vlbthambawita
commited on
Commit
•
bc31fc1
1
Parent(s):
dd74260
Upload DeepFakeECGFromPulse2Pulse
Browse files- config.json +12 -0
- configurations_deepfake.py +16 -0
- modeling_deepfake.py +301 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"DeepFakeECGFromPulse2Pulse"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configurations_deepfake.DeepFakeConfig",
|
7 |
+
"AutoModel": "modeling_deepfake.DeepFakeECGFromPulse2Pulse"
|
8 |
+
},
|
9 |
+
"model_type": "pulse2pulse-2",
|
10 |
+
"torch_dtype": "float32",
|
11 |
+
"transformers_version": "4.26.1"
|
12 |
+
}
|
configurations_deepfake.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
class DeepFakeConfig(PretrainedConfig):
|
5 |
+
model_type = "pulse2pulse-2"
|
6 |
+
|
7 |
+
def __init__(self, architectures="AutoModle", **kwargs):
|
8 |
+
# if block_type not in ["basic", "bottleneck"]:
|
9 |
+
# raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.")
|
10 |
+
# if stem_type not in ["", "deep", "deep-tiered"]:
|
11 |
+
# raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.")
|
12 |
+
|
13 |
+
#self.architectures = "AutoModle"
|
14 |
+
self.architectures = architectures
|
15 |
+
|
16 |
+
super().__init__(**kwargs)
|
modeling_deepfake.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel
|
2 |
+
|
3 |
+
|
4 |
+
# Modified version:Vajira Thambawita
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import torch.utils.data
|
10 |
+
from .configurations_deepfake import DeepFakeConfig
|
11 |
+
|
12 |
+
class Transpose1dLayer(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride, padding=11, upsample=None, output_padding=1):
|
15 |
+
super(Transpose1dLayer, self).__init__()
|
16 |
+
self.upsample = upsample
|
17 |
+
|
18 |
+
self.upsample_layer = torch.nn.Upsample(scale_factor=upsample)
|
19 |
+
reflection_pad = kernel_size // 2
|
20 |
+
self.reflection_pad = nn.ConstantPad1d(reflection_pad, value=0)
|
21 |
+
self.conv1d = torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride)
|
22 |
+
self.Conv1dTrans = nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride, padding, output_padding)
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
if self.upsample:
|
26 |
+
#x = torch.cat((x, in_feature), 1)
|
27 |
+
return self.conv1d(self.reflection_pad(self.upsample_layer(x)))
|
28 |
+
else:
|
29 |
+
return self.Conv1dTrans(x)
|
30 |
+
|
31 |
+
class Transpose1dLayer_multi_input(nn.Module):
|
32 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride, padding=11, upsample=None, output_padding=1):
|
33 |
+
super(Transpose1dLayer_multi_input, self).__init__()
|
34 |
+
self.upsample = upsample
|
35 |
+
|
36 |
+
self.upsample_layer = torch.nn.Upsample(scale_factor=upsample)
|
37 |
+
reflection_pad = kernel_size // 2
|
38 |
+
self.reflection_pad = nn.ConstantPad1d(reflection_pad, value=0)
|
39 |
+
self.conv1d = torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride)
|
40 |
+
self.Conv1dTrans = nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride, padding, output_padding)
|
41 |
+
|
42 |
+
def forward(self, x, in_feature):
|
43 |
+
if self.upsample:
|
44 |
+
x = torch.cat((x, in_feature), 1)
|
45 |
+
return self.conv1d(self.reflection_pad(self.upsample_layer(x)))
|
46 |
+
else:
|
47 |
+
return self.Conv1dTrans(x)
|
48 |
+
|
49 |
+
|
50 |
+
class Pulse2pulseGenerator(nn.Module):
|
51 |
+
|
52 |
+
def __init__(self, model_size=50, ngpus=1, num_channels=8,
|
53 |
+
latent_dim=100, post_proc_filt_len=512,
|
54 |
+
verbose=False, upsample=True):
|
55 |
+
super(Pulse2pulseGenerator, self).__init__()
|
56 |
+
self.ngpus = ngpus
|
57 |
+
self.model_size = model_size # d
|
58 |
+
self.num_channels = num_channels # c
|
59 |
+
self.latent_di = latent_dim
|
60 |
+
self.post_proc_filt_len = post_proc_filt_len
|
61 |
+
self.verbose = verbose
|
62 |
+
# "Dense" is the same meaning as fully connection.
|
63 |
+
self.fc1 = nn.Linear(latent_dim, 10 * model_size)
|
64 |
+
|
65 |
+
stride = 4
|
66 |
+
if upsample:
|
67 |
+
stride = 1
|
68 |
+
upsample = 5
|
69 |
+
self.deconv_1 = Transpose1dLayer(5 * model_size , 5 * model_size, 25, stride, upsample=upsample)
|
70 |
+
self.deconv_2 = Transpose1dLayer_multi_input(5 * model_size * 2, 3 * model_size, 25, stride, upsample=upsample)
|
71 |
+
self.deconv_3 = Transpose1dLayer_multi_input(3 * model_size * 2, model_size, 25, stride, upsample=upsample)
|
72 |
+
# self.deconv_4 = Transpose1dLayer( model_size, model_size, 25, stride, upsample=upsample)
|
73 |
+
self.deconv_5 = Transpose1dLayer_multi_input( model_size * 2, int(model_size / 2), 25, stride, upsample=2)
|
74 |
+
self.deconv_6 = Transpose1dLayer_multi_input( int(model_size / 2) * 2, int(model_size / 5), 25, stride, upsample=upsample)
|
75 |
+
self.deconv_7 = Transpose1dLayer( int(model_size / 5), num_channels, 25, stride, upsample=2)
|
76 |
+
|
77 |
+
#new convolutional layers
|
78 |
+
self.conv_1 = nn.Conv1d(num_channels, int(model_size / 5), 25, stride=2, padding=25 // 2)
|
79 |
+
self.conv_2 = nn.Conv1d(model_size // 5, model_size // 2, 25, stride=5, padding= 25 // 2)
|
80 |
+
self.conv_3 = nn.Conv1d(model_size // 2, model_size , 25, stride=2, padding= 25 // 2)
|
81 |
+
self.conv_4 = nn.Conv1d(model_size, model_size * 3 , 25, stride=5, padding= 25 // 2)
|
82 |
+
self.conv_5 = nn.Conv1d(model_size * 3, model_size * 5 , 25, stride=5, padding= 25 // 2)
|
83 |
+
self.conv_6 = nn.Conv1d(model_size * 5, model_size * 5 , 25, stride=5, padding= 25 // 2)
|
84 |
+
|
85 |
+
if post_proc_filt_len:
|
86 |
+
self.ppfilter1 = nn.Conv1d(num_channels, num_channels, post_proc_filt_len)
|
87 |
+
|
88 |
+
for m in self.modules():
|
89 |
+
if isinstance(m, nn.ConvTranspose1d) or isinstance(m, nn.Linear):
|
90 |
+
nn.init.kaiming_normal_(m.weight.data)
|
91 |
+
|
92 |
+
def forward(self, x):
|
93 |
+
|
94 |
+
#print("x shape:", x.shape)
|
95 |
+
conv_1_out = F.leaky_relu(self.conv_1(x)) # x = (bs, 8, 5000)
|
96 |
+
# print("conv_1_out shape:", conv_1_out.shape)
|
97 |
+
conv_2_out = F.leaky_relu(self.conv_2(conv_1_out))
|
98 |
+
# print("conv_2_out shape:", conv_2_out.shape)
|
99 |
+
conv_3_out = F.leaky_relu(self.conv_3(conv_2_out))
|
100 |
+
# print("conv_3_out shape:", conv_3_out.shape)
|
101 |
+
conv_4_out = F.leaky_relu(self.conv_4(conv_3_out))
|
102 |
+
# print("conv_4_out shape:", conv_4_out.shape)
|
103 |
+
conv_5_out = F.leaky_relu(self.conv_5(conv_4_out))
|
104 |
+
# print("conv_5_out shape:", conv_5_out.shape)
|
105 |
+
x = F.leaky_relu(self.conv_6(conv_5_out))
|
106 |
+
#print("last x shape:", x.shape)
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
#x = self.fc1(x).view(-1, 5*self.model_size, 2) #x = self.fc1(x).view(-1, 16 * self.model_size, 16)
|
111 |
+
#x = F.relu(x)
|
112 |
+
#if self.verbose:
|
113 |
+
# print(x.shape)
|
114 |
+
|
115 |
+
x = F.relu(self.deconv_1(x))
|
116 |
+
if self.verbose:
|
117 |
+
print(x.shape)
|
118 |
+
|
119 |
+
x = F.relu(self.deconv_2(x, conv_5_out))
|
120 |
+
if self.verbose:
|
121 |
+
print(x.shape)
|
122 |
+
|
123 |
+
x = F.relu(self.deconv_3(x, conv_4_out))
|
124 |
+
if self.verbose:
|
125 |
+
print(x.shape)
|
126 |
+
|
127 |
+
x = F.relu(self.deconv_5(x, conv_3_out))
|
128 |
+
if self.verbose:
|
129 |
+
print(x.shape)
|
130 |
+
|
131 |
+
x = F.relu(self.deconv_6(x, conv_2_out))
|
132 |
+
if self.verbose:
|
133 |
+
print(x.shape)
|
134 |
+
|
135 |
+
output = torch.tanh(self.deconv_7(x))
|
136 |
+
|
137 |
+
if self.verbose:
|
138 |
+
print(output.shape)
|
139 |
+
return output
|
140 |
+
|
141 |
+
|
142 |
+
class PhaseShuffle(nn.Module):
|
143 |
+
"""
|
144 |
+
Performs phase shuffling, i.e. shifting feature axis of a 3D tensor
|
145 |
+
by a random integer in {-n, n} and performing reflection padding where
|
146 |
+
necessary.
|
147 |
+
"""
|
148 |
+
# Copied from https://github.com/jtcramer/wavegan/blob/master/wavegan.py#L8
|
149 |
+
def __init__(self, shift_factor):
|
150 |
+
super(PhaseShuffle, self).__init__()
|
151 |
+
self.shift_factor = shift_factor
|
152 |
+
|
153 |
+
def forward(self, x):
|
154 |
+
if self.shift_factor == 0:
|
155 |
+
return x
|
156 |
+
# uniform in (L, R)
|
157 |
+
k_list = torch.Tensor(x.shape[0]).random_(0, 2 * self.shift_factor + 1) - self.shift_factor
|
158 |
+
k_list = k_list.numpy().astype(int)
|
159 |
+
|
160 |
+
# Combine sample indices into lists so that less shuffle operations
|
161 |
+
# need to be performed
|
162 |
+
k_map = {}
|
163 |
+
for idx, k in enumerate(k_list):
|
164 |
+
k = int(k)
|
165 |
+
if k not in k_map:
|
166 |
+
k_map[k] = []
|
167 |
+
k_map[k].append(idx)
|
168 |
+
|
169 |
+
# Make a copy of x for our output
|
170 |
+
x_shuffle = x.clone()
|
171 |
+
|
172 |
+
# Apply shuffle to each sample
|
173 |
+
for k, idxs in k_map.items():
|
174 |
+
if k > 0:
|
175 |
+
x_shuffle[idxs] = F.pad(x[idxs][..., :-k], (k, 0), mode='reflect')
|
176 |
+
else:
|
177 |
+
x_shuffle[idxs] = F.pad(x[idxs][..., -k:], (0, -k), mode='reflect')
|
178 |
+
|
179 |
+
assert x_shuffle.shape == x.shape, "{}, {}".format(x_shuffle.shape,
|
180 |
+
x.shape)
|
181 |
+
return x_shuffle
|
182 |
+
|
183 |
+
|
184 |
+
class PhaseRemove(nn.Module):
|
185 |
+
def __init__(self):
|
186 |
+
super(PhaseRemove, self).__init__()
|
187 |
+
|
188 |
+
def forward(self, x):
|
189 |
+
pass
|
190 |
+
|
191 |
+
|
192 |
+
class Pulse2pulseDiscriminator(nn.Module):
|
193 |
+
def __init__(self, model_size=64, ngpus=1, num_channels=8, shift_factor=2,
|
194 |
+
alpha=0.2, verbose=False):
|
195 |
+
super(Pulse2pulseDiscriminator, self).__init__()
|
196 |
+
self.model_size = model_size # d
|
197 |
+
self.ngpus = ngpus
|
198 |
+
self.num_channels = num_channels # c
|
199 |
+
self.shift_factor = shift_factor # n
|
200 |
+
self.alpha = alpha
|
201 |
+
self.verbose = verbose
|
202 |
+
|
203 |
+
self.conv1 = nn.Conv1d(num_channels, model_size, 25, stride=2, padding=11)
|
204 |
+
self.conv2 = nn.Conv1d(model_size, 2 * model_size, 25, stride=2, padding=11)
|
205 |
+
self.conv3 = nn.Conv1d(2 * model_size, 5 * model_size, 25, stride=2, padding=11)
|
206 |
+
self.conv4 = nn.Conv1d(5 * model_size, 10 * model_size, 25, stride=2, padding=11)
|
207 |
+
self.conv5 = nn.Conv1d(10 * model_size, 20 * model_size, 25, stride=4, padding=11)
|
208 |
+
self.conv6 = nn.Conv1d(20 * model_size, 25 * model_size, 25, stride=4, padding=11)
|
209 |
+
self.conv7 = nn.Conv1d(25 * model_size, 100 * model_size, 25, stride=4, padding=11)
|
210 |
+
|
211 |
+
self.ps1 = PhaseShuffle(shift_factor)
|
212 |
+
self.ps2 = PhaseShuffle(shift_factor)
|
213 |
+
self.ps3 = PhaseShuffle(shift_factor)
|
214 |
+
self.ps4 = PhaseShuffle(shift_factor)
|
215 |
+
self.ps5 = PhaseShuffle(shift_factor)
|
216 |
+
self.ps6 = PhaseShuffle(shift_factor)
|
217 |
+
|
218 |
+
self.fc1 = nn.Linear(25000, 1)
|
219 |
+
|
220 |
+
for m in self.modules():
|
221 |
+
if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear):
|
222 |
+
nn.init.kaiming_normal_(m.weight.data)
|
223 |
+
|
224 |
+
def forward(self, x):
|
225 |
+
x = F.leaky_relu(self.conv1(x), negative_slope=self.alpha)
|
226 |
+
if self.verbose:
|
227 |
+
print(x.shape)
|
228 |
+
x = self.ps1(x)
|
229 |
+
|
230 |
+
x = F.leaky_relu(self.conv2(x), negative_slope=self.alpha)
|
231 |
+
if self.verbose:
|
232 |
+
print(x.shape)
|
233 |
+
x = self.ps2(x)
|
234 |
+
|
235 |
+
x = F.leaky_relu(self.conv3(x), negative_slope=self.alpha)
|
236 |
+
if self.verbose:
|
237 |
+
print(x.shape)
|
238 |
+
x = self.ps3(x)
|
239 |
+
|
240 |
+
x = F.leaky_relu(self.conv4(x), negative_slope=self.alpha)
|
241 |
+
if self.verbose:
|
242 |
+
print(x.shape)
|
243 |
+
x = self.ps4(x)
|
244 |
+
|
245 |
+
x = F.leaky_relu(self.conv5(x), negative_slope=self.alpha)
|
246 |
+
if self.verbose:
|
247 |
+
print(x.shape)
|
248 |
+
x = self.ps5(x)
|
249 |
+
|
250 |
+
x = F.leaky_relu(self.conv6(x), negative_slope=self.alpha)
|
251 |
+
if self.verbose:
|
252 |
+
print(x.shape)
|
253 |
+
x = self.ps6(x)
|
254 |
+
|
255 |
+
x = F.leaky_relu(self.conv7(x), negative_slope=self.alpha)
|
256 |
+
if self.verbose:
|
257 |
+
print(x.shape)
|
258 |
+
#print("x shape:", x.shape)
|
259 |
+
x = x.view(-1, x.shape[1] * x.shape[2])
|
260 |
+
if self.verbose:
|
261 |
+
print(x.shape)
|
262 |
+
|
263 |
+
return self.fc1(x)
|
264 |
+
|
265 |
+
|
266 |
+
"""
|
267 |
+
from torch.autograd import Variable
|
268 |
+
x = Variable(torch.randn(10, 100))
|
269 |
+
G = WaveGANGenerator(verbose=True, upsample=False)
|
270 |
+
out = G(x)
|
271 |
+
print(out.shape)
|
272 |
+
D = WaveGANDiscriminator(verbose=True)
|
273 |
+
out2 = D(out)
|
274 |
+
print(out2.shape)
|
275 |
+
"""
|
276 |
+
|
277 |
+
class DeepFakeECGFromPulse2Pulse(PreTrainedModel):
|
278 |
+
|
279 |
+
config_class = DeepFakeConfig
|
280 |
+
|
281 |
+
def __init__(self, config):
|
282 |
+
super().__init__(config)
|
283 |
+
# block_layer = BLOCK_MAPPING[config.block_type]
|
284 |
+
self.model = Pulse2pulseGenerator(model_size=50, ngpus=1, num_channels=8,
|
285 |
+
latent_dim=100, post_proc_filt_len=512,
|
286 |
+
verbose=False, upsample=True)
|
287 |
+
|
288 |
+
def forward(self, num_samples, labels=None):
|
289 |
+
|
290 |
+
outputs = []
|
291 |
+
|
292 |
+
for i in range(num_samples):
|
293 |
+
noise = torch.Tensor(1, 8, 5000).uniform_(-1, 1)
|
294 |
+
x = self.model(noise)
|
295 |
+
x = x*6000
|
296 |
+
x = x.int()
|
297 |
+
x = torch.t(x.squeeze())
|
298 |
+
outputs.append(x)
|
299 |
+
|
300 |
+
return outputs
|
301 |
+
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e646eae78b7c9e48db0d38f094059ab89b53479bbc174a900ae3086517761827
|
3 |
+
size 42375017
|