julianrisch commited on
Commit
d378e31
1 Parent(s): 2a255b7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -1
README.md CHANGED
@@ -27,4 +27,84 @@ model-index:
27
  verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWE5OGNjODhmY2Y0NWIyZDIzMmQ2NmRjZGYyYTYzOWMxZDUzYzg4YjBhNTRiNTY4NTc0M2IxNjI5NWI5ZDM0NCIsInZlcnNpb24iOjF9.IqU9rbzUcKmDEoLkwCUZTKSH0ZFhtqgnhOaEDKKnaRMGBJLj98D5V4VirYT6jLh8FlR0FiwvMTMjReBcfTisAQ
28
  ---
29
 
30
- This is a BERT base cased model trained on SQuAD v2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWE5OGNjODhmY2Y0NWIyZDIzMmQ2NmRjZGYyYTYzOWMxZDUzYzg4YjBhNTRiNTY4NTc0M2IxNjI5NWI5ZDM0NCIsInZlcnNpb24iOjF9.IqU9rbzUcKmDEoLkwCUZTKSH0ZFhtqgnhOaEDKKnaRMGBJLj98D5V4VirYT6jLh8FlR0FiwvMTMjReBcfTisAQ
28
  ---
29
 
30
+ This is a BERT base cased model trained on SQuAD v2
31
+
32
+ ## Overview
33
+ **Language model:** bert-base-cased
34
+ **Language:** English
35
+ **Downstream-task:** Extractive QA
36
+ **Training data:** SQuAD 2.0
37
+ **Eval data:** SQuAD 2.0
38
+ **Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline)
39
+
40
+ ## Usage
41
+
42
+ ### In Haystack
43
+ Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents.
44
+ To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/):
45
+ ```python
46
+ # After running pip install haystack-ai "transformers[torch,sentencepiece]"
47
+
48
+ from haystack import Document
49
+ from haystack.components.readers import ExtractiveReader
50
+
51
+ docs = [
52
+ Document(content="Python is a popular programming language"),
53
+ Document(content="python ist eine beliebte Programmiersprache"),
54
+ ]
55
+
56
+ reader = ExtractiveReader(model="deepset/bert-base-cased-squad2")
57
+ reader.warm_up()
58
+
59
+ question = "What is a popular programming language?"
60
+ result = reader.run(query=question, documents=docs)
61
+ # {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}
62
+ ```
63
+ For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline).
64
+
65
+ ### In Transformers
66
+ ```python
67
+ from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
68
+
69
+ model_name = "deepset/bert-base-cased-squad2"
70
+
71
+ # a) Get predictions
72
+ nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
73
+ QA_input = {
74
+ 'question': 'Why is model conversion important?',
75
+ 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
76
+ }
77
+ res = nlp(QA_input)
78
+
79
+ # b) Load model & tokenizer
80
+ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
81
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
82
+ ```
83
+
84
+ ## About us
85
+
86
+ <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
87
+ <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
88
+ <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
89
+ </div>
90
+ <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
91
+ <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
92
+ </div>
93
+ </div>
94
+
95
+ [deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/).
96
+
97
+ Some of our other work:
98
+ - [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2)
99
+ - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
100
+ - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
101
+
102
+ ## Get in touch and join the Haystack community
103
+
104
+ <p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>.
105
+
106
+ We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
107
+
108
+ [Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai)
109
+
110
+ By the way: [we're hiring!](http://www.deepset.ai/jobs)