|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torchvision import models |
|
from torchvision.models import inception_v3, Inception3 |
|
from torchvision.utils import save_image |
|
|
|
try: |
|
from torchvision.models.utils import load_state_dict_from_url |
|
except ImportError: |
|
from torch.utils.model_zoo import load_url as load_state_dict_from_url |
|
|
|
import numpy as np |
|
from scipy import linalg |
|
from tqdm import tqdm |
|
import pickle |
|
import os |
|
|
|
|
|
|
|
FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' |
|
|
|
|
|
class InceptionV3(nn.Module): |
|
"""Pretrained InceptionV3 network returning feature maps""" |
|
|
|
|
|
|
|
DEFAULT_BLOCK_INDEX = 3 |
|
|
|
|
|
BLOCK_INDEX_BY_DIM = { |
|
64: 0, |
|
192: 1, |
|
768: 2, |
|
2048: 3 |
|
} |
|
|
|
def __init__(self, |
|
output_blocks=[DEFAULT_BLOCK_INDEX], |
|
resize_input=True, |
|
normalize_input=True, |
|
requires_grad=False, |
|
use_fid_inception=True): |
|
"""Build pretrained InceptionV3 |
|
Parameters |
|
---------- |
|
output_blocks : list of int |
|
Indices of blocks to return features of. Possible values are: |
|
- 0: corresponds to output of first max pooling |
|
- 1: corresponds to output of second max pooling |
|
- 2: corresponds to output which is fed to aux classifier |
|
- 3: corresponds to output of final average pooling |
|
resize_input : bool |
|
If true, bilinearly resizes input to width and height 299 before |
|
feeding input to model. As the network without fully connected |
|
layers is fully convolutional, it should be able to handle inputs |
|
of arbitrary size, so resizing might not be strictly needed |
|
normalize_input : bool |
|
If true, scales the input from range (0, 1) to the range the |
|
pretrained Inception network expects, namely (-1, 1) |
|
requires_grad : bool |
|
If true, parameters of the model require gradients. Possibly useful |
|
for finetuning the network |
|
use_fid_inception : bool |
|
If true, uses the pretrained Inception model used in Tensorflow's |
|
FID implementation. If false, uses the pretrained Inception model |
|
available in torchvision. The FID Inception model has different |
|
weights and a slightly different structure from torchvision's |
|
Inception model. If you want to compute FID scores, you are |
|
strongly advised to set this parameter to true to get comparable |
|
results. |
|
""" |
|
super(InceptionV3, self).__init__() |
|
|
|
self.resize_input = resize_input |
|
self.normalize_input = normalize_input |
|
self.output_blocks = sorted(output_blocks) |
|
self.last_needed_block = max(output_blocks) |
|
|
|
assert self.last_needed_block <= 3, \ |
|
'Last possible output block index is 3' |
|
|
|
self.blocks = nn.ModuleList() |
|
|
|
if use_fid_inception: |
|
inception = fid_inception_v3() |
|
else: |
|
inception = models.inception_v3(pretrained=True) |
|
|
|
|
|
block0 = [ |
|
inception.Conv2d_1a_3x3, |
|
inception.Conv2d_2a_3x3, |
|
inception.Conv2d_2b_3x3, |
|
nn.MaxPool2d(kernel_size=3, stride=2) |
|
] |
|
self.blocks.append(nn.Sequential(*block0)) |
|
|
|
|
|
if self.last_needed_block >= 1: |
|
block1 = [ |
|
inception.Conv2d_3b_1x1, |
|
inception.Conv2d_4a_3x3, |
|
nn.MaxPool2d(kernel_size=3, stride=2) |
|
] |
|
self.blocks.append(nn.Sequential(*block1)) |
|
|
|
|
|
if self.last_needed_block >= 2: |
|
block2 = [ |
|
inception.Mixed_5b, |
|
inception.Mixed_5c, |
|
inception.Mixed_5d, |
|
inception.Mixed_6a, |
|
inception.Mixed_6b, |
|
inception.Mixed_6c, |
|
inception.Mixed_6d, |
|
inception.Mixed_6e, |
|
] |
|
self.blocks.append(nn.Sequential(*block2)) |
|
|
|
|
|
if self.last_needed_block >= 3: |
|
block3 = [ |
|
inception.Mixed_7a, |
|
inception.Mixed_7b, |
|
inception.Mixed_7c, |
|
nn.AdaptiveAvgPool2d(output_size=(1, 1)) |
|
] |
|
self.blocks.append(nn.Sequential(*block3)) |
|
|
|
for param in self.parameters(): |
|
param.requires_grad = requires_grad |
|
|
|
def forward(self, inp): |
|
"""Get Inception feature maps |
|
Parameters |
|
---------- |
|
inp : torch.autograd.Variable |
|
Input tensor of shape Bx3xHxW. Values are expected to be in |
|
range (0, 1) |
|
Returns |
|
------- |
|
List of torch.autograd.Variable, corresponding to the selected output |
|
block, sorted ascending by index |
|
""" |
|
outp = [] |
|
x = inp |
|
|
|
if self.resize_input: |
|
x = F.interpolate(x, |
|
size=(299, 299), |
|
mode='bilinear', |
|
align_corners=False) |
|
|
|
if self.normalize_input: |
|
x = 2 * x - 1 |
|
|
|
for idx, block in enumerate(self.blocks): |
|
x = block(x) |
|
if idx in self.output_blocks: |
|
outp.append(x) |
|
|
|
if idx == self.last_needed_block: |
|
break |
|
|
|
return outp |
|
|
|
|
|
def fid_inception_v3(): |
|
"""Build pretrained Inception model for FID computation |
|
The Inception model for FID computation uses a different set of weights |
|
and has a slightly different structure than torchvision's Inception. |
|
This method first constructs torchvision's Inception and then patches the |
|
necessary parts that are different in the FID Inception model. |
|
""" |
|
inception = models.inception_v3(num_classes=1008, |
|
aux_logits=False, |
|
pretrained=False) |
|
inception.Mixed_5b = FIDInceptionA(192, pool_features=32) |
|
inception.Mixed_5c = FIDInceptionA(256, pool_features=64) |
|
inception.Mixed_5d = FIDInceptionA(288, pool_features=64) |
|
inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128) |
|
inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160) |
|
inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160) |
|
inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192) |
|
inception.Mixed_7b = FIDInceptionE_1(1280) |
|
inception.Mixed_7c = FIDInceptionE_2(2048) |
|
|
|
state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True) |
|
inception.load_state_dict(state_dict) |
|
return inception |
|
|
|
|
|
class FIDInceptionA(models.inception.InceptionA): |
|
"""InceptionA block patched for FID computation""" |
|
def __init__(self, in_channels, pool_features): |
|
super(FIDInceptionA, self).__init__(in_channels, pool_features) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch5x5 = self.branch5x5_1(x) |
|
branch5x5 = self.branch5x5_2(branch5x5) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) |
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, |
|
count_include_pad=False) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class FIDInceptionC(models.inception.InceptionC): |
|
"""InceptionC block patched for FID computation""" |
|
def __init__(self, in_channels, channels_7x7): |
|
super(FIDInceptionC, self).__init__(in_channels, channels_7x7) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch7x7 = self.branch7x7_1(x) |
|
branch7x7 = self.branch7x7_2(branch7x7) |
|
branch7x7 = self.branch7x7_3(branch7x7) |
|
|
|
branch7x7dbl = self.branch7x7dbl_1(x) |
|
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) |
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, |
|
count_include_pad=False) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class FIDInceptionE_1(models.inception.InceptionE): |
|
"""First InceptionE block patched for FID computation""" |
|
def __init__(self, in_channels): |
|
super(FIDInceptionE_1, self).__init__(in_channels) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch3x3 = self.branch3x3_1(x) |
|
branch3x3 = [ |
|
self.branch3x3_2a(branch3x3), |
|
self.branch3x3_2b(branch3x3), |
|
] |
|
branch3x3 = torch.cat(branch3x3, 1) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = [ |
|
self.branch3x3dbl_3a(branch3x3dbl), |
|
self.branch3x3dbl_3b(branch3x3dbl), |
|
] |
|
branch3x3dbl = torch.cat(branch3x3dbl, 1) |
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, |
|
count_include_pad=False) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class FIDInceptionE_2(models.inception.InceptionE): |
|
"""Second InceptionE block patched for FID computation""" |
|
def __init__(self, in_channels): |
|
super(FIDInceptionE_2, self).__init__(in_channels) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch3x3 = self.branch3x3_1(x) |
|
branch3x3 = [ |
|
self.branch3x3_2a(branch3x3), |
|
self.branch3x3_2b(branch3x3), |
|
] |
|
branch3x3 = torch.cat(branch3x3, 1) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = [ |
|
self.branch3x3dbl_3a(branch3x3dbl), |
|
self.branch3x3dbl_3b(branch3x3dbl), |
|
] |
|
branch3x3dbl = torch.cat(branch3x3dbl, 1) |
|
|
|
|
|
|
|
|
|
|
|
branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class Inception3Feature(Inception3): |
|
def forward(self, x): |
|
if x.shape[2] != 299 or x.shape[3] != 299: |
|
x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=True) |
|
|
|
x = self.Conv2d_1a_3x3(x) |
|
x = self.Conv2d_2a_3x3(x) |
|
x = self.Conv2d_2b_3x3(x) |
|
x = F.max_pool2d(x, kernel_size=3, stride=2) |
|
|
|
x = self.Conv2d_3b_1x1(x) |
|
x = self.Conv2d_4a_3x3(x) |
|
x = F.max_pool2d(x, kernel_size=3, stride=2) |
|
|
|
x = self.Mixed_5b(x) |
|
x = self.Mixed_5c(x) |
|
x = self.Mixed_5d(x) |
|
|
|
x = self.Mixed_6a(x) |
|
x = self.Mixed_6b(x) |
|
x = self.Mixed_6c(x) |
|
x = self.Mixed_6d(x) |
|
x = self.Mixed_6e(x) |
|
|
|
x = self.Mixed_7a(x) |
|
x = self.Mixed_7b(x) |
|
x = self.Mixed_7c(x) |
|
|
|
x = F.avg_pool2d(x, kernel_size=8) |
|
|
|
return x.view(x.shape[0], x.shape[1]) |
|
|
|
|
|
def load_patched_inception_v3(): |
|
|
|
|
|
|
|
inception_feat = InceptionV3([3], normalize_input=False) |
|
|
|
return inception_feat |
|
|
|
|
|
@torch.no_grad() |
|
def extract_features(loader, inception, device): |
|
pbar = tqdm(loader) |
|
|
|
feature_list = [] |
|
|
|
for img in pbar: |
|
img = img.to(device) |
|
feature = inception(img)[0].view(img.shape[0], -1) |
|
feature_list.append(feature.to('cpu')) |
|
|
|
features = torch.cat(feature_list, 0) |
|
|
|
return features |
|
|
|
|
|
|
|
@torch.no_grad() |
|
def extract_feature_from_samples(generator, inception, device='cuda'): |
|
n_batch = n_sample // batch_size |
|
resid = n_sample - (n_batch * batch_size) |
|
batch_sizes = [batch_size] * n_batch + [resid] |
|
features = [] |
|
|
|
for batch in tqdm(batch_sizes): |
|
latent = torch.randn(batch, 512, device=device) |
|
img, _ = g([latent], truncation=truncation, truncation_latent=truncation_latent) |
|
feat = inception(img)[0].view(img.shape[0], -1) |
|
features.append(feat.to('cpu')) |
|
|
|
features = torch.cat(features, 0) |
|
|
|
return features |
|
|
|
|
|
@torch.no_grad() |
|
def extract_feature_from_generator_fn(generator_fn, inception, device='cuda', total=1000): |
|
features = [] |
|
for batch in tqdm(generator_fn, total=total): |
|
feat = inception(batch)[0].view(batch.shape[0], -1) |
|
features.append(feat.to('cpu')) |
|
|
|
features = torch.cat(features, 0).detach() |
|
return features.numpy() |
|
|
|
|
|
def calc_fid(sample_features, real_features=None, real_mean=None, real_cov=None, eps=1e-6): |
|
sample_mean = np.mean(sample_features, 0) |
|
sample_cov = np.cov(sample_features, rowvar=False) |
|
|
|
if real_features is not None: |
|
real_mean = np.mean(real_features, 0) |
|
real_cov = np.cov(real_features, rowvar=False) |
|
|
|
cov_sqrt, _ = linalg.sqrtm(sample_cov @ real_cov, disp=False) |
|
|
|
if not np.isfinite(cov_sqrt).all(): |
|
print('product of cov matrices is singular') |
|
offset = np.eye(sample_cov.shape[0]) * eps |
|
cov_sqrt = linalg.sqrtm((sample_cov + offset) @ (real_cov + offset)) |
|
|
|
if np.iscomplexobj(cov_sqrt): |
|
if not np.allclose(np.diagonal(cov_sqrt).imag, 0, atol=1e-3): |
|
m = np.max(np.abs(cov_sqrt.imag)) |
|
|
|
raise ValueError(f'Imaginary component {m}') |
|
|
|
cov_sqrt = cov_sqrt.real |
|
|
|
mean_diff = sample_mean - real_mean |
|
mean_norm = mean_diff @ mean_diff |
|
|
|
trace = np.trace(sample_cov) + np.trace(real_cov) - 2 * np.trace(cov_sqrt) |
|
|
|
fid = mean_norm + trace |
|
|
|
return fid |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
from torch.utils.data import DataLoader |
|
from torchvision import utils as vutils |
|
|
|
IM_SIZE = 1024 |
|
BATCH_SIZE = 16 |
|
DATALOADER_WORKERS = 8 |
|
NBR_CLS = 2000 |
|
TRIAL_NAME = 'trial_vae_512_1' |
|
SAVE_FOLDER = './' |
|
|
|
from torchvision.datasets import ImageFolder |
|
|
|
''' |
|
data_root_colorful = '../images/celebA/CelebA_512/img' |
|
data_root_sketch_1 = './sketch_simplification/vggadin_iter_700' |
|
data_root_sketch_2 = './sketch_simplification/vggadin_iter_1900' |
|
data_root_sketch_3 = './sketch_simplification/vggadin_iter_2300' |
|
|
|
dataset = PairedMultiDataset(data_root_colorful, data_root_sketch_1, data_root_sketch_2, data_root_sketch_3, im_size=IM_SIZE, rand_crop=False) |
|
dataloader = iter(DataLoader(dataset, BATCH_SIZE, shuffle=False, num_workers=DATALOADER_WORKERS, pin_memory=True)) |
|
|
|
|
|
from pretrain_ae import StyleEncoder, ContentEncoder, Decoder |
|
import pickle |
|
from refine_ae_as_gan import AE, RefineGenerator |
|
from utils import load_params |
|
|
|
net_ig = RefineGenerator().cuda() |
|
net_ig = nn.DataParallel(net_ig) |
|
|
|
ckpt = './train_results/trial_refine_ae_as_gan_1024_2/models/4.pth' |
|
if ckpt is not None: |
|
ckpt = torch.load(ckpt) |
|
#net_ig.load_state_dict(ckpt['ig']) |
|
#net_id.load_state_dict(ckpt['id']) |
|
net_ig_ema = ckpt['ig_ema'] |
|
load_params(net_ig, net_ig_ema) |
|
net_ig = net_ig.module |
|
#net_ig.eval() |
|
|
|
net_ae = AE() |
|
net_ae.load_state_dicts('./train_results/trial_vae_512_1/models/176000.pth') |
|
net_ae.cuda() |
|
net_ae.eval() |
|
|
|
#style_encoder = StyleEncoder(nbr_cls=NBR_CLS).cuda() |
|
#content_encoder = ContentEncoder().cuda() |
|
#decoder = Decoder().cuda() |
|
''' |
|
|
|
def real_image_loader(dataloader, n_batches=10): |
|
counter = 0 |
|
while counter < n_batches: |
|
counter += 1 |
|
rgb_img, _ = next(dataloader) |
|
if counter == 1: |
|
vutils.save_image(0.5*(rgb_img+1), 'tmp_real.jpg') |
|
yield rgb_img.cuda() |
|
|
|
''' |
|
@torch.no_grad() |
|
def image_generator_1(dataloader, n_batches=10): |
|
counter = 0 |
|
while counter < n_batches: |
|
counter += 1 |
|
rgb_img, _, _, skt_img = next(dataloader) |
|
rgb_img = rgb_img.cuda() |
|
skt_img = skt_img.cuda() |
|
|
|
style_feat, _ = style_encoder(rgb_img) |
|
content_feats = content_encoder( F.interpolate( skt_img , size=512 ) ) |
|
gimg = decoder(content_feats, style_feat) |
|
|
|
vutils.save_image(0.5*(gimg+1), 'tmp.jpg') |
|
yield gimg |
|
|
|
from utils import true_randperm |
|
@torch.no_grad() |
|
def image_generator(dataset, net_ae, net_ig, n_batches=500): |
|
counter = 0 |
|
dataloader = iter(DataLoader(dataset, BATCH_SIZE, shuffle=False, num_workers=DATALOADER_WORKERS, pin_memory=False)) |
|
|
|
while counter < n_batches: |
|
counter += 1 |
|
rgb_img, _, _, skt_img = next(dataloader) |
|
rgb_img = F.interpolate( rgb_img, size=512 ).cuda() |
|
skt_img = F.interpolate( skt_img, size=512 ).cuda() |
|
|
|
#perm = true_randperm(rgb_img.shape[0], device=rgb_img.device) |
|
|
|
gimg_ae, style_feat = net_ae(skt_img, rgb_img) |
|
g_image = net_ig(gimg_ae, style_feat, skt_img) |
|
if counter == 1: |
|
vutils.save_image(0.5*(g_image+1), 'tmp.jpg') |
|
yield g_image |
|
''' |
|
inception = load_patched_inception_v3().cuda() |
|
inception.eval() |
|
|
|
path_a = '../../../database/images/celebaMask/CelebA_1024' |
|
path_b = '../../stylegan/celebahq_samples' |
|
|
|
from torchvision import transforms |
|
|
|
transform = transforms.Compose( |
|
[ |
|
transforms.Resize( (299, 299) ), |
|
|
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), |
|
] |
|
) |
|
|
|
dset_a = ImageFolder(path_a, transform) |
|
loader_a = iter(DataLoader(dset_a, batch_size=16, num_workers=4)) |
|
|
|
real_features = extract_feature_from_generator_fn( |
|
real_image_loader(loader_a, n_batches=900), inception ) |
|
real_mean = np.mean(real_features, 0) |
|
real_cov = np.cov(real_features, rowvar=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dset_b = ImageFolder(path_b, transform) |
|
loader_b = iter(DataLoader(dset_b, batch_size=16, num_workers=4)) |
|
|
|
sample_features = extract_feature_from_generator_fn( |
|
real_image_loader(loader_b, n_batches=900), inception ) |
|
|
|
|
|
|
|
|
|
|
|
fid = calc_fid(sample_features, real_mean=real_mean, real_cov=real_cov) |
|
|
|
print(fid) |