MarshallPF
commited on
Commit
•
f217a7b
1
Parent(s):
4bc6a51
Marshall Lander v0
Browse files- README.md +1 -1
- config.json +1 -1
- first_try_model_lander.zip +2 -2
- first_try_model_lander/data +20 -20
- first_try_model_lander/policy.optimizer.pth +1 -1
- first_try_model_lander/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 246.06 +/- 60.45
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f24f288a550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f24f288a5e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f24f288a670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f24f288a700>", "_build": "<function ActorCriticPolicy._build at 0x7f24f288a790>", "forward": "<function ActorCriticPolicy.forward at 0x7f24f288a820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f24f288a8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f24f288a940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f24f288a9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f24f288aa60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f24f288aaf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f24f288ab80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f24f2881a50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 425984, "_total_timesteps": 400000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677538884917862540, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAi0r0fTdS5AId7Nc2Osy/rjss68dK5tAAAgD8AAIA/ADqCPj21KzxEeSk2faoiNAzEuD3iVl21AACAPwAAgD/Nv+a8KeB7uir0DbrDz1Y1NCZuul+fJTkAAIA/AACAPzPPOr5DXAi88JvaN7oSjzVQhmo90uQAtwAAgD8AAIA/avPJPh43nz5xahu+DIGTvo2p4TttQ9S7AAAAAAAAAACalwc9SAW+uq3Z67w2vhs9TBi6OxoPA74AAIA/AACAP425WT76Ngu9K2+2O75QR7p/aXK+AGosuwAAgD8AAIA/ZqNlPrHSwj4Gnly9AhB/vti5KzzlpE09AAAAAAAAAAAagZq9uAaIue7OPzlNqFKzsD2Tu5KIZLgAAIA/AACAP81AqDvXIxC5dN5CtJ3djK1VOx27sOerMwAAgD8AAIA/mp7wvdd/Ezr1kJk6tGSguL1q9bs9y4s5AACAPwAAgD+A4m09z8+5P3aSMz7npYi+yGUxvKr9nTwAAAAAAAAAAOb0KL323B26rMCLOM0tJ7QyPP25pkCjtwAAgD8AAIA/JlPmPRRZlz+VwKQ+x9uGvnzZrD0H3ow9AAAAAAAAAABG+Ts+NOyOP1LtrD5gR4i+raPlPdCgzjwAAAAAAAAAAJrz2bw9fJA/x86vPBr5rL5JLc28pjekvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+UhKehhHX0CUhpRSlIwBbJRN6AOMAXSUR0CAm33t8eCDdX2UKGgGaAloD0MIUaG6uXgHYUCUhpRSlGgVTegDaBZHQICpXxjJ+2F1fZQoaAZoCWgPQwiaCvFIvK5dQJSGlFKUaBVN6ANoFkdAgKtH446wMnV9lChoBmgJaA9DCOV+h6JA+mLAlIaUUpRoFU0nAmgWR0CAswTA31jBdX2UKGgGaAloD0MIh07Pu7GfY0CUhpRSlGgVTegDaBZHQICzdhNM4951fZQoaAZoCWgPQwiKk/sdig9ZQJSGlFKUaBVN6ANoFkdAgMvPMB6rvXV9lChoBmgJaA9DCFBTy9b621xAlIaUUpRoFU3oA2gWR0CAzjJ0W/JvdX2UKGgGaAloD0MIvK/KhcpWZcCUhpRSlGgVTYQCaBZHQIDSVD+irT91fZQoaAZoCWgPQwgO2UC62LBdQJSGlFKUaBVN6ANoFkdAgN8RDkU9IXV9lChoBmgJaA9DCIi9UMB2lF5AlIaUUpRoFU3oA2gWR0CA5FlCkXUIdX2UKGgGaAloD0MILC0j9Z46O0CUhpRSlGgVTegDaBZHQIDxJVyWAwx1fZQoaAZoCWgPQwjr4GBvYl5kQJSGlFKUaBVN6ANoFkdAgRZFKTSssHV9lChoBmgJaA9DCNANTdnpl15AlIaUUpRoFU3oA2gWR0CBHpFERaoudX2UKGgGaAloD0MIlRCsqherY0CUhpRSlGgVTegDaBZHQIEhlc4YJmd1fZQoaAZoCWgPQwiNQ/0ubNVbQJSGlFKUaBVN6ANoFkdAgSmmMGX5WXV9lChoBmgJaA9DCNKowMk2TV1AlIaUUpRoFU3oA2gWR0CBNjhUipvQdX2UKGgGaAloD0MID167tOFaW0CUhpRSlGgVTegDaBZHQIFKDpA2Q4l1fZQoaAZoCWgPQwgdW88QjjdfQJSGlFKUaBVN6ANoFkdAgi6u3c580HV9lChoBmgJaA9DCAfuQJ3y8WJAlIaUUpRoFU3oA2gWR0CCMAwsXizcdX2UKGgGaAloD0MI/Bu0V5+2YECUhpRSlGgVTegDaBZHQII17gwXZXd1fZQoaAZoCWgPQwhcOuY8Y+5dQJSGlFKUaBVN6ANoFkdAgjZB5HEuQXV9lChoBmgJaA9DCPq4NlSMjlxAlIaUUpRoFU3oA2gWR0CCTRutOmBOdX2UKGgGaAloD0MICFVq9kD6WkCUhpRSlGgVTegDaBZHQIJPoXsPatd1fZQoaAZoCWgPQwgfL6TDQ/BkQJSGlFKUaBVN6ANoFkdAglOXN9ph4XV9lChoBmgJaA9DCLEXCtiO8mxAlIaUUpRoFU0yA2gWR0CCVmM6RyOrdX2UKGgGaAloD0MIu9IyUu85GUCUhpRSlGgVTREBaBZHQIJcYISlFc91fZQoaAZoCWgPQwjWO9wOjW1gQJSGlFKUaBVN6ANoFkdAgl5Wt+1Bt3V9lChoBmgJaA9DCIaqmEo/ZldAlIaUUpRoFU3oA2gWR0CCYpQizLOidX2UKGgGaAloD0MIU5PgDek3b0CUhpRSlGgVTdECaBZHQIJizDsMRYl1fZQoaAZoCWgPQwghsd09wAFuQJSGlFKUaBVN5wFoFkdAgnSoyKvV3HV9lChoBmgJaA9DCNGUnX5QT11AlIaUUpRoFU3oA2gWR0CCkfppvgm7dX2UKGgGaAloD0MIyo0iaw3wXUCUhpRSlGgVTegDaBZHQIKU3SF49ox1fZQoaAZoCWgPQwgtQUZAhS1bQJSGlFKUaBVN6ANoFkdAgpxDv/io9HV9lChoBmgJaA9DCN+KxAS1OGxAlIaUUpRoFU02AmgWR0CCpJLPD50sdX2UKGgGaAloD0MICyWTU7s7YkCUhpRSlGgVTegDaBZHQIKmkU/OdG11fZQoaAZoCWgPQwjCaixh7XRqQJSGlFKUaBVNTgJoFkdAgqzv8yeqaXV9lChoBmgJaA9DCFw4EJIFRmNAlIaUUpRoFU3oA2gWR0CCtRK/VRUFdX2UKGgGaAloD0MIkpOJWwWCXUCUhpRSlGgVTegDaBZHQIK8mVkc0ch1fZQoaAZoCWgPQwhHIF7Xr35iQJSGlFKUaBVN6ANoFkdAgr2oMKCxvHV9lChoBmgJaA9DCNy93CeHSHBAlIaUUpRoFU2wAmgWR0CCv4ajvd/KdX2UKGgGaAloD0MIjKAxk6jzYECUhpRSlGgVTegDaBZHQILWsL0Bfa91fZQoaAZoCWgPQwjyJyobVllhQJSGlFKUaBVN6ANoFkdAgt0V3MY/FHV9lChoBmgJaA9DCBvV6UDWdFxAlIaUUpRoFU3oA2gWR0CC5jGCqZMMdX2UKGgGaAloD0MIblLRWPtaYECUhpRSlGgVTegDaBZHQILtbhky1u11fZQoaAZoCWgPQwjgvg6csyxmQJSGlFKUaBVN6ANoFkdAgu3SmIj4YnV9lChoBmgJaA9DCPxUFRqIo1NAlIaUUpRoFU3oA2gWR0CDDtyWAwwkdX2UKGgGaAloD0MIHvmDgefpbECUhpRSlGgVTQUCaBZHQIMQMgbIcR11fZQoaAZoCWgPQwgPK9zyEellQJSGlFKUaBVN6ANoFkdAgy5zBRAKOXV9lChoBmgJaA9DCM+6RssBemJAlIaUUpRoFU3oA2gWR0CDMS9Htnf3dX2UKGgGaAloD0MINbitLTxmXUCUhpRSlGgVTegDaBZHQIM4QCnxaxJ1fZQoaAZoCWgPQwiSPq2iP69hQJSGlFKUaBVN6ANoFkdAg0AnIyTINnV9lChoBmgJaA9DCBcrajANv2VAlIaUUpRoFU3oA2gWR0CDQig8KXv6dX2UKGgGaAloD0MI0ENtG8YJZUCUhpRSlGgVTegDaBZHQINIz2i+L3t1fZQoaAZoCWgPQwiEvYkhObFbQJSGlFKUaBVN6ANoFkdAg1GEjPfKp3V9lChoBmgJaA9DCAg8MIDwJlZAlIaUUpRoFU3oA2gWR0CENAuscQyzdX2UKGgGaAloD0MI0nE1siswYECUhpRSlGgVTegDaBZHQIQ1KTjebd91fZQoaAZoCWgPQwh8tDhjmDpvQJSGlFKUaBVNQwNoFkdAhDlJIDoyK3V9lChoBmgJaA9DCILGTKJemkFAlIaUUpRoFUu+aBZHQIRNHNNahYh1fZQoaAZoCWgPQwhzaJHtfP8UQJSGlFKUaBVNDwFoFkdAhE9MuFpPAXV9lChoBmgJaA9DCCzvqgdMtGJAlIaUUpRoFU3oA2gWR0CEVZua4MF2dX2UKGgGaAloD0MIQup29pUHcUCUhpRSlGgVTbQBaBZHQIRcGxdIGyJ1fZQoaAZoCWgPQwg0SMFTyNZeQJSGlFKUaBVN6ANoFkdAhF8VNg0CR3V9lChoBmgJaA9DCMWM8PYgCXBAlIaUUpRoFU3YA2gWR0CEY3fICEHudX2UKGgGaAloD0MIs7ES86zxY0CUhpRSlGgVTegDaBZHQIRlhEH+qBF1fZQoaAZoCWgPQwi8V61MeN5lQJSGlFKUaBVN6ANoFkdAhHi9hy8zynV9lChoBmgJaA9DCECiCRSxCl5AlIaUUpRoFU3oA2gWR0CEeX0z0pVkdX2UKGgGaAloD0MIhZZ1/9jgb0CUhpRSlGgVTTkDaBZHQISDyg00m+l1fZQoaAZoCWgPQwhGRZxOsilZQJSGlFKUaBVN6ANoFkdAhJEc4PwuunV9lChoBmgJaA9DCHzVyoRf22RAlIaUUpRoFU3oA2gWR0CEk7lar3j/dX2UKGgGaAloD0MIyenr+ZpEb0CUhpRSlGgVTZgBaBZHQISYIaef7Jp1fZQoaAZoCWgPQwgsLSP1ngtiQJSGlFKUaBVN6ANoFkdAhJn5f2K2rnV9lChoBmgJaA9DCAhYq3ZNrF1AlIaUUpRoFU3oA2gWR0CEpNFS88LbdX2UKGgGaAloD0MIxHk4gelMbkCUhpRSlGgVTcgBaBZHQIS/7Ysd1dR1fZQoaAZoCWgPQwgp6WFoNX1wQJSGlFKUaBVNuQJoFkdAhMBRoRIz33V9lChoBmgJaA9DCNXPm4pUvmBAlIaUUpRoFU3oA2gWR0CEwgDq4YrKdX2UKGgGaAloD0MI06I+yR1gZECUhpRSlGgVTegDaBZHQITFlxffGdZ1fZQoaAZoCWgPQwj5MHvZdplfQJSGlFKUaBVN6ANoFkdAhNY+F10T13V9lChoBmgJaA9DCLlxi/m5m2dAlIaUUpRoFU3oA2gWR0CE1/NFjNILdX2UKGgGaAloD0MIE2OZfomYRECUhpRSlGgVS9BoFkdAhNlU7KaG6HV9lChoBmgJaA9DCHfX2ZD/QG5AlIaUUpRoFU1eA2gWR0CE25QfIS13dX2UKGgGaAloD0MIsOO/QJBYcECUhpRSlGgVTXkDaBZHQITckH6dlNF1fZQoaAZoCWgPQwhnSBXFq0BmQJSGlFKUaBVN6ANoFkdAhN0waaTfSHV9lChoBmgJaA9DCHx9rUsNWmZAlIaUUpRoFU3dAWgWR0CE4JaTwDvFdX2UKGgGaAloD0MIxapBmJt/cECUhpRSlGgVTUgDaBZHQITrFUdaMaV1fZQoaAZoCWgPQwgm4q3zb7cfQJSGlFKUaBVLwmgWR0CE8GVclgMMdX2UKGgGaAloD0MItMh2vp/cRUCUhpRSlGgVS+hoFkdAhPKlPBSDRXV9lChoBmgJaA9DCD0P7s5a+HBAlIaUUpRoFU0rAWgWR0CFBoTYdyT7dX2UKGgGaAloD0MIYrzmVR1EYUCUhpRSlGgVTegDaBZHQIUM6rFOwgV1fZQoaAZoCWgPQwjuJY3RuhpjQJSGlFKUaBVN6ANoFkdAhRwP2PDHfnV9lChoBmgJaA9DCJjaUgd5PV9AlIaUUpRoFU3oA2gWR0CFHrMmnfl7dX2UKGgGaAloD0MIhnXj3ZGFa0CUhpRSlGgVTdIBaBZHQIUgU4tHxz91fZQoaAZoCWgPQwjbMAqCxyZgQJSGlFKUaBVN6ANoFkdAhSMju0CzTnV9lChoBmgJaA9DCExSmWKOvmJAlIaUUpRoFU3oA2gWR0CFJNoyKvV3dX2UKGgGaAloD0MIETgSaDBvbUCUhpRSlGgVTTkBaBZHQIUoJ3eN1hd1fZQoaAZoCWgPQwht5SX/k1s3wJSGlFKUaBVL92gWR0CFM5pu/DcedX2UKGgGaAloD0MIt376zxovakCUhpRSlGgVTfUBaBZHQIU2Asd1dPd1fZQoaAZoCWgPQwg74Lpixl5jQJSGlFKUaBVN6ANoFkdAhUE39itq6HV9lChoBmgJaA9DCGIx6lp7V19AlIaUUpRoFU3oA2gWR0CFQYszVMEidX2UKGgGaAloD0MItmXAWUqW5b+UhpRSlGgVTQYBaBZHQIVCI8bJfY11fZQoaAZoCWgPQwjnps04jc1vQJSGlFKUaBVNKgFoFkdAhULiRGMGYHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 130, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8e93942b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8e93942c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8e93942ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8e93942d30>", "_build": "<function ActorCriticPolicy._build at 0x7f8e93942dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8e93942e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8e93942ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8e93942f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8e93947040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8e939470d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8e93947160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8e939471f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8e93944090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677583559971256376, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEYJJr49lD0+9k+NPgbQZr6zGDg9WmnfPQAAAAAAAAAA8xlRvjvWyrwi8WG7f37YuT+LMT6fv6k6AACAPwAAgD8zayK+FFKhPialAL191qG++UGSvUGdM7sAAAAAAAAAAC0DPj7Ssdu7/UxhtIR2rTIlgka9Au8LNAAAgD8AAIA/AIDmPdEIsT1Lo3O9M/4/vkh18bwSiAE8AAAAAAAAAAAaHVW+NzMHvZnBnbrAdE65QrdqPiZE2zkAAIA/AACAP5r7QD4h4LK8b6cKu5IFfTkg9Ru+75g5OgAAgD8AAIA/rZhOPiiV57wLYfy6TyuOOddgTL6VoCk6AACAPwAAgD8w+U6+iKCsvF389Tqej0I5ZZccPt82HroAAIA/AACAP77/mr61Ahg/VqcJvr1WCr9Om8++2o6MvAAAAAAAAAAAGolePXc5pz++rYw+b1z4vmppqz2GzFo9AAAAAAAAAAA6YiE+tNn6PesOUr75hHC+Zp9JvU3IS70AAAAAAAAAAGIhnr4bThs/4LGoO66LNb9gfj2+xfrnPQAAAAAAAAAA+uBGPk9NSLzFgpI6f3WTuHfqq701YrK5AACAPwAAgD9Q01W+ZN0EvXK93joLuIU5yploPhq7F7oAAIA/AACAP01gnz3oXaY/zxm6PtAf875iB709b6crPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYkhOJq7Ec0CUhpRSlIwBbJRLzIwBdJRHQJX6QgzP8ht1fZQoaAZoCWgPQwhN9Pko42pxQJSGlFKUaBVL52gWR0CV+rKjSG8FdX2UKGgGaAloD0MIbVZ9rvbJcECUhpRSlGgVS8hoFkdAlfsHocJdB3V9lChoBmgJaA9DCMucLosJDG9AlIaUUpRoFUu1aBZHQJX7P20zCUJ1fZQoaAZoCWgPQwhXBWoxuCRxQJSGlFKUaBVLzWgWR0CV++wNsnAqdX2UKGgGaAloD0MIyRzLu+pFcUCUhpRSlGgVTQIBaBZHQJX8EwztTk11fZQoaAZoCWgPQwhUOe0pOfxvQJSGlFKUaBVL22gWR0CV/SKh+OOsdX2UKGgGaAloD0MISmJJuXuqb0CUhpRSlGgVS7FoFkdAlf2NpmEoOXV9lChoBmgJaA9DCKM/NPNkOXFAlIaUUpRoFUu/aBZHQJX9vqeK8+R1fZQoaAZoCWgPQwjxYmGIXGRyQJSGlFKUaBVLu2gWR0CV/2JEYwZgdX2UKGgGaAloD0MI5pMVwxUKckCUhpRSlGgVS+BoFkdAlf+6Mm4RVnV9lChoBmgJaA9DCCcvMgF/R3JAlIaUUpRoFUusaBZHQJYBjRmbsnl1fZQoaAZoCWgPQwgXnwJgPIRxQJSGlFKUaBVLyWgWR0CWAqZoPCl8dX2UKGgGaAloD0MIQrPr3opcckCUhpRSlGgVTQIBaBZHQJYDsNb1RLt1fZQoaAZoCWgPQwjJsIo3sgBmQJSGlFKUaBVN6ANoFkdAlgO+L3sXznV9lChoBmgJaA9DCHLcKR0so3NAlIaUUpRoFUu5aBZHQJYD6gOBlMB1fZQoaAZoCWgPQwjerMH7qglkQJSGlFKUaBVN6ANoFkdAlgQxUR3/xXV9lChoBmgJaA9DCCb9vRTecHBAlIaUUpRoFUvUaBZHQJYFj876pHZ1fZQoaAZoCWgPQwhPIy2Vt1lwQJSGlFKUaBVL3GgWR0CWBjKTSsr/dX2UKGgGaAloD0MIgIC1alcpckCUhpRSlGgVS89oFkdAlgihusLfDXV9lChoBmgJaA9DCOJWQQy0UXBAlIaUUpRoFUuwaBZHQJYJMasIVud1fZQoaAZoCWgPQwghXAGF+vBwQJSGlFKUaBVLsGgWR0CWDAvkBCD3dX2UKGgGaAloD0MIY0M3+4P0cUCUhpRSlGgVS71oFkdAlgwoukDZDnV9lChoBmgJaA9DCHbB4Jo7029AlIaUUpRoFUvcaBZHQJYMjW+XZ5B1fZQoaAZoCWgPQwhMbhRZa7RxQJSGlFKUaBVLyWgWR0CWDPbdJrckdX2UKGgGaAloD0MIZLFNKppacECUhpRSlGgVS+RoFkdAlg4SNn5BTnV9lChoBmgJaA9DCFw+kpKekXBAlIaUUpRoFUutaBZHQJYOas3hn8N1fZQoaAZoCWgPQwi4zr9ddnljQJSGlFKUaBVN6ANoFkdAlg7M5fdAPnV9lChoBmgJaA9DCCGx3T3A1G9AlIaUUpRoFUvWaBZHQJYPqBg/keZ1fZQoaAZoCWgPQwgniSXlrrRxQJSGlFKUaBVLs2gWR0CWEVpwS8J2dX2UKGgGaAloD0MIjX40nDIEZECUhpRSlGgVTegDaBZHQJYS0QumJnB1fZQoaAZoCWgPQwjgnBGlfbRxQJSGlFKUaBVL62gWR0CWE/1IiC8OdX2UKGgGaAloD0MIWKoLeBmDbkCUhpRSlGgVS6xoFkdAlhQbFGXoknV9lChoBmgJaA9DCFHbhlEQQm1AlIaUUpRoFUu8aBZHQJYUVkI5YHR1fZQoaAZoCWgPQwi7JTlg1/twQJSGlFKUaBVLzWgWR0CWFMHz6JqJdX2UKGgGaAloD0MIwyreyDy/b0CUhpRSlGgVS7NoFkdAlhUp26kIonV9lChoBmgJaA9DCNYe9kLBpHBAlIaUUpRoFUvLaBZHQJYVO0rsjVx1fZQoaAZoCWgPQwjIztvYbCNiQJSGlFKUaBVN6ANoFkdAlhYV1GLDRHV9lChoBmgJaA9DCNaNd0dGNXBAlIaUUpRoFUvKaBZHQJYWMq7ROUN1fZQoaAZoCWgPQwiuYYbGUwNwQJSGlFKUaBVLuWgWR0CWFj4SYgJUdX2UKGgGaAloD0MItHIvMCu5ckCUhpRSlGgVS9doFkdAlhZVwkxASnV9lChoBmgJaA9DCKGEmbZ/gHFAlIaUUpRoFUvwaBZHQJYYrWjGkvd1fZQoaAZoCWgPQwiJ6q2BLX1vQJSGlFKUaBVLu2gWR0CWGRu01IiDdX2UKGgGaAloD0MI7yB2ptCWcUCUhpRSlGgVS+hoFkdAlhle+7Dl5nV9lChoBmgJaA9DCNi2KLNB2EhAlIaUUpRoFUugaBZHQJYZhpmEoOR1fZQoaAZoCWgPQwiAYI4ev2RuQJSGlFKUaBVL1mgWR0CWGf4KhL5AdX2UKGgGaAloD0MI+1ksRXLPcECUhpRSlGgVS9JoFkdAlhoeWSlnAnV9lChoBmgJaA9DCK9EoPoH9m9AlIaUUpRoFUvAaBZHQJYadRCQcPx1fZQoaAZoCWgPQwgoui784MBwQJSGlFKUaBVLwGgWR0CWGz8GLUCrdX2UKGgGaAloD0MIE38UdWZDckCUhpRSlGgVS7toFkdAlhtFqBVdX3V9lChoBmgJaA9DCAfsavKUp3BAlIaUUpRoFUvbaBZHQJYcM/A0sOJ1fZQoaAZoCWgPQwjAriZPWWpxQJSGlFKUaBVNAgFoFkdAlh0cMAmzB3V9lChoBmgJaA9DCGHij6LOjF9AlIaUUpRoFU3oA2gWR0CWHW8VpKzzdX2UKGgGaAloD0MIilWDMDd2YkCUhpRSlGgVTegDaBZHQJYd2KZUkv91fZQoaAZoCWgPQwh6qkNuhltvQJSGlFKUaBVLtWgWR0CWHi9aUzKtdX2UKGgGaAloD0MIs0EmGbm3Y0CUhpRSlGgVTegDaBZHQJYeYxsVLzx1fZQoaAZoCWgPQwjgZvFi4Q9yQJSGlFKUaBVL3GgWR0CWHpB1s+FDdX2UKGgGaAloD0MIqiwKuyhHcECUhpRSlGgVS9FoFkdAlh6m2TgVGnV9lChoBmgJaA9DCC0j9Z7KP3BAlIaUUpRoFUvHaBZHQJYewGyHEdh1fZQoaAZoCWgPQwg2Bp0QOhtxQJSGlFKUaBVLzWgWR0CWHzaePJaJdX2UKGgGaAloD0MIveMUHUnAcECUhpRSlGgVS6BoFkdAlh9QxFiKBXV9lChoBmgJaA9DCHb6QV2kKm9AlIaUUpRoFUvWaBZHQJYfgByS3b51fZQoaAZoCWgPQwhDU3b6QZhwQJSGlFKUaBVL52gWR0CWICRF7UobdX2UKGgGaAloD0MIHT1+b9MGcUCUhpRSlGgVS8toFkdAliAz/ACW/3V9lChoBmgJaA9DCFeyYyOQxnFAlIaUUpRoFUuuaBZHQJYhYoMKCxx1fZQoaAZoCWgPQwg6AyMv60JwQJSGlFKUaBVL4mgWR0CWIZahYeT3dX2UKGgGaAloD0MIvqCFBIwXZECUhpRSlGgVTegDaBZHQJYht1cMVlB1fZQoaAZoCWgPQwjOjH40HBZwQJSGlFKUaBVLqGgWR0CWIfAGSpzcdX2UKGgGaAloD0MI4KKTpVaUcECUhpRSlGgVS8VoFkdAliLINmUW23V9lChoBmgJaA9DCPhtiPGadW9AlIaUUpRoFUvFaBZHQJYjDKPn0TV1fZQoaAZoCWgPQwiRfZBlQXVxQJSGlFKUaBVLy2gWR0CWI0sTFl06dX2UKGgGaAloD0MINuZ1xKEPcUCUhpRSlGgVS/VoFkdAliNrA57w8XV9lChoBmgJaA9DCJVHN8IiG3FAlIaUUpRoFUvdaBZHQJYjg+zMRpV1fZQoaAZoCWgPQwjURnU6kFtxQJSGlFKUaBVLymgWR0CWJOKc/dIodX2UKGgGaAloD0MIz79d9usLb0CUhpRSlGgVTQIBaBZHQJYlImjTKDF1fZQoaAZoCWgPQwiOsRNeQk5xQJSGlFKUaBVL22gWR0CWJUITGo73dX2UKGgGaAloD0MIWaX0TO+tcUCUhpRSlGgVS5ZoFkdAliWDNhVlw3V9lChoBmgJaA9DCIZa07zjz3FAlIaUUpRoFUvSaBZHQJYmcppeu3d1fZQoaAZoCWgPQwiCAu/k0wNvQJSGlFKUaBVL0WgWR0CWJqZ/CqIadX2UKGgGaAloD0MIMZV+wlnobkCUhpRSlGgVS7NoFkdAligVNQCSzXV9lChoBmgJaA9DCBzqd2Hr5XBAlIaUUpRoFUvMaBZHQJYoOce8wpR1fZQoaAZoCWgPQwhd+MH5lBdyQJSGlFKUaBVL7GgWR0CWKM6Lfk3kdX2UKGgGaAloD0MIQBaiQ2BbbUCUhpRSlGgVS7BoFkdAlimtgKF7D3V9lChoBmgJaA9DCEW3XtODQnFAlIaUUpRoFU0kAWgWR0CWKx3I+4b0dX2UKGgGaAloD0MIxJlfzQHVcUCUhpRSlGgVS9xoFkdAlitLFsHjZXV9lChoBmgJaA9DCF0xI7w9gG9AlIaUUpRoFUvfaBZHQJYrhRGc4HZ1fZQoaAZoCWgPQwjZI9QM6W9yQJSGlFKUaBVL12gWR0CWK4w+t8u0dX2UKGgGaAloD0MIYajDCreccECUhpRSlGgVS8doFkdAlixbtmcvunV9lChoBmgJaA9DCKBvC5YqsXBAlIaUUpRoFUvUaBZHQJYshQ/HHWB1fZQoaAZoCWgPQwiemPViqLRvQJSGlFKUaBVLwGgWR0CWLoEq2BrfdX2UKGgGaAloD0MILhud89MAcUCUhpRSlGgVS+poFkdAli8EqUeMh3V9lChoBmgJaA9DCFSQn41coWJAlIaUUpRoFU3oA2gWR0CWLw8YAKfGdX2UKGgGaAloD0MIteBFX8EtcUCUhpRSlGgVS71oFkdAljE+0PYnOXV9lChoBmgJaA9DCCBdbFqpznBAlIaUUpRoFUvMaBZHQJYxegmJFb51fZQoaAZoCWgPQwhE+YIWEgBzQJSGlFKUaBVNBgFoFkdAljGnndO6/nV9lChoBmgJaA9DCCUk0jZ+6HFAlIaUUpRoFUvYaBZHQJYyGlLvkR11fZQoaAZoCWgPQwg/Gk6ZG8ZuQJSGlFKUaBVLxmgWR0CWMpVpsXSCdX2UKGgGaAloD0MInrXbLnR/cUCUhpRSlGgVTQUBaBZHQJYzDCZWq951fZQoaAZoCWgPQwjSOqqaIBBzQJSGlFKUaBVLw2gWR0CWNJQLux8ldX2UKGgGaAloD0MIaM76lCMDcUCUhpRSlGgVS7RoFkdAljSfS6UaAHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
first_try_model_lander.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:adbe1d59bbfc61a6fbfaf3eba18f0807560fab17dc9606c1fe7b8675c1e4a326
|
3 |
+
size 147315
|
first_try_model_lander/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -43,12 +43,12 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -67,16 +67,16 @@
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.99,
|
82 |
"gae_lambda": 0.95,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8e93942b80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8e93942c10>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8e93942ca0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8e93942d30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8e93942dc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8e93942e50>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8e93942ee0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8e93942f70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8e93947040>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8e939470d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8e93947160>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8e939471f0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f8e93944090>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1677583559971256376,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEYJJr49lD0+9k+NPgbQZr6zGDg9WmnfPQAAAAAAAAAA8xlRvjvWyrwi8WG7f37YuT+LMT6fv6k6AACAPwAAgD8zayK+FFKhPialAL191qG++UGSvUGdM7sAAAAAAAAAAC0DPj7Ssdu7/UxhtIR2rTIlgka9Au8LNAAAgD8AAIA/AIDmPdEIsT1Lo3O9M/4/vkh18bwSiAE8AAAAAAAAAAAaHVW+NzMHvZnBnbrAdE65QrdqPiZE2zkAAIA/AACAP5r7QD4h4LK8b6cKu5IFfTkg9Ru+75g5OgAAgD8AAIA/rZhOPiiV57wLYfy6TyuOOddgTL6VoCk6AACAPwAAgD8w+U6+iKCsvF389Tqej0I5ZZccPt82HroAAIA/AACAP77/mr61Ahg/VqcJvr1WCr9Om8++2o6MvAAAAAAAAAAAGolePXc5pz++rYw+b1z4vmppqz2GzFo9AAAAAAAAAAA6YiE+tNn6PesOUr75hHC+Zp9JvU3IS70AAAAAAAAAAGIhnr4bThs/4LGoO66LNb9gfj2+xfrnPQAAAAAAAAAA+uBGPk9NSLzFgpI6f3WTuHfqq701YrK5AACAPwAAgD9Q01W+ZN0EvXK93joLuIU5yploPhq7F7oAAIA/AACAP01gnz3oXaY/zxm6PtAf875iB709b6crPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVLhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYkhOJq7Ec0CUhpRSlIwBbJRLzIwBdJRHQJX6QgzP8ht1fZQoaAZoCWgPQwhN9Pko42pxQJSGlFKUaBVL52gWR0CV+rKjSG8FdX2UKGgGaAloD0MIbVZ9rvbJcECUhpRSlGgVS8hoFkdAlfsHocJdB3V9lChoBmgJaA9DCMucLosJDG9AlIaUUpRoFUu1aBZHQJX7P20zCUJ1fZQoaAZoCWgPQwhXBWoxuCRxQJSGlFKUaBVLzWgWR0CV++wNsnAqdX2UKGgGaAloD0MIyRzLu+pFcUCUhpRSlGgVTQIBaBZHQJX8EwztTk11fZQoaAZoCWgPQwhUOe0pOfxvQJSGlFKUaBVL22gWR0CV/SKh+OOsdX2UKGgGaAloD0MISmJJuXuqb0CUhpRSlGgVS7FoFkdAlf2NpmEoOXV9lChoBmgJaA9DCKM/NPNkOXFAlIaUUpRoFUu/aBZHQJX9vqeK8+R1fZQoaAZoCWgPQwjxYmGIXGRyQJSGlFKUaBVLu2gWR0CV/2JEYwZgdX2UKGgGaAloD0MI5pMVwxUKckCUhpRSlGgVS+BoFkdAlf+6Mm4RVnV9lChoBmgJaA9DCCcvMgF/R3JAlIaUUpRoFUusaBZHQJYBjRmbsnl1fZQoaAZoCWgPQwgXnwJgPIRxQJSGlFKUaBVLyWgWR0CWAqZoPCl8dX2UKGgGaAloD0MIQrPr3opcckCUhpRSlGgVTQIBaBZHQJYDsNb1RLt1fZQoaAZoCWgPQwjJsIo3sgBmQJSGlFKUaBVN6ANoFkdAlgO+L3sXznV9lChoBmgJaA9DCHLcKR0so3NAlIaUUpRoFUu5aBZHQJYD6gOBlMB1fZQoaAZoCWgPQwjerMH7qglkQJSGlFKUaBVN6ANoFkdAlgQxUR3/xXV9lChoBmgJaA9DCCb9vRTecHBAlIaUUpRoFUvUaBZHQJYFj876pHZ1fZQoaAZoCWgPQwhPIy2Vt1lwQJSGlFKUaBVL3GgWR0CWBjKTSsr/dX2UKGgGaAloD0MIgIC1alcpckCUhpRSlGgVS89oFkdAlgihusLfDXV9lChoBmgJaA9DCOJWQQy0UXBAlIaUUpRoFUuwaBZHQJYJMasIVud1fZQoaAZoCWgPQwghXAGF+vBwQJSGlFKUaBVLsGgWR0CWDAvkBCD3dX2UKGgGaAloD0MIY0M3+4P0cUCUhpRSlGgVS71oFkdAlgwoukDZDnV9lChoBmgJaA9DCHbB4Jo7029AlIaUUpRoFUvcaBZHQJYMjW+XZ5B1fZQoaAZoCWgPQwhMbhRZa7RxQJSGlFKUaBVLyWgWR0CWDPbdJrckdX2UKGgGaAloD0MIZLFNKppacECUhpRSlGgVS+RoFkdAlg4SNn5BTnV9lChoBmgJaA9DCFw+kpKekXBAlIaUUpRoFUutaBZHQJYOas3hn8N1fZQoaAZoCWgPQwi4zr9ddnljQJSGlFKUaBVN6ANoFkdAlg7M5fdAPnV9lChoBmgJaA9DCCGx3T3A1G9AlIaUUpRoFUvWaBZHQJYPqBg/keZ1fZQoaAZoCWgPQwgniSXlrrRxQJSGlFKUaBVLs2gWR0CWEVpwS8J2dX2UKGgGaAloD0MIjX40nDIEZECUhpRSlGgVTegDaBZHQJYS0QumJnB1fZQoaAZoCWgPQwjgnBGlfbRxQJSGlFKUaBVL62gWR0CWE/1IiC8OdX2UKGgGaAloD0MIWKoLeBmDbkCUhpRSlGgVS6xoFkdAlhQbFGXoknV9lChoBmgJaA9DCFHbhlEQQm1AlIaUUpRoFUu8aBZHQJYUVkI5YHR1fZQoaAZoCWgPQwi7JTlg1/twQJSGlFKUaBVLzWgWR0CWFMHz6JqJdX2UKGgGaAloD0MIwyreyDy/b0CUhpRSlGgVS7NoFkdAlhUp26kIonV9lChoBmgJaA9DCNYe9kLBpHBAlIaUUpRoFUvLaBZHQJYVO0rsjVx1fZQoaAZoCWgPQwjIztvYbCNiQJSGlFKUaBVN6ANoFkdAlhYV1GLDRHV9lChoBmgJaA9DCNaNd0dGNXBAlIaUUpRoFUvKaBZHQJYWMq7ROUN1fZQoaAZoCWgPQwiuYYbGUwNwQJSGlFKUaBVLuWgWR0CWFj4SYgJUdX2UKGgGaAloD0MItHIvMCu5ckCUhpRSlGgVS9doFkdAlhZVwkxASnV9lChoBmgJaA9DCKGEmbZ/gHFAlIaUUpRoFUvwaBZHQJYYrWjGkvd1fZQoaAZoCWgPQwiJ6q2BLX1vQJSGlFKUaBVLu2gWR0CWGRu01IiDdX2UKGgGaAloD0MI7yB2ptCWcUCUhpRSlGgVS+hoFkdAlhle+7Dl5nV9lChoBmgJaA9DCNi2KLNB2EhAlIaUUpRoFUugaBZHQJYZhpmEoOR1fZQoaAZoCWgPQwiAYI4ev2RuQJSGlFKUaBVL1mgWR0CWGf4KhL5AdX2UKGgGaAloD0MI+1ksRXLPcECUhpRSlGgVS9JoFkdAlhoeWSlnAnV9lChoBmgJaA9DCK9EoPoH9m9AlIaUUpRoFUvAaBZHQJYadRCQcPx1fZQoaAZoCWgPQwgoui784MBwQJSGlFKUaBVLwGgWR0CWGz8GLUCrdX2UKGgGaAloD0MIE38UdWZDckCUhpRSlGgVS7toFkdAlhtFqBVdX3V9lChoBmgJaA9DCAfsavKUp3BAlIaUUpRoFUvbaBZHQJYcM/A0sOJ1fZQoaAZoCWgPQwjAriZPWWpxQJSGlFKUaBVNAgFoFkdAlh0cMAmzB3V9lChoBmgJaA9DCGHij6LOjF9AlIaUUpRoFU3oA2gWR0CWHW8VpKzzdX2UKGgGaAloD0MIilWDMDd2YkCUhpRSlGgVTegDaBZHQJYd2KZUkv91fZQoaAZoCWgPQwh6qkNuhltvQJSGlFKUaBVLtWgWR0CWHi9aUzKtdX2UKGgGaAloD0MIs0EmGbm3Y0CUhpRSlGgVTegDaBZHQJYeYxsVLzx1fZQoaAZoCWgPQwjgZvFi4Q9yQJSGlFKUaBVL3GgWR0CWHpB1s+FDdX2UKGgGaAloD0MIqiwKuyhHcECUhpRSlGgVS9FoFkdAlh6m2TgVGnV9lChoBmgJaA9DCC0j9Z7KP3BAlIaUUpRoFUvHaBZHQJYewGyHEdh1fZQoaAZoCWgPQwg2Bp0QOhtxQJSGlFKUaBVLzWgWR0CWHzaePJaJdX2UKGgGaAloD0MIveMUHUnAcECUhpRSlGgVS6BoFkdAlh9QxFiKBXV9lChoBmgJaA9DCHb6QV2kKm9AlIaUUpRoFUvWaBZHQJYfgByS3b51fZQoaAZoCWgPQwhDU3b6QZhwQJSGlFKUaBVL52gWR0CWICRF7UobdX2UKGgGaAloD0MIHT1+b9MGcUCUhpRSlGgVS8toFkdAliAz/ACW/3V9lChoBmgJaA9DCFeyYyOQxnFAlIaUUpRoFUuuaBZHQJYhYoMKCxx1fZQoaAZoCWgPQwg6AyMv60JwQJSGlFKUaBVL4mgWR0CWIZahYeT3dX2UKGgGaAloD0MIvqCFBIwXZECUhpRSlGgVTegDaBZHQJYht1cMVlB1fZQoaAZoCWgPQwjOjH40HBZwQJSGlFKUaBVLqGgWR0CWIfAGSpzcdX2UKGgGaAloD0MI4KKTpVaUcECUhpRSlGgVS8VoFkdAliLINmUW23V9lChoBmgJaA9DCPhtiPGadW9AlIaUUpRoFUvFaBZHQJYjDKPn0TV1fZQoaAZoCWgPQwiRfZBlQXVxQJSGlFKUaBVLy2gWR0CWI0sTFl06dX2UKGgGaAloD0MINuZ1xKEPcUCUhpRSlGgVS/VoFkdAliNrA57w8XV9lChoBmgJaA9DCJVHN8IiG3FAlIaUUpRoFUvdaBZHQJYjg+zMRpV1fZQoaAZoCWgPQwjURnU6kFtxQJSGlFKUaBVLymgWR0CWJOKc/dIodX2UKGgGaAloD0MIz79d9usLb0CUhpRSlGgVTQIBaBZHQJYlImjTKDF1fZQoaAZoCWgPQwiOsRNeQk5xQJSGlFKUaBVL22gWR0CWJUITGo73dX2UKGgGaAloD0MIWaX0TO+tcUCUhpRSlGgVS5ZoFkdAliWDNhVlw3V9lChoBmgJaA9DCIZa07zjz3FAlIaUUpRoFUvSaBZHQJYmcppeu3d1fZQoaAZoCWgPQwiCAu/k0wNvQJSGlFKUaBVL0WgWR0CWJqZ/CqIadX2UKGgGaAloD0MIMZV+wlnobkCUhpRSlGgVS7NoFkdAligVNQCSzXV9lChoBmgJaA9DCBzqd2Hr5XBAlIaUUpRoFUvMaBZHQJYoOce8wpR1fZQoaAZoCWgPQwhd+MH5lBdyQJSGlFKUaBVL7GgWR0CWKM6Lfk3kdX2UKGgGaAloD0MIQBaiQ2BbbUCUhpRSlGgVS7BoFkdAlimtgKF7D3V9lChoBmgJaA9DCEW3XtODQnFAlIaUUpRoFU0kAWgWR0CWKx3I+4b0dX2UKGgGaAloD0MIxJlfzQHVcUCUhpRSlGgVS9xoFkdAlitLFsHjZXV9lChoBmgJaA9DCF0xI7w9gG9AlIaUUpRoFUvfaBZHQJYrhRGc4HZ1fZQoaAZoCWgPQwjZI9QM6W9yQJSGlFKUaBVL12gWR0CWK4w+t8u0dX2UKGgGaAloD0MIYajDCreccECUhpRSlGgVS8doFkdAlixbtmcvunV9lChoBmgJaA9DCKBvC5YqsXBAlIaUUpRoFUvUaBZHQJYshQ/HHWB1fZQoaAZoCWgPQwiemPViqLRvQJSGlFKUaBVLwGgWR0CWLoEq2BrfdX2UKGgGaAloD0MILhud89MAcUCUhpRSlGgVS+poFkdAli8EqUeMh3V9lChoBmgJaA9DCFSQn41coWJAlIaUUpRoFU3oA2gWR0CWLw8YAKfGdX2UKGgGaAloD0MIteBFX8EtcUCUhpRSlGgVS71oFkdAljE+0PYnOXV9lChoBmgJaA9DCCBdbFqpznBAlIaUUpRoFUvMaBZHQJYxegmJFb51fZQoaAZoCWgPQwhE+YIWEgBzQJSGlFKUaBVNBgFoFkdAljGnndO6/nV9lChoBmgJaA9DCCUk0jZ+6HFAlIaUUpRoFUvYaBZHQJYyGlLvkR11fZQoaAZoCWgPQwg/Gk6ZG8ZuQJSGlFKUaBVLxmgWR0CWMpVpsXSCdX2UKGgGaAloD0MInrXbLnR/cUCUhpRSlGgVTQUBaBZHQJYzDCZWq951fZQoaAZoCWgPQwjSOqqaIBBzQJSGlFKUaBVLw2gWR0CWNJQLux8ldX2UKGgGaAloD0MIaM76lCMDcUCUhpRSlGgVS7RoFkdAljSfS6UaAHVlLg=="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 310,
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.99,
|
82 |
"gae_lambda": 0.95,
|
first_try_model_lander/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:833ff724efdf539755e42e5fa9db2c88505c4a233d12a13d23e7c1840959f194
|
3 |
size 87929
|
first_try_model_lander/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53bbb16e526a49d4b8167f137533e94017d2594e9157687b8191ce58bbd79dc1
|
3 |
size 43393
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 246.05841317412015, "std_reward": 60.453614058215564, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T11:51:06.520480"}
|