delineiro commited on
Commit
efa14e3
1 Parent(s): 89f5759
Files changed (5) hide show
  1. .gitattributes +2 -0
  2. config.json +20 -0
  3. inference.py +37 -37
  4. model.pkl +1 -1
  5. vectorizer.pkl +1 -1
.gitattributes ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model.pkl filter=lfs diff=lfs merge=lfs -text
2
+ vectorizer.pkl filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": ["AutoModelForSequenceClassification", "AutoModelForCausalLM"],
3
+ "model_type": "bert",
4
+ "classification_model_name": "delineiro/soflexpoc",
5
+ "generation_model_name": "delineiro/soflexpoc",
6
+ "language": "es",
7
+ "max_position_embeddings": 512,
8
+ "num_attention_heads": 12,
9
+ "num_hidden_layers": 12,
10
+ "pad_token_id": 0,
11
+ "vocab_size": 30522,
12
+ "hidden_size": 768,
13
+ "intermediate_size": 3072,
14
+ "hidden_act": "gelu",
15
+ "hidden_dropout_prob": 0.1,
16
+ "attention_probs_dropout_prob": 0.1,
17
+ "max_length": 100,
18
+ "do_sample": true,
19
+ "num_return_sequences": 1
20
+ }
inference.py CHANGED
@@ -1,37 +1,37 @@
1
- import joblib
2
- import numpy as np
3
-
4
- # Cargar el vectorizador
5
- try:
6
- with open('vectorizer.pkl', 'rb') as f:
7
- vectorizer = joblib.load(f)
8
- except Exception as e:
9
- print(f"Error al cargar el vectorizador: {e}")
10
-
11
- # Cargar el modelo
12
- try:
13
- with open('model.pkl', 'rb') as f:
14
- model = joblib.load(f)
15
- except Exception as e:
16
- print(f"Error al cargar el modelo: {e}")
17
-
18
- def preprocess(text):
19
- """Preprocesa el texto para la inferencia."""
20
- try:
21
- return vectorizer.transform([text])
22
- except Exception as e:
23
- print(f"Error en el preprocesamiento: {e}")
24
-
25
- def predict(text):
26
- """Realiza la predicción a partir del texto ingresado."""
27
- try:
28
- X = preprocess(text)
29
- return model.predict(X)
30
- except Exception as e:
31
- print(f"Error en la predicción: {e}")
32
-
33
- if __name__ == "__main__":
34
- # Prueba del modelo
35
- test_text = "Texto de prueba para predecir"
36
- result = predict(test_text)
37
- print(f"Predicción: {result}")
 
1
+ import joblib
2
+ import numpy as np
3
+
4
+ # Cargar el vectorizador
5
+ try:
6
+ with open('vectorizer.pkl', 'rb') as f:
7
+ vectorizer = joblib.load(f)
8
+ except Exception as e:
9
+ print(f"Error al cargar el vectorizador: {e}")
10
+
11
+ # Cargar el modelo
12
+ try:
13
+ with open('model.pkl', 'rb') as f:
14
+ model = joblib.load(f)
15
+ except Exception as e:
16
+ print(f"Error al cargar el modelo: {e}")
17
+
18
+ def preprocess(text):
19
+ """Preprocesa el texto para la inferencia."""
20
+ try:
21
+ return vectorizer.transform([text])
22
+ except Exception as e:
23
+ print(f"Error en el preprocesamiento: {e}")
24
+
25
+ def predict(text):
26
+ """Realiza la predicción a partir del texto ingresado."""
27
+ try:
28
+ X = preprocess(text)
29
+ return model.predict(X)
30
+ except Exception as e:
31
+ print(f"Error en la predicción: {e}")
32
+
33
+ if __name__ == "__main__":
34
+ # Prueba del modelo
35
+ test_text = "Texto de prueba para predecir"
36
+ result = predict(test_text)
37
+ print(f"Predicción: {result}")
model.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e62776a2b6e28bf7e86fa4328730420bef73e6530e974679ca2764d486cf949f
3
  size 7103071
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6566d630fd91a6406a0b60465fd1941d1a475655c53088aeae71e38c4662515d
3
  size 7103071
vectorizer.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8578b678112aef3787bd639ebfa0466cae3dc728cdb6ff6aff925d7fa0877705
3
  size 1123551
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e74c46f64f2513cc152fc1751b0fa1d8cb0015576b800a7ec4d3ded27b490bb6
3
  size 1123551