Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 260.36 +/- 18.85
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cb27a3249d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cb27a324a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cb27a324af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cb27a324b80>", "_build": "<function ActorCriticPolicy._build at 0x7cb27a324c10>", "forward": "<function ActorCriticPolicy.forward at 0x7cb27a324ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cb27a324d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cb27a324dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7cb27a324e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cb27a324ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cb27a324f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cb27a325000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cb27a31e380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690219788405743461, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANKVgr6HtSI/LozkPatCnb6zgmu9BraNPQAAAAAAAAAAE1RTPv5LDD/DIDi+86B0vttlarwT9xG7AAAAAAAAAAAAa3U9kJ2dP4UWWj5HWqa+Lxl3PZ1Mnz0AAAAAAAAAAI0r6T0rUdQ+OhFBvmE7Pb48ze69OpKRvAAAAAAAAAAAM4AuvfGZsj7GYOW9UPxFvmxbp7wvWsc7AAAAAAAAAABN+ui9GxPVvAUIr7xFOGw9NngjPcjE2LoAAIA/AACAPxrs+T1N7JM/Bi/+PSSunL5MIeA9xuq7vQAAAAAAAAAAM+jlPE+uTby/f6Y9j574vTzt+TvQ3cU8AACAPwAAgD+aSd26j45Rury8ArgRG+OwHW8dNqq3FzcAAIA/AACAP/pFdj4fvVQ/AO/su8t+i76vL8E9kMemvQAAAAAAAAAAmuFcPIVFPj6ChXg7OUtvvg3mXDwcpBc9AAAAAAAAAAC6i1A+m3ihvMJFZju80rC5yIMPvh6/i7oAAIA/AACAPwAltz3hKoq6Ykm+uYZEhTc+rBo75KFDOAAAgD8AAIA/4JMJvvduNz9g4GM+8aJlvt9ZVbpGAFA9AAAAAAAAAAAAtGq9HjWRP2o/+L3ztJa+WUoHvqKQXL0AAAAAAAAAADNqLz32Lwe8xIBIPeJSHb6ttsy81qkzvwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDxVWfbsWyMAWyUTVkBjAF0lEdAk0WFZPl+3HV9lChoBkdAbFyivgWJrWgHTUUCaAhHQJNF7KT0QK91fZQoaAZHQHAx+yZ8a4toB03nAWgIR0CTRq0vGp++dX2UKGgGR0BxUjpJPIn0aAdNSQFoCEdAk0bgAAAAAHV9lChoBkdAbrWBltj0+WgHTUsBaAhHQJNH2ktVaOh1fZQoaAZHQGvljqnm7rdoB03zAmgIR0CTSdx0MgEEdX2UKGgGR0BsMe/i5uqFaAdNTgFoCEdAk0xhC6YmcHV9lChoBkdAcKX3N9ph4WgHTUcBaAhHQJNNaD9Oymh1fZQoaAZHQG+nWAPNFBpoB02eAWgIR0CTYK6OHWSVdX2UKGgGR0Bv+mMMqjJuaAdNPwFoCEdAk2FJT2nKn3V9lChoBkdAb7PdM0xdp2gHTU0BaAhHQJNiBSpBHCp1fZQoaAZHQGygOjqOcUdoB01YAWgIR0CTYn9yLhrFdX2UKGgGR0BspCTr3TNMaAdNeQFoCEdAk2Lq3NLUTnV9lChoBkdAcZ1guh9LH2gHTYABaAhHQJNkQrrgOz91fZQoaAZHQHBc82NvOyFoB00zAWgIR0CTZXRFI/Z/dX2UKGgGR0BsHgmiQDFIaAdNhwFoCEdAk2ZuchC+lHV9lChoBkdAceO3zcynDWgHTT4BaAhHQJNnhHFxXGR1fZQoaAZHQHHnb8R+SbJoB03eA2gIR0CTZ/criEQHdX2UKGgGR0BxLvMpw0fpaAdNSAFoCEdAk2hQKv3ajHV9lChoBkdAcfB+lTFVDWgHTUEBaAhHQJNpNtSAH3V1fZQoaAZHQHEaJgssg+1oB02fAWgIR0CTax41P3zudX2UKGgGR0BvRzwpe/pMaAdNYQFoCEdAk2xg0Kqn33V9lChoBkdAb9QiUxEfDGgHTTEBaAhHQJNtezdDYyx1fZQoaAZHQG4u2WIGhVVoB00zAWgIR0CTb2P2wmmcdX2UKGgGR0Bx6tHxz7uVaAdNOAFoCEdAk3Do3WFvh3V9lChoBkdAco6OPeYUnGgHTSYBaAhHQJNxhT/ACXB1fZQoaAZHQGvVEuQIUrVoB02tAWgIR0CTcfr433pOdX2UKGgGR0BwbH2nKnvVaAdNHwFoCEdAk3MAxrSE13V9lChoBkdAcos/PgNwzmgHTW4BaAhHQJNzAcCHRCx1fZQoaAZHQG68png5zYFoB00zAWgIR0CTcxjwx33YdX2UKGgGR0Bvr/+Q2dd3aAdNggFoCEdAk3NmgrYoRnV9lChoBkdAcFkCQtBfKWgHTUkBaAhHQJN1/sWweNl1fZQoaAZHQHEdSxqwhW5oB01oAWgIR0CTdqdgv115dX2UKGgGR0Btjch7mdRSaAdNcwFoCEdAk3d3OW0JGHV9lChoBkdAbuXRJmNBGGgHTW4BaAhHQJN4S6Ymb9Z1fZQoaAZHQGyKrmyPdVNoB01RAWgIR0CTelfukUKzdX2UKGgGR0BvuNNpM6BAaAdNdgFoCEdAk3qCJbdJrnV9lChoBkdAbCXCQ9zOo2gHTUsBaAhHQJN7PCFbmlt1fZQoaAZHQHBITGcWj45oB009AmgIR0CTe/QFLWZrdX2UKGgGR0BwhwoZydWiaAdNPAFoCEdAk36ffoA4oHV9lChoBkdAb/2ASWZ7X2gHTTkBaAhHQJN+8SCe2/l1fZQoaAZHQG9wwcHWz4VoB00rAWgIR0CTf1NiYsundX2UKGgGR0BxA4WZZ0SzaAdNjAFoCEdAk4AYLkS26XV9lChoBkdAcIz/UONHY2gHTWYBaAhHQJOB0pH7P6d1fZQoaAZHQG+gkt/WlM1oB01gAWgIR0CTgfHk92X+dX2UKGgGR0BwHveMyad+aAdNmQFoCEdAk4IIqwyIpHV9lChoBkdAb6gpXp4bCWgHTX0BaAhHQJOCuoZQ53l1fZQoaAZHQG/z9n003wVoB01QAWgIR0CThHGorFwUdX2UKGgGR0Bw3doIv8IiaAdNMgFoCEdAk4Ta4+bExnV9lChoBkdAch88FINEw2gHTXwBaAhHQJOFgl9jPOZ1fZQoaAZHQG1rVWS2Yv5oB01pAWgIR0CThhCxNZeSdX2UKGgGR0BwWsVEd/8VaAdNIwFoCEdAk4YYYNy5qnV9lChoBkdAcX+hxYJVsGgHTToBaAhHQJOHnBRAKOV1fZQoaAZHQHByctf5ULloB01CAWgIR0CTiJW4EwFldX2UKGgGR0BB9e6Zpi7TaAdNCwFoCEdAk4jWUB4lhXV9lChoBkdAccacOLBKtmgHTW8BaAhHQJOI8xZdOZd1fZQoaAZHQG4WAhB7eEZoB01WAWgIR0CToBr3Cbc5dX2UKGgGR0Bxnn668QI2aAdNlwFoCEdAk6HZzHS4OXV9lChoBkdAboC8yvcJt2gHTVUBaAhHQJOiE4sEq2B1fZQoaAZHQHA+J2ECeVdoB01vAWgIR0CTo19lEqlQdX2UKGgGR0BxoMqRU3n7aAdNYQFoCEdAk6OkqhDgInV9lChoBkdAbsfRoh6jWWgHTUsBaAhHQJOlQkHD7651fZQoaAZHQHI+PO2RaHNoB01cAWgIR0CTpZhkiD/VdX2UKGgGR0BwgUuGsV+JaAdNTAFoCEdAk6YpJ04io3V9lChoBkdAcabiiItUXGgHTeoBaAhHQJOmNDneSB91fZQoaAZHQG8ElbmlqJxoB01OAWgIR0CTpuGza9K3dX2UKGgGR0Bq86DqW1MNaAdNYAFoCEdAk6eNxAB1cXV9lChoBkdAcX0DMeOn22gHTUUBaAhHQJOpouFpPAR1fZQoaAZHQG9A8xTKkmBoB01pAWgIR0CTqa0Qsf7rdX2UKGgGR0ByBekAPuohaAdNVAFoCEdAk6oGyX2M9HV9lChoBkdAbLRu+AVfu2gHTWcBaAhHQJOqaWHDaXd1fZQoaAZHQHDhTQNTcZdoB01vAmgIR0CTrQiMYMvzdX2UKGgGR0BuIaKP4mCzaAdNRAFoCEdAk60cEFGG23V9lChoBkdAcixExqO94GgHTTgBaAhHQJOuOxMWXTp1fZQoaAZHQG7vpW/8EV5oB01MAWgIR0CTrtQarFOxdX2UKGgGR0BwamgctGutaAdNQAFoCEdAk6+b5hz/63V9lChoBkdAcRCQ9zOopGgHTVUBaAhHQJOwpvDP4VR1fZQoaAZHQG3kw4jrzGxoB01SAWgIR0CTsu75mAbydX2UKGgGR0BwjdsbedkKaAdNZQFoCEdAk7Myv5gw5HV9lChoBkdAcMsMfigkC2gHTVoBaAhHQJO0CeRPoFF1fZQoaAZHQG900uL74ztoB01SAWgIR0CTtIHwgDA8dX2UKGgGR0BwWeAoXsPbaAdNlAFoCEdAk7T0Oy3TeHV9lChoBkdAbx17l7tzCGgHTTkBaAhHQJO1ufmLcbl1fZQoaAZHQG0sJXQtz0ZoB02ZAWgIR0CTtfdVNpM6dX2UKGgGR0BuXSoCMgloaAdNVgFoCEdAk7ep+QU5/HV9lChoBkdAcGpz7/GVA2gHTXoBaAhHQJO4kY64lQd1fZQoaAZHQHGnsvAXVLBoB00mAWgIR0CTuNDRc/t6dX2UKGgGR0ByUhWU8mrsaAdNYgFoCEdAk7sOIdlunHV9lChoBkdAcVBiMo+fRWgHTVEBaAhHQJO7pgiNbTt1fZQoaAZHQHIjkPYnOSpoB00rAWgIR0CTvKo/zJ6qdX2UKGgGR0BRrUxmCiAUaAdL62gIR0CTvR7bL2YfdX2UKGgGR0BuJcW43FUAaAdNWgFoCEdAk72ExASnL3V9lChoBkdAcIIIbfgrH2gHTUgBaAhHQJO/6ZH/cWV1fZQoaAZHQFHYZYxL0z1oB00UAWgIR0CTwKqrzXjEdX2UKGgGR0BtaDTa0x/NaAdNOQFoCEdAk8EtITXarXV9lChoBkdAa9yfNA1NxmgHTVMBaAhHQJPB1b0OEuh1fZQoaAZHQHD66VhTfixoB01JAWgIR0CTwnvQWvbHdX2UKGgGR0ByTbdM0xdqaAdNQgFoCEdAk8Q5WvKU3XV9lChoBkdAco/Qe3hGY2gHTTYBaAhHQJPEzcuanaZ1fZQoaAZHQHHYD8LrontoB00zAmgIR0CTxZicXm/4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b004515ba98ef86db1be2fb72a153443ccea16fbdb2b990e0eadc6442c427f07
|
3 |
+
size 146753
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7cb27a3249d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cb27a324a60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cb27a324af0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cb27a324b80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7cb27a324c10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7cb27a324ca0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7cb27a324d30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cb27a324dc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7cb27a324e50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cb27a324ee0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cb27a324f70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7cb27a325000>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7cb27a31e380>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1690219788405743461,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANKVgr6HtSI/LozkPatCnb6zgmu9BraNPQAAAAAAAAAAE1RTPv5LDD/DIDi+86B0vttlarwT9xG7AAAAAAAAAAAAa3U9kJ2dP4UWWj5HWqa+Lxl3PZ1Mnz0AAAAAAAAAAI0r6T0rUdQ+OhFBvmE7Pb48ze69OpKRvAAAAAAAAAAAM4AuvfGZsj7GYOW9UPxFvmxbp7wvWsc7AAAAAAAAAABN+ui9GxPVvAUIr7xFOGw9NngjPcjE2LoAAIA/AACAPxrs+T1N7JM/Bi/+PSSunL5MIeA9xuq7vQAAAAAAAAAAM+jlPE+uTby/f6Y9j574vTzt+TvQ3cU8AACAPwAAgD+aSd26j45Rury8ArgRG+OwHW8dNqq3FzcAAIA/AACAP/pFdj4fvVQ/AO/su8t+i76vL8E9kMemvQAAAAAAAAAAmuFcPIVFPj6ChXg7OUtvvg3mXDwcpBc9AAAAAAAAAAC6i1A+m3ihvMJFZju80rC5yIMPvh6/i7oAAIA/AACAPwAltz3hKoq6Ykm+uYZEhTc+rBo75KFDOAAAgD8AAIA/4JMJvvduNz9g4GM+8aJlvt9ZVbpGAFA9AAAAAAAAAAAAtGq9HjWRP2o/+L3ztJa+WUoHvqKQXL0AAAAAAAAAADNqLz32Lwe8xIBIPeJSHb6ttsy81qkzvwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDxVWfbsWyMAWyUTVkBjAF0lEdAk0WFZPl+3HV9lChoBkdAbFyivgWJrWgHTUUCaAhHQJNF7KT0QK91fZQoaAZHQHAx+yZ8a4toB03nAWgIR0CTRq0vGp++dX2UKGgGR0BxUjpJPIn0aAdNSQFoCEdAk0bgAAAAAHV9lChoBkdAbrWBltj0+WgHTUsBaAhHQJNH2ktVaOh1fZQoaAZHQGvljqnm7rdoB03zAmgIR0CTSdx0MgEEdX2UKGgGR0BsMe/i5uqFaAdNTgFoCEdAk0xhC6YmcHV9lChoBkdAcKX3N9ph4WgHTUcBaAhHQJNNaD9Oymh1fZQoaAZHQG+nWAPNFBpoB02eAWgIR0CTYK6OHWSVdX2UKGgGR0Bv+mMMqjJuaAdNPwFoCEdAk2FJT2nKn3V9lChoBkdAb7PdM0xdp2gHTU0BaAhHQJNiBSpBHCp1fZQoaAZHQGygOjqOcUdoB01YAWgIR0CTYn9yLhrFdX2UKGgGR0BspCTr3TNMaAdNeQFoCEdAk2Lq3NLUTnV9lChoBkdAcZ1guh9LH2gHTYABaAhHQJNkQrrgOz91fZQoaAZHQHBc82NvOyFoB00zAWgIR0CTZXRFI/Z/dX2UKGgGR0BsHgmiQDFIaAdNhwFoCEdAk2ZuchC+lHV9lChoBkdAceO3zcynDWgHTT4BaAhHQJNnhHFxXGR1fZQoaAZHQHHnb8R+SbJoB03eA2gIR0CTZ/criEQHdX2UKGgGR0BxLvMpw0fpaAdNSAFoCEdAk2hQKv3ajHV9lChoBkdAcfB+lTFVDWgHTUEBaAhHQJNpNtSAH3V1fZQoaAZHQHEaJgssg+1oB02fAWgIR0CTax41P3zudX2UKGgGR0BvRzwpe/pMaAdNYQFoCEdAk2xg0Kqn33V9lChoBkdAb9QiUxEfDGgHTTEBaAhHQJNtezdDYyx1fZQoaAZHQG4u2WIGhVVoB00zAWgIR0CTb2P2wmmcdX2UKGgGR0Bx6tHxz7uVaAdNOAFoCEdAk3Do3WFvh3V9lChoBkdAco6OPeYUnGgHTSYBaAhHQJNxhT/ACXB1fZQoaAZHQGvVEuQIUrVoB02tAWgIR0CTcfr433pOdX2UKGgGR0BwbH2nKnvVaAdNHwFoCEdAk3MAxrSE13V9lChoBkdAcos/PgNwzmgHTW4BaAhHQJNzAcCHRCx1fZQoaAZHQG68png5zYFoB00zAWgIR0CTcxjwx33YdX2UKGgGR0Bvr/+Q2dd3aAdNggFoCEdAk3NmgrYoRnV9lChoBkdAcFkCQtBfKWgHTUkBaAhHQJN1/sWweNl1fZQoaAZHQHEdSxqwhW5oB01oAWgIR0CTdqdgv115dX2UKGgGR0Btjch7mdRSaAdNcwFoCEdAk3d3OW0JGHV9lChoBkdAbuXRJmNBGGgHTW4BaAhHQJN4S6Ymb9Z1fZQoaAZHQGyKrmyPdVNoB01RAWgIR0CTelfukUKzdX2UKGgGR0BvuNNpM6BAaAdNdgFoCEdAk3qCJbdJrnV9lChoBkdAbCXCQ9zOo2gHTUsBaAhHQJN7PCFbmlt1fZQoaAZHQHBITGcWj45oB009AmgIR0CTe/QFLWZrdX2UKGgGR0BwhwoZydWiaAdNPAFoCEdAk36ffoA4oHV9lChoBkdAb/2ASWZ7X2gHTTkBaAhHQJN+8SCe2/l1fZQoaAZHQG9wwcHWz4VoB00rAWgIR0CTf1NiYsundX2UKGgGR0BxA4WZZ0SzaAdNjAFoCEdAk4AYLkS26XV9lChoBkdAcIz/UONHY2gHTWYBaAhHQJOB0pH7P6d1fZQoaAZHQG+gkt/WlM1oB01gAWgIR0CTgfHk92X+dX2UKGgGR0BwHveMyad+aAdNmQFoCEdAk4IIqwyIpHV9lChoBkdAb6gpXp4bCWgHTX0BaAhHQJOCuoZQ53l1fZQoaAZHQG/z9n003wVoB01QAWgIR0CThHGorFwUdX2UKGgGR0Bw3doIv8IiaAdNMgFoCEdAk4Ta4+bExnV9lChoBkdAch88FINEw2gHTXwBaAhHQJOFgl9jPOZ1fZQoaAZHQG1rVWS2Yv5oB01pAWgIR0CThhCxNZeSdX2UKGgGR0BwWsVEd/8VaAdNIwFoCEdAk4YYYNy5qnV9lChoBkdAcX+hxYJVsGgHTToBaAhHQJOHnBRAKOV1fZQoaAZHQHByctf5ULloB01CAWgIR0CTiJW4EwFldX2UKGgGR0BB9e6Zpi7TaAdNCwFoCEdAk4jWUB4lhXV9lChoBkdAccacOLBKtmgHTW8BaAhHQJOI8xZdOZd1fZQoaAZHQG4WAhB7eEZoB01WAWgIR0CToBr3Cbc5dX2UKGgGR0Bxnn668QI2aAdNlwFoCEdAk6HZzHS4OXV9lChoBkdAboC8yvcJt2gHTVUBaAhHQJOiE4sEq2B1fZQoaAZHQHA+J2ECeVdoB01vAWgIR0CTo19lEqlQdX2UKGgGR0BxoMqRU3n7aAdNYQFoCEdAk6OkqhDgInV9lChoBkdAbsfRoh6jWWgHTUsBaAhHQJOlQkHD7651fZQoaAZHQHI+PO2RaHNoB01cAWgIR0CTpZhkiD/VdX2UKGgGR0BwgUuGsV+JaAdNTAFoCEdAk6YpJ04io3V9lChoBkdAcabiiItUXGgHTeoBaAhHQJOmNDneSB91fZQoaAZHQG8ElbmlqJxoB01OAWgIR0CTpuGza9K3dX2UKGgGR0Bq86DqW1MNaAdNYAFoCEdAk6eNxAB1cXV9lChoBkdAcX0DMeOn22gHTUUBaAhHQJOpouFpPAR1fZQoaAZHQG9A8xTKkmBoB01pAWgIR0CTqa0Qsf7rdX2UKGgGR0ByBekAPuohaAdNVAFoCEdAk6oGyX2M9HV9lChoBkdAbLRu+AVfu2gHTWcBaAhHQJOqaWHDaXd1fZQoaAZHQHDhTQNTcZdoB01vAmgIR0CTrQiMYMvzdX2UKGgGR0BuIaKP4mCzaAdNRAFoCEdAk60cEFGG23V9lChoBkdAcixExqO94GgHTTgBaAhHQJOuOxMWXTp1fZQoaAZHQG7vpW/8EV5oB01MAWgIR0CTrtQarFOxdX2UKGgGR0BwamgctGutaAdNQAFoCEdAk6+b5hz/63V9lChoBkdAcRCQ9zOopGgHTVUBaAhHQJOwpvDP4VR1fZQoaAZHQG3kw4jrzGxoB01SAWgIR0CTsu75mAbydX2UKGgGR0BwjdsbedkKaAdNZQFoCEdAk7Myv5gw5HV9lChoBkdAcMsMfigkC2gHTVoBaAhHQJO0CeRPoFF1fZQoaAZHQG900uL74ztoB01SAWgIR0CTtIHwgDA8dX2UKGgGR0BwWeAoXsPbaAdNlAFoCEdAk7T0Oy3TeHV9lChoBkdAbx17l7tzCGgHTTkBaAhHQJO1ufmLcbl1fZQoaAZHQG0sJXQtz0ZoB02ZAWgIR0CTtfdVNpM6dX2UKGgGR0BuXSoCMgloaAdNVgFoCEdAk7ep+QU5/HV9lChoBkdAcGpz7/GVA2gHTXoBaAhHQJO4kY64lQd1fZQoaAZHQHGnsvAXVLBoB00mAWgIR0CTuNDRc/t6dX2UKGgGR0ByUhWU8mrsaAdNYgFoCEdAk7sOIdlunHV9lChoBkdAcVBiMo+fRWgHTVEBaAhHQJO7pgiNbTt1fZQoaAZHQHIjkPYnOSpoB00rAWgIR0CTvKo/zJ6qdX2UKGgGR0BRrUxmCiAUaAdL62gIR0CTvR7bL2YfdX2UKGgGR0BuJcW43FUAaAdNWgFoCEdAk72ExASnL3V9lChoBkdAcIIIbfgrH2gHTUgBaAhHQJO/6ZH/cWV1fZQoaAZHQFHYZYxL0z1oB00UAWgIR0CTwKqrzXjEdX2UKGgGR0BtaDTa0x/NaAdNOQFoCEdAk8EtITXarXV9lChoBkdAa9yfNA1NxmgHTVMBaAhHQJPB1b0OEuh1fZQoaAZHQHD66VhTfixoB01JAWgIR0CTwnvQWvbHdX2UKGgGR0ByTbdM0xdqaAdNQgFoCEdAk8Q5WvKU3XV9lChoBkdAco/Qe3hGY2gHTTYBaAhHQJPEzcuanaZ1fZQoaAZHQHHYD8LrontoB00zAmgIR0CTxZicXm/4dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f2cac588511569b3e845436f49c43690388e4a126510414c168fa3e0241d2e1
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a33b7b515c695353f3c34109d75ce4cd437aadd0935ae29dfee76cdb1b6403a
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (180 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.36266265791176, "std_reward": 18.852142354379822, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-24T17:53:17.764590"}
|