|
import torch |
|
from torch import nn |
|
import torch.optim as optim |
|
import torch.nn.functional as F |
|
from torch.utils.data.dataloader import DataLoader |
|
from torchvision import transforms |
|
from torchvision import utils as vutils |
|
|
|
import argparse |
|
from tqdm import tqdm |
|
|
|
from models import weights_init, Discriminator, Generator |
|
from operation import copy_G_params, load_params, get_dir |
|
from operation import ImageFolder, InfiniteSamplerWrapper |
|
from diffaug import DiffAugment |
|
|
|
|
|
|
|
ndf = 64 |
|
ngf = 64 |
|
nz = 256 |
|
nlr = 0.0002 |
|
nbeta1 = 0.5 |
|
use_cuda = True |
|
multi_gpu = False |
|
dataloader_workers = 8 |
|
current_iteration = 0 |
|
save_interval = 100 |
|
device = 'cuda:0' |
|
im_size = 256 |
|
|
|
|
|
netG = Generator(ngf=ngf, nz=nz, im_size=im_size) |
|
netG.apply(weights_init) |
|
|
|
netD = Discriminator(ndf=ndf, im_size=im_size) |
|
netD.apply(weights_init) |
|
|
|
netG.to(device) |
|
netD.to(device) |
|
|
|
avg_param_G = copy_G_params(netG) |
|
|
|
fixed_noise = torch.FloatTensor(8, nz).normal_(0, 1).to(device) |
|
|
|
optimizerG = optim.Adam(netG.parameters(), lr=nlr, betas=(nbeta1, 0.999)) |
|
optimizerD = optim.Adam(netD.parameters(), lr=nlr, betas=(nbeta1, 0.999)) |
|
|
|
j = 4 |
|
checkpoint = "./models/all_%d.pth"%(j*10000) |
|
ckpt = torch.load(checkpoint) |
|
netG.load_state_dict(ckpt['g']) |
|
netD.load_state_dict(ckpt['d']) |
|
avg_param_G = ckpt['g_ema'] |
|
load_params(netG, avg_param_G) |
|
|
|
bs = 8 |
|
noise_a = torch.randn(bs, nz).to(device) |
|
noise_b = torch.randn(bs, nz).to(device) |
|
|
|
def get_early_features(net, noise): |
|
feat_4 = net.init(noise) |
|
feat_8 = net.feat_8(feat_4) |
|
feat_16 = net.feat_16(feat_8) |
|
feat_32 = net.feat_32(feat_16) |
|
feat_64 = net.feat_64(feat_32) |
|
return feat_8, feat_16, feat_32, feat_64 |
|
|
|
def get_late_features(net, im_size, feat_64, feat_8, feat_16, feat_32): |
|
feat_128 = net.feat_128(feat_64) |
|
feat_128 = net.se_128(feat_8, feat_128) |
|
|
|
feat_256 = net.feat_256(feat_128) |
|
feat_256 = net.se_256(feat_16, feat_256) |
|
if im_size==256: |
|
return net.to_big(feat_256) |
|
|
|
feat_512 = net.feat_512(feat_256) |
|
feat_512 = net.se_512(feat_32, feat_512) |
|
if im_size==512: |
|
return net.to_big(feat_512) |
|
|
|
feat_1024 = net.feat_1024(feat_512) |
|
return net.to_big(feat_1024) |
|
|
|
|
|
feat_8_a, feat_16_a, feat_32_a, feat_64_a = get_early_features(netG, noise_a) |
|
feat_8_b, feat_16_b, feat_32_b, feat_64_b = get_early_features(netG, noise_b) |
|
|
|
images_b = get_late_features(netG, im_size, feat_64_b, feat_8_b, feat_16_b, feat_32_b) |
|
images_a = get_late_features(netG, im_size, feat_64_a, feat_8_a, feat_16_a, feat_32_a) |
|
|
|
imgs = [ torch.ones(1, 3, im_size, im_size) ] |
|
imgs.append(images_b.cpu()) |
|
for i in range(bs): |
|
imgs.append(images_a[i].unsqueeze(0).cpu()) |
|
|
|
gimgs = get_late_features(netG, im_size, feat_64_a[i].unsqueeze(0).repeat(bs, 1, 1, 1), feat_8_b, feat_16_b, feat_32_b) |
|
imgs.append(gimgs.cpu()) |
|
|
|
imgs = torch.cat(imgs) |
|
vutils.save_image(imgs.add(1).mul(0.5), 'style_mix_1.jpg', nrow=bs+1) |