Upload 4 files
Browse files- .gitattributes +1 -0
- goodies/data.csv +3 -0
- goodies/sentiment.py +142 -0
- goodies/synth.py +53 -0
- goodies/train.py +143 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
goodies/data.csv filter=lfs diff=lfs merge=lfs -text
|
goodies/data.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:025591039882326919545ffe4e47a9285d3f567c617c7b061a4f335f8a3d3a2b
|
3 |
+
size 11089589
|
goodies/sentiment.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
4 |
+
import requests
|
5 |
+
from bs4 import BeautifulSoup
|
6 |
+
import pandas as pd
|
7 |
+
import altair as alt
|
8 |
+
from collections import OrderedDict
|
9 |
+
import nltk
|
10 |
+
from nltk.tokenize import sent_tokenize
|
11 |
+
|
12 |
+
nltk.download('punkt')
|
13 |
+
|
14 |
+
# Load model and tokenizer
|
15 |
+
model_name = 'C:/projects/sentiment/albert_sentiment_model/checkpoint-3000'
|
16 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
+
|
19 |
+
# Sentiment labels as textual descriptions
|
20 |
+
sentiment_labels = {
|
21 |
+
0: "very positive",
|
22 |
+
1: "positive",
|
23 |
+
2: "somewhat positive",
|
24 |
+
3: "neutral",
|
25 |
+
4: "somewhat negative",
|
26 |
+
5: "negative",
|
27 |
+
6: "very negative"
|
28 |
+
}
|
29 |
+
|
30 |
+
# Background colors for sentiments
|
31 |
+
background_colors = {
|
32 |
+
"very positive": "rgba(0, 255, 0, 0.5)",
|
33 |
+
"positive": "rgba(0, 255, 0, 0.3)",
|
34 |
+
"somewhat positive": "rgba(0, 255, 0, 0.1)",
|
35 |
+
"neutral": "rgba(128, 128, 128, 0.1)",
|
36 |
+
"somewhat negative": "rgba(255, 0, 0, 0.1)",
|
37 |
+
"negative": "rgba(255, 0, 0, 0.3)",
|
38 |
+
"very negative": "rgba(255, 0, 0, 0.5)"
|
39 |
+
}
|
40 |
+
|
41 |
+
# Function to get text content from a URL
|
42 |
+
def get_text_from_url(url):
|
43 |
+
response = requests.get(url)
|
44 |
+
if response.status_code == 200:
|
45 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
46 |
+
paragraphs = soup.find_all('p')
|
47 |
+
return ' '.join(p.get_text() for p in paragraphs)
|
48 |
+
return ""
|
49 |
+
|
50 |
+
# Function to classify text
|
51 |
+
def classify_text(text, max_length):
|
52 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=max_length)
|
53 |
+
with torch.no_grad():
|
54 |
+
outputs = model(**inputs)
|
55 |
+
scores = torch.nn.functional.softmax(outputs.logits, dim=-1)[0].tolist()
|
56 |
+
return scores
|
57 |
+
|
58 |
+
# Function to handle long texts
|
59 |
+
def classify_long_text(text):
|
60 |
+
max_length = tokenizer.model_max_length
|
61 |
+
# Split the text into chunks
|
62 |
+
chunks = [text[i:i + max_length] for i in range(0, len(text), max_length)]
|
63 |
+
aggregate_scores = [0] * len(sentiment_labels)
|
64 |
+
chunk_scores_list = []
|
65 |
+
for chunk in chunks:
|
66 |
+
chunk_scores = classify_text(chunk, max_length)
|
67 |
+
chunk_scores_list.append(chunk_scores)
|
68 |
+
aggregate_scores = [x + y for x, y in zip(aggregate_scores, chunk_scores)]
|
69 |
+
# Average the scores
|
70 |
+
aggregate_scores = [x / len(chunks) for x in aggregate_scores]
|
71 |
+
return aggregate_scores, chunk_scores_list, chunks
|
72 |
+
|
73 |
+
# Function to classify each sentence in the text
|
74 |
+
def classify_sentences(text):
|
75 |
+
sentences = sent_tokenize(text)
|
76 |
+
sentence_scores = []
|
77 |
+
for sentence in sentences:
|
78 |
+
scores = classify_text(sentence, tokenizer.model_max_length)
|
79 |
+
sentiment_idx = scores.index(max(scores))
|
80 |
+
sentiment = sentiment_labels[sentiment_idx]
|
81 |
+
sentence_scores.append((sentence, sentiment))
|
82 |
+
return sentence_scores
|
83 |
+
|
84 |
+
# Streamlit UI
|
85 |
+
st.title("Sentiment Classification from URL")
|
86 |
+
|
87 |
+
url = st.text_input("Enter URL:")
|
88 |
+
if url:
|
89 |
+
text = get_text_from_url(url)
|
90 |
+
if text:
|
91 |
+
scores, chunk_scores_list, chunks = classify_long_text(text)
|
92 |
+
scores_dict = {sentiment_labels[i]: scores[i] for i in range(len(sentiment_labels))}
|
93 |
+
|
94 |
+
# Ensure the exact order of labels in the graph
|
95 |
+
sentiment_order = [
|
96 |
+
"very positive", "positive", "somewhat positive",
|
97 |
+
"neutral",
|
98 |
+
"somewhat negative", "negative", "very negative"
|
99 |
+
]
|
100 |
+
ordered_scores_dict = OrderedDict((label, scores_dict[label]) for label in sentiment_order)
|
101 |
+
|
102 |
+
# Prepare the DataFrame and reindex
|
103 |
+
df = pd.DataFrame.from_dict(ordered_scores_dict, orient='index', columns=['Likelihood']).reindex(sentiment_order)
|
104 |
+
|
105 |
+
# Use Altair to plot the bar chart
|
106 |
+
chart = alt.Chart(df.reset_index()).mark_bar().encode(
|
107 |
+
x=alt.X('index', sort=sentiment_order, title='Sentiment'),
|
108 |
+
y='Likelihood'
|
109 |
+
).properties(
|
110 |
+
width=600,
|
111 |
+
height=400
|
112 |
+
)
|
113 |
+
|
114 |
+
st.altair_chart(chart, use_container_width=True)
|
115 |
+
|
116 |
+
# Display each chunk and its own chart
|
117 |
+
for i, (chunk_scores, chunk) in enumerate(zip(chunk_scores_list, chunks)):
|
118 |
+
chunk_scores_dict = {sentiment_labels[j]: chunk_scores[j] for j in range(len(sentiment_labels))}
|
119 |
+
ordered_chunk_scores_dict = OrderedDict((label, chunk_scores_dict[label]) for label in sentiment_order)
|
120 |
+
df_chunk = pd.DataFrame.from_dict(ordered_chunk_scores_dict, orient='index', columns=['Likelihood']).reindex(sentiment_order)
|
121 |
+
|
122 |
+
chunk_chart = alt.Chart(df_chunk.reset_index()).mark_bar().encode(
|
123 |
+
x=alt.X('index', sort=sentiment_order, title='Sentiment'),
|
124 |
+
y='Likelihood'
|
125 |
+
).properties(
|
126 |
+
width=600,
|
127 |
+
height=400
|
128 |
+
)
|
129 |
+
|
130 |
+
st.write(f"Chunk {i + 1}:")
|
131 |
+
st.write(chunk)
|
132 |
+
st.altair_chart(chunk_chart, use_container_width=True)
|
133 |
+
|
134 |
+
# Sentence-level classification with background colors
|
135 |
+
st.write("Extracted Text with Sentiment Highlights:")
|
136 |
+
sentence_scores = classify_sentences(text)
|
137 |
+
for sentence, sentiment in sentence_scores:
|
138 |
+
bg_color = background_colors[sentiment]
|
139 |
+
st.markdown(f'<span style="background-color: {bg_color}">{sentence}</span>', unsafe_allow_html=True)
|
140 |
+
|
141 |
+
else:
|
142 |
+
st.write("Could not extract text from the provided URL.")
|
goodies/synth.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import csv
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Load the model and tokenizer from the local directory
|
7 |
+
model_path = "C:\\models\\llama-3-8b-Instruct-bnb-4bit"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
10 |
+
|
11 |
+
# Parameters for generating data
|
12 |
+
num_samples = 100000
|
13 |
+
output_file = 'raw_data.csv'
|
14 |
+
|
15 |
+
# Sentiment labels as textual descriptions
|
16 |
+
sentiment_labels = {
|
17 |
+
0: "very positive",
|
18 |
+
1: "positive",
|
19 |
+
2: "somewhat positive",
|
20 |
+
3: "neutral",
|
21 |
+
4: "somewhat negative",
|
22 |
+
5: "negative",
|
23 |
+
6: "very negative"
|
24 |
+
}
|
25 |
+
|
26 |
+
# Ensure output CSV file exists and create if not, with headers
|
27 |
+
if not os.path.exists(output_file):
|
28 |
+
with open(output_file, 'w', newline='', encoding='utf-8') as file:
|
29 |
+
writer = csv.writer(file)
|
30 |
+
writer.writerow(['text', 'label']) # Writing the header
|
31 |
+
|
32 |
+
# Append raw generated data to the CSV file
|
33 |
+
for i in range(num_samples):
|
34 |
+
label = i % len(sentiment_labels) # Ensure labels cycle properly from 0 to 6
|
35 |
+
sentiment = sentiment_labels[label]
|
36 |
+
# Encode the prompt with dynamic sentiment label
|
37 |
+
prompt = f"Generate a short article on a random topic and writing style, ensuring the sentiment is {sentiment}. Write nothing but the article text. Do not include the sentiment in the text of the article."
|
38 |
+
print(f"Generating sample {i+1}/{num_samples}: {prompt}") # Output the prompt to console for verification
|
39 |
+
input_ids = tokenizer.encode(prompt, return_tensors='pt')
|
40 |
+
|
41 |
+
# Generate response from the model
|
42 |
+
output = model.generate(input_ids, max_length=200, do_sample=True, top_k=50, top_p=0.95, temperature=0.7)
|
43 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
44 |
+
|
45 |
+
# Get only the new tokens generated by the model
|
46 |
+
new_tokens = response[len(prompt):].strip()
|
47 |
+
|
48 |
+
# Append the raw generated text and numeric label to the CSV file
|
49 |
+
with open(output_file, 'a', newline='', encoding='utf-8') as file:
|
50 |
+
writer = csv.writer(file)
|
51 |
+
writer.writerow([new_tokens, label]) # Writing each row as it's generated
|
52 |
+
|
53 |
+
print(f"Data generation completed. Data appended to {output_file}")
|
goodies/train.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments, TrainerCallback
|
5 |
+
from transformers import DataCollatorWithPadding
|
6 |
+
from datasets import load_metric, Dataset
|
7 |
+
import torch
|
8 |
+
import wandb
|
9 |
+
|
10 |
+
# Set tweakable parameters
|
11 |
+
model_name = 'albert-base-v2'
|
12 |
+
num_labels = 7 # Number of sentiment labels
|
13 |
+
output_dir = './albert_sentiment_model'
|
14 |
+
data_file = 'data.csv'
|
15 |
+
wandb_entity = 'dejan'
|
16 |
+
batch_size = 8
|
17 |
+
num_train_epochs = 30
|
18 |
+
learning_rate = 5e-5
|
19 |
+
|
20 |
+
# Initialize wandb
|
21 |
+
wandb.init(entity=wandb_entity, project="sentiment_classification")
|
22 |
+
|
23 |
+
# Load and preprocess the dataset
|
24 |
+
df = pd.read_csv(data_file, header=None, names=['text', 'label'])
|
25 |
+
|
26 |
+
# Remove leading instructions and prompts (assuming we know the prompt structure)
|
27 |
+
df['text'] = df['text'].apply(lambda x: x.split('Write nothing but the article text. Do not include the sentiment in the text of the article.')[-1].strip())
|
28 |
+
|
29 |
+
# Display the cleaned data
|
30 |
+
print(df.head())
|
31 |
+
|
32 |
+
train_texts, val_texts, train_labels, val_labels = train_test_split(
|
33 |
+
df['text'].tolist(), df['label'].tolist(), test_size=0.2, random_state=42
|
34 |
+
)
|
35 |
+
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
37 |
+
train_encodings = tokenizer(train_texts, truncation=True, padding=True)
|
38 |
+
val_encodings = tokenizer(val_texts, truncation=True, padding=True)
|
39 |
+
|
40 |
+
train_dataset = Dataset.from_dict({
|
41 |
+
'input_ids': train_encodings['input_ids'],
|
42 |
+
'attention_mask': train_encodings['attention_mask'],
|
43 |
+
'labels': train_labels
|
44 |
+
})
|
45 |
+
|
46 |
+
val_dataset = Dataset.from_dict({
|
47 |
+
'input_ids': val_encodings['input_ids'],
|
48 |
+
'attention_mask': val_encodings['attention_mask'],
|
49 |
+
'labels': val_labels
|
50 |
+
})
|
51 |
+
|
52 |
+
# Define data collator
|
53 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
54 |
+
|
55 |
+
# Define metrics
|
56 |
+
accuracy_metric = load_metric("accuracy")
|
57 |
+
precision_metric = load_metric("precision")
|
58 |
+
recall_metric = load_metric("recall")
|
59 |
+
f1_metric = load_metric("f1")
|
60 |
+
|
61 |
+
def compute_metrics(eval_pred):
|
62 |
+
logits, labels = eval_pred
|
63 |
+
predictions = torch.argmax(torch.tensor(logits), dim=-1)
|
64 |
+
accuracy = accuracy_metric.compute(predictions=predictions, references=labels)
|
65 |
+
precision = precision_metric.compute(predictions=predictions, references=labels, average='weighted')
|
66 |
+
recall = recall_metric.compute(predictions=predictions, references=labels, average='weighted')
|
67 |
+
f1 = f1_metric.compute(predictions=predictions, references=labels, average='weighted')
|
68 |
+
|
69 |
+
wandb.log({
|
70 |
+
"eval_accuracy": accuracy["accuracy"],
|
71 |
+
"eval_precision": precision["precision"],
|
72 |
+
"eval_recall": recall["recall"],
|
73 |
+
"eval_f1": f1["f1"],
|
74 |
+
})
|
75 |
+
|
76 |
+
return {
|
77 |
+
"accuracy": accuracy["accuracy"],
|
78 |
+
"precision": precision["precision"],
|
79 |
+
"recall": recall["recall"],
|
80 |
+
"f1": f1["f1"],
|
81 |
+
}
|
82 |
+
|
83 |
+
# Training arguments
|
84 |
+
training_args = TrainingArguments(
|
85 |
+
output_dir=output_dir,
|
86 |
+
num_train_epochs=num_train_epochs,
|
87 |
+
per_device_train_batch_size=batch_size,
|
88 |
+
per_device_eval_batch_size=batch_size,
|
89 |
+
warmup_steps=500,
|
90 |
+
weight_decay=0.01,
|
91 |
+
logging_dir='./logs',
|
92 |
+
logging_steps=10,
|
93 |
+
evaluation_strategy="steps",
|
94 |
+
eval_steps=500,
|
95 |
+
save_strategy="steps",
|
96 |
+
save_steps=500,
|
97 |
+
load_best_model_at_end=True,
|
98 |
+
metric_for_best_model="eval_loss",
|
99 |
+
learning_rate=learning_rate,
|
100 |
+
report_to="wandb",
|
101 |
+
lr_scheduler_type="linear",
|
102 |
+
logging_strategy="steps",
|
103 |
+
)
|
104 |
+
|
105 |
+
# Early stopping callback
|
106 |
+
class EarlyStoppingCallback(TrainerCallback):
|
107 |
+
def __init__(self, patience=2):
|
108 |
+
self.patience = patience
|
109 |
+
self.best_metric = None
|
110 |
+
self.best_model_checkpoint = None
|
111 |
+
self.epochs_no_improve = 0
|
112 |
+
|
113 |
+
def on_evaluate(self, args, state, control, **kwargs):
|
114 |
+
eval_metric = kwargs['metrics'][training_args.metric_for_best_model]
|
115 |
+
if self.best_metric is None or eval_metric < self.best_metric:
|
116 |
+
self.best_metric = eval_metric
|
117 |
+
self.best_model_checkpoint = state.global_step
|
118 |
+
self.epochs_no_improve = 0
|
119 |
+
else:
|
120 |
+
self.epochs_no_improve += 1
|
121 |
+
if self.epochs_no_improve >= self.patience:
|
122 |
+
print(f"Stopping early after {self.epochs_no_improve} evaluations with no improvement.")
|
123 |
+
control.should_training_stop = True
|
124 |
+
|
125 |
+
# Trainer
|
126 |
+
trainer = Trainer(
|
127 |
+
model=AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels),
|
128 |
+
args=training_args,
|
129 |
+
train_dataset=train_dataset,
|
130 |
+
eval_dataset=val_dataset,
|
131 |
+
data_collator=data_collator,
|
132 |
+
compute_metrics=compute_metrics,
|
133 |
+
callbacks=[EarlyStoppingCallback(patience=2)]
|
134 |
+
)
|
135 |
+
|
136 |
+
# Train and save the final model
|
137 |
+
trainer.train()
|
138 |
+
trainer.save_model(output_dir)
|
139 |
+
|
140 |
+
# Finalize wandb
|
141 |
+
wandb.finish()
|
142 |
+
|
143 |
+
print(f"Training completed. Model saved to {output_dir}")
|