deepfake_gi_fastGAN / operation.py
vlbthambawita's picture
First
7f49ac7
raw
history blame
3.62 kB
import os
import numpy as np
import torch
import torch.utils.data as data
from torch.utils.data import Dataset
from PIL import Image
from copy import deepcopy
import shutil
import json
def InfiniteSampler(n):
"""Data sampler"""
i = n - 1
order = np.random.permutation(n)
while True:
yield order[i]
i += 1
if i >= n:
np.random.seed()
order = np.random.permutation(n)
i = 0
class InfiniteSamplerWrapper(data.sampler.Sampler):
"""Data sampler wrapper"""
def __init__(self, data_source):
self.num_samples = len(data_source)
def __iter__(self):
return iter(InfiniteSampler(self.num_samples))
def __len__(self):
return 2 ** 31
def copy_G_params(model):
flatten = deepcopy(list(p.data for p in model.parameters()))
return flatten
def load_params(model, new_param):
for p, new_p in zip(model.parameters(), new_param):
p.data.copy_(new_p)
def get_dir(args):
task_name = 'train_results/' + args.name
saved_model_folder = os.path.join( task_name, 'models')
saved_image_folder = os.path.join( task_name, 'images')
os.makedirs(saved_model_folder, exist_ok=True)
os.makedirs(saved_image_folder, exist_ok=True)
for f in os.listdir('./'):
if '.py' in f:
shutil.copy(f, task_name+'/'+f)
with open( os.path.join(saved_model_folder, '../args.txt'), 'w') as f:
json.dump(args.__dict__, f, indent=2)
return saved_model_folder, saved_image_folder
class ImageFolder(Dataset):
"""docstring for ArtDataset"""
def __init__(self, root, transform=None):
super( ImageFolder, self).__init__()
self.root = root
self.frame = self._parse_frame()
self.transform = transform
def _parse_frame(self):
frame = []
img_names = os.listdir(self.root)
img_names.sort()
for i in range(len(img_names)):
image_path = os.path.join(self.root, img_names[i])
if image_path[-4:] == '.jpg' or image_path[-4:] == '.png' or image_path[-5:] == '.jpeg':
frame.append(image_path)
return frame
def __len__(self):
return len(self.frame)
def __getitem__(self, idx):
file = self.frame[idx]
img = Image.open(file).convert('RGB')
if self.transform:
img = self.transform(img)
return img
from io import BytesIO
import lmdb
from torch.utils.data import Dataset
class MultiResolutionDataset(Dataset):
def __init__(self, path, transform, resolution=256):
self.env = lmdb.open(
path,
max_readers=32,
readonly=True,
lock=False,
readahead=False,
meminit=False,
)
if not self.env:
raise IOError('Cannot open lmdb dataset', path)
with self.env.begin(write=False) as txn:
self.length = int(txn.get('length'.encode('utf-8')).decode('utf-8'))
self.resolution = resolution
self.transform = transform
def __len__(self):
return self.length
def __getitem__(self, index):
with self.env.begin(write=False) as txn:
key = f'{self.resolution}-{str(index).zfill(5)}'.encode('utf-8')
img_bytes = txn.get(key)
#key_asp = f'aspect_ratio-{str(index).zfill(5)}'.encode('utf-8')
#aspect_ratio = float(txn.get(key_asp).decode())
buffer = BytesIO(img_bytes)
img = Image.open(buffer)
img = self.transform(img)
return img