Update handler.py
Browse files- handler.py +39 -27
handler.py
CHANGED
@@ -7,47 +7,59 @@ class EndpointHandler:
|
|
7 |
# Load the configuration from the saved model
|
8 |
self.config = AutoConfig.from_pretrained(path)
|
9 |
|
10 |
-
# Make sure to specify the correct model name for bert-large-cased
|
11 |
-
# Adjust num_labels according to your model's configuration
|
12 |
self.model = BertForTokenClassification.from_pretrained(
|
13 |
path,
|
14 |
config=self.config
|
15 |
)
|
16 |
self.model.eval() # Set model to evaluation mode
|
17 |
|
18 |
-
# Load the tokenizer for bert-large-cased
|
19 |
self.tokenizer = BertTokenizer.from_pretrained("bert-large-cased")
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
22 |
-
# Extract input text from the request
|
23 |
inputs = data.get("inputs", "")
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
predictions = torch.argmax(outputs.logits, dim=-1)
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
predictions = predictions[0][1:-1].tolist()
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
45 |
|
46 |
-
|
|
|
|
|
|
|
47 |
|
48 |
# Return the processed text in a structured format
|
49 |
-
return [{"text":
|
50 |
-
|
51 |
-
# Note: Ensure the path "dejanseo/LinkBERT" is correctly pointing to your model's location
|
52 |
-
# If the model is locally saved, adjust the path accordingly
|
53 |
-
|
|
|
7 |
# Load the configuration from the saved model
|
8 |
self.config = AutoConfig.from_pretrained(path)
|
9 |
|
|
|
|
|
10 |
self.model = BertForTokenClassification.from_pretrained(
|
11 |
path,
|
12 |
config=self.config
|
13 |
)
|
14 |
self.model.eval() # Set model to evaluation mode
|
15 |
|
|
|
16 |
self.tokenizer = BertTokenizer.from_pretrained("bert-large-cased")
|
17 |
|
18 |
+
def split_into_chunks(self, text: str, max_length: int = 510) -> List[str]:
|
19 |
+
"""
|
20 |
+
Splits the input text into manageable chunks for the tokenizer.
|
21 |
+
"""
|
22 |
+
tokens = self.tokenizer.tokenize(text)
|
23 |
+
chunk_texts = []
|
24 |
+
for i in range(0, len(tokens), max_length):
|
25 |
+
chunk = tokens[i:i+max_length]
|
26 |
+
chunk_texts.append(self.tokenizer.convert_tokens_to_string(chunk))
|
27 |
+
return chunk_texts
|
28 |
+
|
29 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
|
|
30 |
inputs = data.get("inputs", "")
|
31 |
|
32 |
+
# Split input text into chunks
|
33 |
+
chunks = self.split_into_chunks(inputs)
|
34 |
+
|
35 |
+
all_results = [] # List to store results from each chunk
|
36 |
+
|
37 |
+
for chunk in chunks:
|
38 |
+
inputs_tensor = self.tokenizer(chunk, return_tensors="pt", add_special_tokens=True)
|
39 |
+
input_ids = inputs_tensor["input_ids"]
|
40 |
|
41 |
+
with torch.no_grad():
|
42 |
+
outputs = self.model(input_ids)
|
43 |
+
predictions = torch.argmax(outputs.logits, dim=-1)
|
|
|
44 |
|
45 |
+
tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0])[1:-1] # Exclude CLS and SEP tokens
|
46 |
+
predictions = predictions[0][1:-1].tolist()
|
|
|
47 |
|
48 |
+
# Improved reconstruction to handle "##" artifacts
|
49 |
+
reconstructed_text = ""
|
50 |
+
for token, pred in zip(tokens, predictions):
|
51 |
+
if not token.startswith("##"):
|
52 |
+
reconstructed_text += " " + token if reconstructed_text else token
|
53 |
+
else:
|
54 |
+
reconstructed_text += token[2:] # Remove "##" and append
|
55 |
+
|
56 |
+
if pred == 1: # Example condition, adjust as needed
|
57 |
+
reconstructed_text = reconstructed_text.strip() + "<u>" + token + "</u>"
|
58 |
|
59 |
+
all_results.append(reconstructed_text.strip())
|
60 |
+
|
61 |
+
# Join the results from each chunk
|
62 |
+
final_text = " ".join(all_results)
|
63 |
|
64 |
# Return the processed text in a structured format
|
65 |
+
return [{"text": final_text}]
|
|
|
|
|
|
|
|