delmaksym commited on
Commit
ab750df
1 Parent(s): fbdc126

First commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 254.36 +/- 15.06
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff508aeb160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff508aeb1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff508aeb280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff508aeb310>", "_build": "<function ActorCriticPolicy._build at 0x7ff508aeb3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff508aeb430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff508aeb4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff508aeb550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff508aeb5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff508aeb670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff508aeb700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff508ae65a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670278883904576171, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrVBD0f/Yq5eXzLO4Tr7jUTkJy68+b9NAAAgD8AAIA/ZuYbPhRdFz8qPqi+fu2uvsibjL1yjZe9AAAAAAAAAADztSc+Jv72PqK5j71QIJS+pZrbvDHZnT0AAAAAAAAAAM3yVD2udaS6JcrTumSm6bVSVgg6AqbzOQAAgD8AAIA/4EkAvvyimT8jAe++BO/Kvr+CG75dp3O+AAAAAAAAAAAAGrM98Bx4P+EcML2G7oa+vi4nPeD7fr0AAAAAAAAAADOEYT2PvlS6XrAfuU9eJbR55BC6NBc8OAAAgD8AAIA/zW94vY+KW7rTWWo408FpM8JrFDvj8Im3AACAPwAAgD/NFG89bGINPuqSbr0xWXO+uC+hO7glqz0AAAAAAAAAAADXOj0f1fS58bQnuNGnR7Pa8hs7+DZCNwAAgD8AAIA/zVCvPSkYPrpYgou5/kSKtMKL3zqxK6U4AACAPwAAgD/AwZI9romQuggdibp52IW1TTeVOlQLnzkAAIA/AACAP0AvrD3c2Rg/2CwsvRU2hL5U8ac9Wud5PQAAAAAAAAAAGu4tPezx9ThFSuE4CT9BtkSDlru5Wwe4AACAPwAAgD8zy5+8KRBJugA5Urpv95611tpgOhBkeDkAAIA/AACAP00xLD1cK1m6nmQfOWD8GzR5qPG5o6k7uAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2J5ZEiBRYUCUhpRSlIwBbJRN6AOMAXSUR0CQ2JABkqc3dX2UKGgGaAloD0MI6PaSxuh7YUCUhpRSlGgVTegDaBZHQJDaenm7rcF1fZQoaAZoCWgPQwiKx0W1iJQ7QJSGlFKUaBVL72gWR0CQ3thxHXmOdX2UKGgGaAloD0MIjIUhcnpdYECUhpRSlGgVTegDaBZHQJDiUIQe3hJ1fZQoaAZoCWgPQwim0eRijO9nQJSGlFKUaBVN6ANoFkdAkOJff0mMO3V9lChoBmgJaA9DCJCiztzDb2JAlIaUUpRoFU3oA2gWR0CQ+yffoA4odX2UKGgGaAloD0MIKsb5m1AGX0CUhpRSlGgVTegDaBZHQJEAJX5nDix1fZQoaAZoCWgPQwj76xUW3DtnQJSGlFKUaBVN6ANoFkdAkQFIKc/dI3V9lChoBmgJaA9DCL5QwHawE2VAlIaUUpRoFU3oA2gWR0CRCApnpSrHdX2UKGgGaAloD0MI7l9ZadL1Y0CUhpRSlGgVTegDaBZHQJENn/echDB1fZQoaAZoCWgPQwhc/67PnLlBQJSGlFKUaBVL6GgWR0CRDr2DQJHBdX2UKGgGaAloD0MIz/V9OEjOYUCUhpRSlGgVTegDaBZHQJEPRP0qYqp1fZQoaAZoCWgPQwiKrDWU2k9lQJSGlFKUaBVN6ANoFkdAkRDXXiBGx3V9lChoBmgJaA9DCLJl+bqMRWJAlIaUUpRoFU3oA2gWR0CRFJNBF/hEdX2UKGgGaAloD0MIBd1e0hiSZECUhpRSlGgVTegDaBZHQJEWwDOkcjt1fZQoaAZoCWgPQwjFOero+B5zQJSGlFKUaBVNaQJoFkdAkRlIn4O+ZnV9lChoBmgJaA9DCM0+j1Gex01AlIaUUpRoFUvjaBZHQJEZ0mOU+s51fZQoaAZoCWgPQwgewY2ULVILQJSGlFKUaBVL6WgWR0CRGwE5QxetdX2UKGgGaAloD0MI6IL6ljn3YECUhpRSlGgVTegDaBZHQJEb7O4XoDB1fZQoaAZoCWgPQwj9TL1uEW9ZwJSGlFKUaBVLl2gWR0CRIUK5TZQIdX2UKGgGaAloD0MIZk8Cm/MlZECUhpRSlGgVTegDaBZHQJEiCWw/xDt1fZQoaAZoCWgPQwgZA+s4fiZnQJSGlFKUaBVN6ANoFkdAkSPxc3VConV9lChoBmgJaA9DCNSCF32FdWFAlIaUUpRoFU3oA2gWR0CRJcpAlfJFdX2UKGgGaAloD0MI39xfPW7QZkCUhpRSlGgVTegDaBZHQJEp3Jgb6xh1fZQoaAZoCWgPQwhD/plB/PFkQJSGlFKUaBVN6ANoFkdAkS0hr8BMjHV9lChoBmgJaA9DCFDHYwYqzFBAlIaUUpRoFUv8aBZHQJEutCu2ZzB1fZQoaAZoCWgPQwhiLxSwHW5GQJSGlFKUaBVL+GgWR0CRQ61c+qzadX2UKGgGaAloD0MIeQJhp1h8UUCUhpRSlGgVS+9oFkdAkUT8SkCV8nV9lChoBmgJaA9DCBzvjozVO2JAlIaUUpRoFU3oA2gWR0CRRVnQ6ZH/dX2UKGgGaAloD0MIu9BcpxElY0CUhpRSlGgVTegDaBZHQJFKDkLhJiB1fZQoaAZoCWgPQwgiUz4E1QZiQJSGlFKUaBVN6ANoFkdAkU+dKRMewXV9lChoBmgJaA9DCH2wjA3dgXJAlIaUUpRoFU06AWgWR0CRVATBInSfdX2UKGgGaAloD0MI4443+S0FaUCUhpRSlGgVTegDaBZHQJFWJQFcIJJ1fZQoaAZoCWgPQwjtKw/S00RlQJSGlFKUaBVN6ANoFkdAkVedK28Zk3V9lChoBmgJaA9DCIWVCiqqul9AlIaUUpRoFU3oA2gWR0CRW2EFnqVydX2UKGgGaAloD0MIoz7JHTZ1QkCUhpRSlGgVS91oFkdAkVvAnc+JQHV9lChoBmgJaA9DCMcOKnEdnmJAlIaUUpRoFU3oA2gWR0CRXZlyR0U5dX2UKGgGaAloD0MIpwaazzn/Y0CUhpRSlGgVTegDaBZHQJFgK4smOVB1fZQoaAZoCWgPQwg5KGGmbcBjQJSGlFKUaBVN6ANoFkdAkWHTvZyuIXV9lChoBmgJaA9DCD81XrrJw2JAlIaUUpRoFU3oA2gWR0CRYqbdadMCdX2UKGgGaAloD0MIK2owDcODTECUhpRSlGgVS9RoFkdAkWfdWZJCjXV9lChoBmgJaA9DCJQzFHc8GmZAlIaUUpRoFU3oA2gWR0CRaI2rXDm9dX2UKGgGaAloD0MILuI7MetQYECUhpRSlGgVTegDaBZHQJFwn4pMHr11fZQoaAZoCWgPQwiuK2aENzBoQJSGlFKUaBVN6ANoFkdAkXQb39JjD3V9lChoBmgJaA9DCAJJ2LeTDEJAlIaUUpRoFUvyaBZHQJF1Tp5eJHl1fZQoaAZoCWgPQwjgufdwSUliQJSGlFKUaBVN6ANoFkdAkXXMPWhAW3V9lChoBmgJaA9DCBSUopV7zGJAlIaUUpRoFU3oA2gWR0CRjH30f5k9dX2UKGgGaAloD0MIBhN/FHWlY0CUhpRSlGgVTegDaBZHQJGM2VW0Z3t1fZQoaAZoCWgPQwgMPPceLlRoQJSGlFKUaBVN6ANoFkdAkZEjM/yGz3V9lChoBmgJaA9DCMAIGjOJv3BAlIaUUpRoFU2MA2gWR0CRl1MHbAUMdX2UKGgGaAloD0MIlX8tr1z4ZECUhpRSlGgVTegDaBZHQJGaSf029+R1fZQoaAZoCWgPQwh+qDRi5p1hQJSGlFKUaBVN6ANoFkdAkZ2PPw/gSHV9lChoBmgJaA9DCOoj8Icf52NAlIaUUpRoFU3oA2gWR0CRoSgFX7tRdX2UKGgGaAloD0MITrUWZiGSY0CUhpRSlGgVTegDaBZHQJGhfZxrBTJ1fZQoaAZoCWgPQwgHQx1WuIFPQJSGlFKUaBVL/mgWR0CRpDmJFb3XdX2UKGgGaAloD0MIIa0x6ATIZUCUhpRSlGgVTegDaBZHQJGlm88La251fZQoaAZoCWgPQwggXtcv2DNRQJSGlFKUaBVNAAFoFkdAkacK8tf5UXV9lChoBmgJaA9DCAk02NT5XWNAlIaUUpRoFU3oA2gWR0CRpzisny/cdX2UKGgGaAloD0MIPNo4Yi0AbkCUhpRSlGgVTWYDaBZHQJGnrO5avA51fZQoaAZoCWgPQwh9rUuN0AtgQJSGlFKUaBVN6ANoFkdAkaf+aScLB3V9lChoBmgJaA9DCJvG9lpQWWRAlIaUUpRoFU3oA2gWR0CRtZqW1MM7dX2UKGgGaAloD0MI3nL1YxOJZUCUhpRSlGgVTegDaBZHQJG5UIdELIB1fZQoaAZoCWgPQwjjjjf5rQ1oQJSGlFKUaBVN6ANoFkdAkbqDjFQ2uXV9lChoBmgJaA9DCLKFIAclaGdAlIaUUpRoFU3oA2gWR0CRuwRnvlU7dX2UKGgGaAloD0MIuOnPfiQ+ZkCUhpRSlGgVTegDaBZHQJHRym2sq8V1fZQoaAZoCWgPQwi8Wu7MBPZmQJSGlFKUaBVN6ANoFkdAkdImeYlY2nV9lChoBmgJaA9DCE9ZTdeTrGZAlIaUUpRoFU3oA2gWR0CR1srpaA4GdX2UKGgGaAloD0MIzhYQWg/DMUCUhpRSlGgVTQsBaBZHQJHbiubI91V1fZQoaAZoCWgPQwh3LLZJRcBmQJSGlFKUaBVN6ANoFkdAkeR+89Oh03V9lChoBmgJaA9DCDoi36XUo2NAlIaUUpRoFU3oA2gWR0CR6JvexfOVdX2UKGgGaAloD0MIFCUhkbaEZkCUhpRSlGgVTegDaBZHQJHpAQI2OyV1fZQoaAZoCWgPQwh16PS8m65nQJSGlFKUaBVN6ANoFkdAkevN8VpKz3V9lChoBmgJaA9DCB3Lu+qBPGVAlIaUUpRoFU3oA2gWR0CR7TIOYplSdX2UKGgGaAloD0MITWa8rfRMYUCUhpRSlGgVTegDaBZHQJHuxgNPP9l1fZQoaAZoCWgPQwhmhLcHoaBlQJSGlFKUaBVN6ANoFkdAke7+fNA1N3V9lChoBmgJaA9DCDNOQ1RhjGFAlIaUUpRoFU3oA2gWR0CR74ciW3SbdX2UKGgGaAloD0MIj8cMVEZ1YkCUhpRSlGgVTegDaBZHQJHv3Sa3I+51fZQoaAZoCWgPQwhi9NxC19VpQJSGlFKUaBVN6ANoFkdAkf0ZPhybQXV9lChoBmgJaA9DCB8Q6ExaumJAlIaUUpRoFU3oA2gWR0CSAMdIXj2jdX2UKGgGaAloD0MIK/cCs0JmXUCUhpRSlGgVTegDaBZHQJICFix3V091fZQoaAZoCWgPQwjhXpm3agRoQJSGlFKUaBVN6ANoFkdAkgcixu89OnV9lChoBmgJaA9DCGufjseMCmZAlIaUUpRoFU3oA2gWR0CSGkKoybhFdX2UKGgGaAloD0MIS3UBLzOwZECUhpRSlGgVTegDaBZHQJIf+6VdHDt1fZQoaAZoCWgPQwiMg0vHHDNmQJSGlFKUaBVN6ANoFkdAkiV6rJbMYHV9lChoBmgJaA9DCIeKcf4mqDNAlIaUUpRoFUvfaBZHQJIt9mPHT7V1fZQoaAZoCWgPQwgEATJ07JdkQJSGlFKUaBVN6ANoFkdAki/a37UG3XV9lChoBmgJaA9DCOOKi6PyuGZAlIaUUpRoFU3oA2gWR0CSNIrO7g89dX2UKGgGaAloD0MI8rOR66a3Y0CUhpRSlGgVTegDaBZHQJI0/Ks+3Yt1fZQoaAZoCWgPQwgXKv9aXnhlQJSGlFKUaBVN6ANoFkdAkjg3m3fAK3V9lChoBmgJaA9DCL1zKENV6l9AlIaUUpRoFU3oA2gWR0CSOcqiXY16dX2UKGgGaAloD0MIdA0zNJ4WZECUhpRSlGgVTegDaBZHQJI7cNBnjAB1fZQoaAZoCWgPQwjUYvAwbV9kQJSGlFKUaBVN6ANoFkdAkjuo0Mw1znV9lChoBmgJaA9DCLyyCwbX+2JAlIaUUpRoFU3oA2gWR0CSPDaVD8cddX2UKGgGaAloD0MIjC0EOSgFY0CUhpRSlGgVTegDaBZHQJI8jjin5zp1fZQoaAZoCWgPQwgIdCZtKqxlQJSGlFKUaBVN6ANoFkdAkktyDEm6XnV9lChoBmgJaA9DCJEotKz7QWVAlIaUUpRoFU3oA2gWR0CST4am4y44dX2UKGgGaAloD0MIdEAS9u1WbkCUhpRSlGgVTTYCaBZHQJJQ9rnDBM11fZQoaAZoCWgPQwghlPdxNKNhQJSGlFKUaBVN6ANoFkdAklD9SMtK7XV9lChoBmgJaA9DCFMgs7Pop3FAlIaUUpRoFU2rA2gWR0CSUkzXSSeRdX2UKGgGaAloD0MIeXjPgWV9YECUhpRSlGgVTegDaBZHQJJWcrxy4nZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16fb0bda926b70ab68f41dd2bdced1a5201236d7a5d6dedd1f1cffc71ed0495a
3
+ size 147138
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff508aeb160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff508aeb1f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff508aeb280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff508aeb310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff508aeb3a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff508aeb430>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff508aeb4c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff508aeb550>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff508aeb5e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff508aeb670>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff508aeb700>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7ff508ae65a0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670278883904576171,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrVBD0f/Yq5eXzLO4Tr7jUTkJy68+b9NAAAgD8AAIA/ZuYbPhRdFz8qPqi+fu2uvsibjL1yjZe9AAAAAAAAAADztSc+Jv72PqK5j71QIJS+pZrbvDHZnT0AAAAAAAAAAM3yVD2udaS6JcrTumSm6bVSVgg6AqbzOQAAgD8AAIA/4EkAvvyimT8jAe++BO/Kvr+CG75dp3O+AAAAAAAAAAAAGrM98Bx4P+EcML2G7oa+vi4nPeD7fr0AAAAAAAAAADOEYT2PvlS6XrAfuU9eJbR55BC6NBc8OAAAgD8AAIA/zW94vY+KW7rTWWo408FpM8JrFDvj8Im3AACAPwAAgD/NFG89bGINPuqSbr0xWXO+uC+hO7glqz0AAAAAAAAAAADXOj0f1fS58bQnuNGnR7Pa8hs7+DZCNwAAgD8AAIA/zVCvPSkYPrpYgou5/kSKtMKL3zqxK6U4AACAPwAAgD/AwZI9romQuggdibp52IW1TTeVOlQLnzkAAIA/AACAP0AvrD3c2Rg/2CwsvRU2hL5U8ac9Wud5PQAAAAAAAAAAGu4tPezx9ThFSuE4CT9BtkSDlru5Wwe4AACAPwAAgD8zy5+8KRBJugA5Urpv95611tpgOhBkeDkAAIA/AACAP00xLD1cK1m6nmQfOWD8GzR5qPG5o6k7uAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2J5ZEiBRYUCUhpRSlIwBbJRN6AOMAXSUR0CQ2JABkqc3dX2UKGgGaAloD0MI6PaSxuh7YUCUhpRSlGgVTegDaBZHQJDaenm7rcF1fZQoaAZoCWgPQwiKx0W1iJQ7QJSGlFKUaBVL72gWR0CQ3thxHXmOdX2UKGgGaAloD0MIjIUhcnpdYECUhpRSlGgVTegDaBZHQJDiUIQe3hJ1fZQoaAZoCWgPQwim0eRijO9nQJSGlFKUaBVN6ANoFkdAkOJff0mMO3V9lChoBmgJaA9DCJCiztzDb2JAlIaUUpRoFU3oA2gWR0CQ+yffoA4odX2UKGgGaAloD0MIKsb5m1AGX0CUhpRSlGgVTegDaBZHQJEAJX5nDix1fZQoaAZoCWgPQwj76xUW3DtnQJSGlFKUaBVN6ANoFkdAkQFIKc/dI3V9lChoBmgJaA9DCL5QwHawE2VAlIaUUpRoFU3oA2gWR0CRCApnpSrHdX2UKGgGaAloD0MI7l9ZadL1Y0CUhpRSlGgVTegDaBZHQJENn/echDB1fZQoaAZoCWgPQwhc/67PnLlBQJSGlFKUaBVL6GgWR0CRDr2DQJHBdX2UKGgGaAloD0MIz/V9OEjOYUCUhpRSlGgVTegDaBZHQJEPRP0qYqp1fZQoaAZoCWgPQwiKrDWU2k9lQJSGlFKUaBVN6ANoFkdAkRDXXiBGx3V9lChoBmgJaA9DCLJl+bqMRWJAlIaUUpRoFU3oA2gWR0CRFJNBF/hEdX2UKGgGaAloD0MIBd1e0hiSZECUhpRSlGgVTegDaBZHQJEWwDOkcjt1fZQoaAZoCWgPQwjFOero+B5zQJSGlFKUaBVNaQJoFkdAkRlIn4O+ZnV9lChoBmgJaA9DCM0+j1Gex01AlIaUUpRoFUvjaBZHQJEZ0mOU+s51fZQoaAZoCWgPQwgewY2ULVILQJSGlFKUaBVL6WgWR0CRGwE5QxetdX2UKGgGaAloD0MI6IL6ljn3YECUhpRSlGgVTegDaBZHQJEb7O4XoDB1fZQoaAZoCWgPQwj9TL1uEW9ZwJSGlFKUaBVLl2gWR0CRIUK5TZQIdX2UKGgGaAloD0MIZk8Cm/MlZECUhpRSlGgVTegDaBZHQJEiCWw/xDt1fZQoaAZoCWgPQwgZA+s4fiZnQJSGlFKUaBVN6ANoFkdAkSPxc3VConV9lChoBmgJaA9DCNSCF32FdWFAlIaUUpRoFU3oA2gWR0CRJcpAlfJFdX2UKGgGaAloD0MI39xfPW7QZkCUhpRSlGgVTegDaBZHQJEp3Jgb6xh1fZQoaAZoCWgPQwhD/plB/PFkQJSGlFKUaBVN6ANoFkdAkS0hr8BMjHV9lChoBmgJaA9DCFDHYwYqzFBAlIaUUpRoFUv8aBZHQJEutCu2ZzB1fZQoaAZoCWgPQwhiLxSwHW5GQJSGlFKUaBVL+GgWR0CRQ61c+qzadX2UKGgGaAloD0MIeQJhp1h8UUCUhpRSlGgVS+9oFkdAkUT8SkCV8nV9lChoBmgJaA9DCBzvjozVO2JAlIaUUpRoFU3oA2gWR0CRRVnQ6ZH/dX2UKGgGaAloD0MIu9BcpxElY0CUhpRSlGgVTegDaBZHQJFKDkLhJiB1fZQoaAZoCWgPQwgiUz4E1QZiQJSGlFKUaBVN6ANoFkdAkU+dKRMewXV9lChoBmgJaA9DCH2wjA3dgXJAlIaUUpRoFU06AWgWR0CRVATBInSfdX2UKGgGaAloD0MI4443+S0FaUCUhpRSlGgVTegDaBZHQJFWJQFcIJJ1fZQoaAZoCWgPQwjtKw/S00RlQJSGlFKUaBVN6ANoFkdAkVedK28Zk3V9lChoBmgJaA9DCIWVCiqqul9AlIaUUpRoFU3oA2gWR0CRW2EFnqVydX2UKGgGaAloD0MIoz7JHTZ1QkCUhpRSlGgVS91oFkdAkVvAnc+JQHV9lChoBmgJaA9DCMcOKnEdnmJAlIaUUpRoFU3oA2gWR0CRXZlyR0U5dX2UKGgGaAloD0MIpwaazzn/Y0CUhpRSlGgVTegDaBZHQJFgK4smOVB1fZQoaAZoCWgPQwg5KGGmbcBjQJSGlFKUaBVN6ANoFkdAkWHTvZyuIXV9lChoBmgJaA9DCD81XrrJw2JAlIaUUpRoFU3oA2gWR0CRYqbdadMCdX2UKGgGaAloD0MIK2owDcODTECUhpRSlGgVS9RoFkdAkWfdWZJCjXV9lChoBmgJaA9DCJQzFHc8GmZAlIaUUpRoFU3oA2gWR0CRaI2rXDm9dX2UKGgGaAloD0MILuI7MetQYECUhpRSlGgVTegDaBZHQJFwn4pMHr11fZQoaAZoCWgPQwiuK2aENzBoQJSGlFKUaBVN6ANoFkdAkXQb39JjD3V9lChoBmgJaA9DCAJJ2LeTDEJAlIaUUpRoFUvyaBZHQJF1Tp5eJHl1fZQoaAZoCWgPQwjgufdwSUliQJSGlFKUaBVN6ANoFkdAkXXMPWhAW3V9lChoBmgJaA9DCBSUopV7zGJAlIaUUpRoFU3oA2gWR0CRjH30f5k9dX2UKGgGaAloD0MIBhN/FHWlY0CUhpRSlGgVTegDaBZHQJGM2VW0Z3t1fZQoaAZoCWgPQwgMPPceLlRoQJSGlFKUaBVN6ANoFkdAkZEjM/yGz3V9lChoBmgJaA9DCMAIGjOJv3BAlIaUUpRoFU2MA2gWR0CRl1MHbAUMdX2UKGgGaAloD0MIlX8tr1z4ZECUhpRSlGgVTegDaBZHQJGaSf029+R1fZQoaAZoCWgPQwh+qDRi5p1hQJSGlFKUaBVN6ANoFkdAkZ2PPw/gSHV9lChoBmgJaA9DCOoj8Icf52NAlIaUUpRoFU3oA2gWR0CRoSgFX7tRdX2UKGgGaAloD0MITrUWZiGSY0CUhpRSlGgVTegDaBZHQJGhfZxrBTJ1fZQoaAZoCWgPQwgHQx1WuIFPQJSGlFKUaBVL/mgWR0CRpDmJFb3XdX2UKGgGaAloD0MIIa0x6ATIZUCUhpRSlGgVTegDaBZHQJGlm88La251fZQoaAZoCWgPQwggXtcv2DNRQJSGlFKUaBVNAAFoFkdAkacK8tf5UXV9lChoBmgJaA9DCAk02NT5XWNAlIaUUpRoFU3oA2gWR0CRpzisny/cdX2UKGgGaAloD0MIPNo4Yi0AbkCUhpRSlGgVTWYDaBZHQJGnrO5avA51fZQoaAZoCWgPQwh9rUuN0AtgQJSGlFKUaBVN6ANoFkdAkaf+aScLB3V9lChoBmgJaA9DCJvG9lpQWWRAlIaUUpRoFU3oA2gWR0CRtZqW1MM7dX2UKGgGaAloD0MI3nL1YxOJZUCUhpRSlGgVTegDaBZHQJG5UIdELIB1fZQoaAZoCWgPQwjjjjf5rQ1oQJSGlFKUaBVN6ANoFkdAkbqDjFQ2uXV9lChoBmgJaA9DCLKFIAclaGdAlIaUUpRoFU3oA2gWR0CRuwRnvlU7dX2UKGgGaAloD0MIuOnPfiQ+ZkCUhpRSlGgVTegDaBZHQJHRym2sq8V1fZQoaAZoCWgPQwi8Wu7MBPZmQJSGlFKUaBVN6ANoFkdAkdImeYlY2nV9lChoBmgJaA9DCE9ZTdeTrGZAlIaUUpRoFU3oA2gWR0CR1srpaA4GdX2UKGgGaAloD0MIzhYQWg/DMUCUhpRSlGgVTQsBaBZHQJHbiubI91V1fZQoaAZoCWgPQwh3LLZJRcBmQJSGlFKUaBVN6ANoFkdAkeR+89Oh03V9lChoBmgJaA9DCDoi36XUo2NAlIaUUpRoFU3oA2gWR0CR6JvexfOVdX2UKGgGaAloD0MIFCUhkbaEZkCUhpRSlGgVTegDaBZHQJHpAQI2OyV1fZQoaAZoCWgPQwh16PS8m65nQJSGlFKUaBVN6ANoFkdAkevN8VpKz3V9lChoBmgJaA9DCB3Lu+qBPGVAlIaUUpRoFU3oA2gWR0CR7TIOYplSdX2UKGgGaAloD0MITWa8rfRMYUCUhpRSlGgVTegDaBZHQJHuxgNPP9l1fZQoaAZoCWgPQwhmhLcHoaBlQJSGlFKUaBVN6ANoFkdAke7+fNA1N3V9lChoBmgJaA9DCDNOQ1RhjGFAlIaUUpRoFU3oA2gWR0CR74ciW3SbdX2UKGgGaAloD0MIj8cMVEZ1YkCUhpRSlGgVTegDaBZHQJHv3Sa3I+51fZQoaAZoCWgPQwhi9NxC19VpQJSGlFKUaBVN6ANoFkdAkf0ZPhybQXV9lChoBmgJaA9DCB8Q6ExaumJAlIaUUpRoFU3oA2gWR0CSAMdIXj2jdX2UKGgGaAloD0MIK/cCs0JmXUCUhpRSlGgVTegDaBZHQJICFix3V091fZQoaAZoCWgPQwjhXpm3agRoQJSGlFKUaBVN6ANoFkdAkgcixu89OnV9lChoBmgJaA9DCGufjseMCmZAlIaUUpRoFU3oA2gWR0CSGkKoybhFdX2UKGgGaAloD0MIS3UBLzOwZECUhpRSlGgVTegDaBZHQJIf+6VdHDt1fZQoaAZoCWgPQwiMg0vHHDNmQJSGlFKUaBVN6ANoFkdAkiV6rJbMYHV9lChoBmgJaA9DCIeKcf4mqDNAlIaUUpRoFUvfaBZHQJIt9mPHT7V1fZQoaAZoCWgPQwgEATJ07JdkQJSGlFKUaBVN6ANoFkdAki/a37UG3XV9lChoBmgJaA9DCOOKi6PyuGZAlIaUUpRoFU3oA2gWR0CSNIrO7g89dX2UKGgGaAloD0MI8rOR66a3Y0CUhpRSlGgVTegDaBZHQJI0/Ks+3Yt1fZQoaAZoCWgPQwgXKv9aXnhlQJSGlFKUaBVN6ANoFkdAkjg3m3fAK3V9lChoBmgJaA9DCL1zKENV6l9AlIaUUpRoFU3oA2gWR0CSOcqiXY16dX2UKGgGaAloD0MIdA0zNJ4WZECUhpRSlGgVTegDaBZHQJI7cNBnjAB1fZQoaAZoCWgPQwjUYvAwbV9kQJSGlFKUaBVN6ANoFkdAkjuo0Mw1znV9lChoBmgJaA9DCLyyCwbX+2JAlIaUUpRoFU3oA2gWR0CSPDaVD8cddX2UKGgGaAloD0MIjC0EOSgFY0CUhpRSlGgVTegDaBZHQJI8jjin5zp1fZQoaAZoCWgPQwgIdCZtKqxlQJSGlFKUaBVN6ANoFkdAkktyDEm6XnV9lChoBmgJaA9DCJEotKz7QWVAlIaUUpRoFU3oA2gWR0CST4am4y44dX2UKGgGaAloD0MIdEAS9u1WbkCUhpRSlGgVTTYCaBZHQJJQ9rnDBM11fZQoaAZoCWgPQwghlPdxNKNhQJSGlFKUaBVN6ANoFkdAklD9SMtK7XV9lChoBmgJaA9DCFMgs7Pop3FAlIaUUpRoFU2rA2gWR0CSUkzXSSeRdX2UKGgGaAloD0MIeXjPgWV9YECUhpRSlGgVTegDaBZHQJJWcrxy4nZ1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cea1d19d24959e92e959e4d73829b53ec87b67ce9ad9ca7d81e06656325c432b
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f53b46063f79a0cd5e306baa7b71e0c6c8ae0fe37fe27702ce0248d68b25cb2
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (196 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 254.36260268948325, "std_reward": 15.06342397185892, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-05T22:47:08.166780"}