" type="checkbox" ><label for="b23ea887-b3eb-4dbc-ba26-dd3e0e018c70" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c87a37af-e576-4840-bf8c-7e7f5b8ab39e" type="checkbox" ><label for="c87a37af-e576-4840-bf8c-7e7f5b8ab39e" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_0_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_0&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="580ea11e-4df6-4bce-b994-dc4d342d42d4" type="checkbox" ><label for="580ea11e-4df6-4bce-b994-dc4d342d42d4" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="8ccfa95c-d0f7-4dd2-8be2-0885a564d231" type="checkbox" ><label for="8ccfa95c-d0f7-4dd2-8be2-0885a564d231" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_1_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_1&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="e1ed00d2-3cb6-43cd-9ba5-bc0518c93345" type="checkbox" ><label for="e1ed00d2-3cb6-43cd-9ba5-bc0518c93345" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="b94ddf76-0075-4efc-9cc4-8c6b69fefad5" type="checkbox" ><label for="b94ddf76-0075-4efc-9cc4-8c6b69fefad5" class="sk-toggleable__label sk-toggleable__label-arrow">product_code_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;product_code&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="1d06bc4d-04b9-44d6-a23f-cdc26d70b7e2" type="checkbox" ><label for="1d06bc4d-04b9-44d6-a23f-cdc26d70b7e2" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="208c2a51-a582-469b-9bd1-23b9a3968840" type="checkbox" ><label for="208c2a51-a582-469b-9bd1-23b9a3968840" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(max_depth=4)</pre></div></div></div></div></div></div></div>
224
 
225
  ## Evaluation Results
226
 
@@ -230,8 +230,8 @@ You can find the details about evaluation process and the evaluation results.
230
 
231
  | Metric | Value |
232
  |----------|----------|
233
- | accuracy | 0.778564 |
234
- | f1 score | 0.778564 |
235
 
236
  # How to Get Started with the Model
237
 
@@ -272,10 +272,12 @@ Below you can find information related to citation.
272
  ```
273
 
274
 
275
- Tree Plot
276
- ![Tree Plot](tree.png)
 
277
 
 
278
 
 
279
 
280
- Confusion Matrix
281
- ![Confusion Matrix](confusion_matrix.png)
 
11
  - material_7
12
  - material_7
13
  attribute_1:
14
+ - material_6
 
15
  - material_5
16
+ - material_6
17
  attribute_2:
18
+ - 6
19
+ - 6
20
  - 6
21
  attribute_3:
22
+ - 9
 
23
  - 6
24
+ - 9
25
  loading:
26
+ - 101.52
27
+ - 91.34
28
+ - 167.03
29
  measurement_0:
30
+ - 9
31
+ - 10
32
  - 11
 
33
  measurement_1:
34
+ - 11
35
+ - 11
36
+ - 5
37
  measurement_10:
38
+ - 14.926
39
+ - 15.162
40
+ - 16.398
41
  measurement_11:
42
+ - 20.394
43
+ - 19.46
44
+ - 20.613
45
  measurement_12:
46
+ - 11.829
47
+ - 9.114
48
+ - 11.007
49
  measurement_13:
50
+ - 16.195
51
+ - 16.024
52
+ - 16.061
53
  measurement_14:
54
+ - 16.517
55
+ - 17.132
56
+ - 15.18
57
  measurement_15:
58
+ - 13.826
59
+ - 12.257
60
+ - 15.758
61
  measurement_16:
62
+ - 14.206
63
+ - 15.094
64
+ - .nan
65
  measurement_17:
66
+ - 723.712
67
+ - 896.835
68
+ - 893.454
69
  measurement_2:
70
+ - 2
71
+ - 10
72
+ - 6
73
  measurement_3:
74
+ - 17.492
75
+ - 18.114
76
+ - 18.42
77
  measurement_4:
78
+ - 13.962
79
+ - 10.185
80
+ - 13.565
81
  measurement_5:
82
+ - 15.716
83
+ - 18.06
84
+ - 16.916
85
  measurement_6:
86
+ - 17.104
87
+ - 18.283
88
+ - 17.917
89
  measurement_7:
90
+ - 12.377
91
+ - 10.957
92
+ - 10.394
93
  measurement_8:
94
+ - 19.221
95
+ - 20.638
96
+ - 19.805
97
  measurement_9:
98
+ - 11.613
99
+ - 11.804
100
+ - 12.012
101
  product_code:
102
+ - E
 
103
  - D
104
+ - E
105
  ---
106
 
107
  # Model description
 
220
 
221
  The model plot is below.
222
 
223
+ <style>#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 {color: black;background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 pre{padding: 0;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-toggleable {background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator:hover {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-item {z-index: 1;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item:only-child::after {width: 0;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-text-repr-fallback {display: none;}</style><div id="sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="48fbfeb0-e954-46f7-9a36-8dfe86284fca" type="checkbox" ><label for="48fbfeb0-e954-46f7-9a36-8dfe86284fca" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="157828b7-30d1-4b5b-b25e-971143379fff" type="checkbox" ><label for="157828b7-30d1-4b5b-b25e-971143379fff" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(), [&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;, OneHotEncoder(),[&#x27;product_code&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="3bde7e44-3687-4b99-a3b7-b4e87023ec85" type="checkbox" ><label for="3bde7e44-3687-4b99-a3b7-b4e87023ec85" class="sk-toggleable__label sk-toggleable__label-arrow">loading_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ef9279cb-7d77-4ef1-aafe-26e433e2a615" type="checkbox" ><label for="ef9279cb-7d77-4ef1-aafe-26e433e2a615" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="b079e8d7-f789-4622-ad66-197193ef0061" type="checkbox" ><label for="b079e8d7-f789-4622-ad66-197193ef0061" class="sk-toggleable__label sk-toggleable__label-arrow">numerical_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;, &#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;, &#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;, &#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;, &#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;, &#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;, &#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;, &#x27;measurement_17&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="969f6026-8077-468a-b332-8ceb69bac4e9" type="checkbox" ><label for="969f6026-8077-468a-b332-8ceb69bac4e9" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="5bb6cc8f-c971-47b8-a1bc-fe8053602d5c" type="checkbox" ><label for="5bb6cc8f-c971-47b8-a1bc-fe8053602d5c" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_0_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_0&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="8a841657-38e1-41bb-b8f9-5ad2cc25f7d3" type="checkbox" ><label for="8a841657-38e1-41bb-b8f9-5ad2cc25f7d3" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="be08add7-98fc-40b5-a259-d462d738780a" type="checkbox" ><label for="be08add7-98fc-40b5-a259-d462d738780a" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_1_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_1&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="cf07a6c2-b92e-40b1-9862-2c1ca3baab47" type="checkbox" ><label for="cf07a6c2-b92e-40b1-9862-2c1ca3baab47" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="244735dc-f1e1-458c-a1c6-60ef847b9cae" type="checkbox" ><label for="244735dc-f1e1-458c-a1c6-60ef847b9cae" class="sk-toggleable__label sk-toggleable__label-arrow">product_code_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;product_code&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="2f1a1c41-e1c4-40ce-afd9-9658030b3423" type="checkbox" ><label for="2f1a1c41-e1c4-40ce-afd9-9658030b3423" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="25044b48-b814-45f9-a75b-9ee472bdc79c" type="checkbox" ><label for="25044b48-b814-45f9-a75b-9ee472bdc79c" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(max_depth=4)</pre></div></div></div></div></div></div></div>
224
 
225
  ## Evaluation Results
226
 
 
230
 
231
  | Metric | Value |
232
  |----------|----------|
233
+ | accuracy | 0.791961 |
234
+ | f1 score | 0.791961 |
235
 
236
  # How to Get Started with the Model
237
 
 
272
  ```
273
 
274
 
275
+ # Additional Content
276
+
277
+ ## Tree Plot
278
 
279
+ ![Tree Plot](decision-tree-playground-kaggle/tree.png)
280
 
281
+ ## Confusion Matrix
282
 
283
+ ![Confusion Matrix](decision-tree-playground-kaggle/confusion_matrix.png)
 
config.json CHANGED
@@ -36,119 +36,119 @@
36
  "material_7"
37
  ],
38
  "attribute_1": [
39
- "material_8",
40
- "material_8",
41
- "material_5"
42
  ],
43
  "attribute_2": [
44
- 9,
45
- 9,
46
  6
47
  ],
48
  "attribute_3": [
49
- 5,
50
- 5,
51
- 6
52
  ],
53
  "loading": [
54
- 150.15,
55
- 106.3,
56
- 117.52
57
  ],
58
  "measurement_0": [
59
- 6,
60
- 11,
61
- 4
62
  ],
63
  "measurement_1": [
64
- 7,
65
- 4,
66
- 9
67
  ],
68
  "measurement_10": [
69
- 15.888,
70
- 15.56,
71
- 18.49
72
  ],
73
  "measurement_11": [
74
- 21.623,
75
- 17.233,
76
- 20.193
77
  ],
78
  "measurement_12": [
79
- 12.83,
80
- 12.926,
81
- 14.127
82
  ],
83
  "measurement_13": [
84
- 14.738,
85
- 14.367,
86
- 15.185
87
  ],
88
  "measurement_14": [
89
- 18.506,
90
- 16.302,
91
- 16.657
92
  ],
93
  "measurement_15": [
94
- 14.16,
95
- 15.018,
96
- 13.326
97
  ],
98
  "measurement_16": [
99
- 15.266,
100
- 18.297,
101
- 17.467
102
  ],
103
  "measurement_17": [
104
- 674.165,
105
- 604.836,
106
- 648.023
107
  ],
108
  "measurement_2": [
109
- 11,
110
- 4,
111
- 9
112
  ],
113
  "measurement_3": [
114
- 19.637,
115
- 18.217,
116
- 19.325
117
  ],
118
  "measurement_4": [
119
- 12.55,
120
- 10.627,
121
- 10.092
122
  ],
123
  "measurement_5": [
124
- 17.119,
125
- 17.74,
126
- 17.218
127
  ],
128
  "measurement_6": [
129
- NaN,
130
- 17.295,
131
- 17.962
132
  ],
133
  "measurement_7": [
134
- 10.958,
135
- 11.732,
136
- 9.274
137
  ],
138
  "measurement_8": [
139
- 17.93,
140
- 17.591,
141
- 18.653
142
  ],
143
  "measurement_9": [
144
- NaN,
145
- 12.689,
146
- 13.149
147
  ],
148
  "product_code": [
149
- "A",
150
- "A",
151
- "D"
152
  ]
153
  },
154
  "model": {
 
36
  "material_7"
37
  ],
38
  "attribute_1": [
39
+ "material_6",
40
+ "material_5",
41
+ "material_6"
42
  ],
43
  "attribute_2": [
44
+ 6,
45
+ 6,
46
  6
47
  ],
48
  "attribute_3": [
49
+ 9,
50
+ 6,
51
+ 9
52
  ],
53
  "loading": [
54
+ 101.52,
55
+ 91.34,
56
+ 167.03
57
  ],
58
  "measurement_0": [
59
+ 9,
60
+ 10,
61
+ 11
62
  ],
63
  "measurement_1": [
64
+ 11,
65
+ 11,
66
+ 5
67
  ],
68
  "measurement_10": [
69
+ 14.926,
70
+ 15.162,
71
+ 16.398
72
  ],
73
  "measurement_11": [
74
+ 20.394,
75
+ 19.46,
76
+ 20.613
77
  ],
78
  "measurement_12": [
79
+ 11.829,
80
+ 9.114,
81
+ 11.007
82
  ],
83
  "measurement_13": [
84
+ 16.195,
85
+ 16.024,
86
+ 16.061
87
  ],
88
  "measurement_14": [
89
+ 16.517,
90
+ 17.132,
91
+ 15.18
92
  ],
93
  "measurement_15": [
94
+ 13.826,
95
+ 12.257,
96
+ 15.758
97
  ],
98
  "measurement_16": [
99
+ 14.206,
100
+ 15.094,
101
+ NaN
102
  ],
103
  "measurement_17": [
104
+ 723.712,
105
+ 896.835,
106
+ 893.454
107
  ],
108
  "measurement_2": [
109
+ 2,
110
+ 10,
111
+ 6
112
  ],
113
  "measurement_3": [
114
+ 17.492,
115
+ 18.114,
116
+ 18.42
117
  ],
118
  "measurement_4": [
119
+ 13.962,
120
+ 10.185,
121
+ 13.565
122
  ],
123
  "measurement_5": [
124
+ 15.716,
125
+ 18.06,
126
+ 16.916
127
  ],
128
  "measurement_6": [
129
+ 17.104,
130
+ 18.283,
131
+ 17.917
132
  ],
133
  "measurement_7": [
134
+ 12.377,
135
+ 10.957,
136
+ 10.394
137
  ],
138
  "measurement_8": [
139
+ 19.221,
140
+ 20.638,
141
+ 19.805
142
  ],
143
  "measurement_9": [
144
+ 11.613,
145
+ 11.804,
146
+ 12.012
147
  ],
148
  "product_code": [
149
+ "E",
150
+ "D",
151
+ "E"
152
  ]
153
  },
154
  "model": {
confusion_matrix.png CHANGED
model.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f40e9887075f5b2d676c4403570f5209241753a50303b4bfadeb32203376755a
3
  size 6824
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72099d3816c44c13b2284469de690419a7326caef2c0401ab91a37e7c8c4348e
3
  size 6824
tree.png CHANGED