|
import copy |
|
import logging |
|
|
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
|
|
from models.embedding_models.bert_embedding_model import BertEmbedModel |
|
from models.embedding_models.pretrained_embedding_model import PretrainedEmbedModel |
|
from modules.token_embedders.bert_encoder import BertLinear |
|
from collections import defaultdict |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class EntRelJointDecoder(nn.Module): |
|
def __init__(self, cfg, vocab, ent_rel_file): |
|
"""__init__ constructs `EntRelJointDecoder` components and |
|
sets `EntRelJointDecoder` parameters. This class adopts a joint |
|
decoding algorithm for entity relation joint decoding and facilitates |
|
the interaction between entity and relation. |
|
|
|
Args: |
|
cfg (dict): config parameters for constructing multiple models |
|
vocab (Vocabulary): vocabulary |
|
ent_rel_file (dict): entity and relation file (joint id, entity id, relation id, symmetric id, asymmetric id) |
|
""" |
|
|
|
super().__init__() |
|
self.vocab = vocab |
|
self.max_span_length = cfg.max_span_length |
|
self.activation = nn.GELU() |
|
self.device = cfg.device |
|
self.separate_threshold = cfg.separate_threshold |
|
|
|
if cfg.embedding_model == 'bert': |
|
self.embedding_model = BertEmbedModel(cfg, vocab) |
|
elif cfg.embedding_model == 'pretrained': |
|
self.embedding_model = PretrainedEmbedModel(cfg, vocab) |
|
self.encoder_output_size = self.embedding_model.get_hidden_size() |
|
|
|
self.head_mlp = BertLinear(input_size=self.encoder_output_size, |
|
output_size=cfg.mlp_hidden_size, |
|
activation=self.activation, |
|
dropout=cfg.dropout) |
|
self.tail_mlp = BertLinear(input_size=self.encoder_output_size, |
|
output_size=cfg.mlp_hidden_size, |
|
activation=self.activation, |
|
dropout=cfg.dropout) |
|
|
|
self.U = nn.Parameter( |
|
torch.FloatTensor(self.vocab.get_vocab_size('ent_rel_id'), cfg.mlp_hidden_size + 1, |
|
cfg.mlp_hidden_size + 1)) |
|
self.U.data.zero_() |
|
|
|
if cfg.logit_dropout > 0: |
|
self.logit_dropout = nn.Dropout(p=cfg.logit_dropout) |
|
else: |
|
self.logit_dropout = lambda x: x |
|
|
|
self.none_idx = self.vocab.get_token_index('None', 'ent_rel_id') |
|
|
|
self.symmetric_label = torch.LongTensor(ent_rel_file["symmetric"]) |
|
self.asymmetric_label = torch.LongTensor(ent_rel_file["asymmetric"]) |
|
self.ent_label = torch.LongTensor(ent_rel_file["entity"]) |
|
self.rel_label = torch.LongTensor(ent_rel_file["relation"]) |
|
if self.device > -1: |
|
self.symmetric_label = self.symmetric_label.cuda(device=self.device, non_blocking=True) |
|
self.asymmetric_label = self.asymmetric_label.cuda(device=self.device, non_blocking=True) |
|
self.ent_label = self.ent_label.cuda(device=self.device, non_blocking=True) |
|
self.rel_label = self.rel_label.cuda(device=self.device, non_blocking=True) |
|
|
|
self.element_loss = nn.CrossEntropyLoss() |
|
|
|
def forward(self, batch_inputs): |
|
"""forward |
|
|
|
Arguments: |
|
batch_inputs {dict} -- batch input data |
|
|
|
Returns: |
|
dict -- results: ent_loss, ent_pred |
|
""" |
|
|
|
results = {} |
|
batch_seq_tokens_lens = batch_inputs['tokens_lens'] |
|
batch_tokens = batch_inputs['tokens'] |
|
|
|
self.embedding_model(batch_inputs) |
|
batch_seq_tokens_encoder_repr = batch_inputs['seq_encoder_reprs'] |
|
|
|
batch_seq_tokens_head_repr = self.head_mlp(batch_seq_tokens_encoder_repr) |
|
batch_seq_tokens_head_repr = torch.cat( |
|
[batch_seq_tokens_head_repr, |
|
torch.ones_like(batch_seq_tokens_head_repr[..., :1])], dim=-1) |
|
batch_seq_tokens_tail_repr = self.tail_mlp(batch_seq_tokens_encoder_repr) |
|
batch_seq_tokens_tail_repr = torch.cat( |
|
[batch_seq_tokens_tail_repr, |
|
torch.ones_like(batch_seq_tokens_tail_repr[..., :1])], dim=-1) |
|
|
|
batch_joint_score = torch.einsum('bxi, oij, byj -> boxy', batch_seq_tokens_head_repr, self.U, |
|
batch_seq_tokens_tail_repr).permute(0, 2, 3, 1) |
|
|
|
batch_normalized_joint_score = torch.softmax( |
|
batch_joint_score, dim=-1) * batch_inputs['joint_label_matrix_mask'].unsqueeze(-1).float() |
|
|
|
if not self.training: |
|
|
|
|
|
results['joint_label_preds'] = torch.argmax(batch_normalized_joint_score, dim=-1) |
|
|
|
|
|
separate_position_preds, ent_preds, rel_preds = self.soft_joint_decoding( |
|
batch_normalized_joint_score, batch_tokens, batch_seq_tokens_lens) |
|
|
|
results['all_separate_position_preds'] = separate_position_preds |
|
results['all_ent_preds'] = ent_preds |
|
results['all_rel_preds'] = rel_preds |
|
|
|
return results |
|
|
|
results['element_loss'] = self.element_loss( |
|
self.logit_dropout(batch_joint_score[batch_inputs['joint_label_matrix_mask']]), |
|
batch_inputs['joint_label_matrix'][batch_inputs['joint_label_matrix_mask']]) |
|
|
|
batch_symmetric_normalized_joint_score = batch_normalized_joint_score[..., self.symmetric_label] |
|
results['symmetric_loss'] = torch.abs(batch_symmetric_normalized_joint_score - |
|
batch_symmetric_normalized_joint_score.transpose(1, 2)).sum( |
|
dim=-1)[batch_inputs['joint_label_matrix_mask']].mean() |
|
|
|
batch_rel_normalized_joint_score = torch.max(batch_normalized_joint_score[..., self.rel_label], dim=-1).values |
|
batch_diag_ent_normalized_joint_score = torch.max( |
|
batch_normalized_joint_score[..., self.ent_label].diagonal(0, 1, 2), |
|
dim=1).values.unsqueeze(-1).expand_as(batch_rel_normalized_joint_score) |
|
|
|
results['implication_loss'] = ( |
|
torch.relu(batch_rel_normalized_joint_score - batch_diag_ent_normalized_joint_score).sum(dim=2) + |
|
torch.relu(batch_rel_normalized_joint_score.transpose(1, 2) - batch_diag_ent_normalized_joint_score).sum( |
|
dim=2))[batch_inputs['joint_label_matrix_mask'][..., 0]].mean() |
|
|
|
|
|
relation_entity_mask = batch_inputs['joint_label_matrix'].diagonal(0, 1, 2) |
|
relation_entity_mask = torch.eq(relation_entity_mask, self.ent_label[1]) |
|
|
|
batch_row_subject_normalized_joint_score = torch.max(batch_normalized_joint_score[..., self.rel_label[0]], dim=-1).values |
|
batch_column_subject_normalized_joint_score = torch.max(batch_normalized_joint_score.transpose(1, 2)[..., self.rel_label[0]], dim=-1).values |
|
batch_row_object_normalized_joint_score = torch.max(batch_normalized_joint_score[..., self.rel_label[1]], dim=-1).values |
|
batch_column_object_normalized_joint_score = torch.max(batch_normalized_joint_score.transpose(1, 2)[..., self.rel_label[1]], dim=-1).values |
|
|
|
results['triple_loss'] = ( |
|
(torch.relu(batch_row_object_normalized_joint_score - batch_row_subject_normalized_joint_score) + |
|
torch.relu(batch_column_object_normalized_joint_score - batch_column_subject_normalized_joint_score)) / 2 |
|
)[relation_entity_mask].mean() |
|
|
|
return results |
|
|
|
def hard_joint_decoding(self, batch_normalized_joint_score, batch_seq_tokens_lens): |
|
"""hard_joint_decoding extracts entity and relaition at the same time, |
|
and consider the interconnection of entity and relation. |
|
|
|
Args: |
|
batch_normalized_joint_score (tensor): batch joint pred |
|
batch_seq_tokens_lens (list): batch sequence length |
|
|
|
Returns: |
|
tuple: predicted entity and relation |
|
""" |
|
|
|
separate_position_preds = [] |
|
ent_preds = [] |
|
rel_preds = [] |
|
|
|
joint_label_n = self.vocab.get_vocab_size('ent_rel_id') |
|
batch_joint_pred = torch.argmax(batch_normalized_joint_score, dim=-1).cpu().numpy() |
|
ent_label = np.append(self.ent_label.cpu().numpy(), self.none_idx) |
|
rel_label = np.append(self.rel_label.cpu().numpy(), self.none_idx) |
|
|
|
for idx, seq_len in enumerate(batch_seq_tokens_lens): |
|
separate_position_preds.append([]) |
|
ent_pred = {} |
|
rel_pred = {} |
|
ents = [] |
|
joint_pred = batch_joint_pred[idx] |
|
ent_pos = [0] * seq_len |
|
for l in range(self.max_span_length, 0, -1): |
|
for st in range(0, seq_len - l + 1): |
|
pred_cnt = np.array([0] * joint_label_n) |
|
if any(ent_pos[st:st + l]): |
|
continue |
|
for i in range(st, st + l): |
|
for j in range(st, st + l): |
|
pred_cnt[joint_pred[i][j]] += 1 |
|
pred = int(ent_label[np.argmax(pred_cnt[ent_label])]) |
|
pred_label = self.vocab.get_token_from_index(pred, 'ent_rel_id') |
|
|
|
if pred_label == 'None': |
|
continue |
|
|
|
ents.append((st, st + l)) |
|
for i in range(st, st + l): |
|
ent_pos[i] = 1 |
|
ent_pred[(st, st + l)] = pred_label |
|
|
|
for idx1 in range(len(ents)): |
|
for idx2 in range(len(ents)): |
|
if idx1 == idx2: |
|
continue |
|
pred_cnt = np.array([0] * joint_label_n) |
|
for i in range(ents[idx1][0], ents[idx1][1]): |
|
for j in range(ents[idx2][0], ents[idx2][1]): |
|
pred_cnt[joint_pred[i][j]] += 1 |
|
pred = int(rel_label[np.argmax(pred_cnt[rel_label])]) |
|
pred_label = self.vocab.get_token_from_index(pred, 'ent_rel_id') |
|
h = ents[idx1][1] - ents[idx1][0] |
|
w = ents[idx2][1] - ents[idx2][0] |
|
if pred_label == 'None': |
|
continue |
|
rel_pred[(ents[idx1], ents[idx2])] = pred_label |
|
|
|
ent_preds.append(ent_pred) |
|
rel_preds.append(rel_pred) |
|
|
|
return separate_position_preds, ent_preds, rel_preds |
|
|
|
def soft_joint_decoding(self, batch_normalized_joint_score, batch_tokens, batch_seq_tokens_lens): |
|
"""soft_joint_decoding extracts entity and relation at the same time, |
|
and consider the interconnection of entity and relation. This is used for measuring the ability of |
|
joint table filling model in generating Open-format extractions. |
|
|
|
Args: |
|
batch_normalized_joint_score (tensor): batch normalized joint score |
|
batch_seq_tokens_lens (list): batch sequence length |
|
|
|
Returns: |
|
tuple: predicted entity and relation |
|
""" |
|
|
|
separate_position_preds = [] |
|
ent_preds = [] |
|
rel_preds = [] |
|
|
|
batch_normalized_joint_score = batch_normalized_joint_score.cpu().numpy() |
|
symmetric_label = self.symmetric_label.cpu().numpy() |
|
ent_label = self.ent_label.cpu().numpy() |
|
rel_label = self.rel_label.cpu().numpy() |
|
|
|
for idx, seq_len in enumerate(batch_seq_tokens_lens): |
|
|
|
ent_pred = {} |
|
rel_pred = {} |
|
joint_score = batch_normalized_joint_score[idx][:seq_len, :seq_len, :] |
|
pred_label_tensors = copy.copy(joint_score) |
|
joint_score[..., symmetric_label] = (joint_score[..., symmetric_label] + |
|
joint_score[..., symmetric_label].transpose((1, 0, 2))) / 2 |
|
|
|
joint_score_feature = joint_score.reshape(seq_len, -1) |
|
transposed_joint_score_feature = joint_score.transpose((1, 0, 2)).reshape(seq_len, -1) |
|
separate_pos = ( |
|
(np.linalg.norm(joint_score_feature[0:seq_len - 1] - joint_score_feature[1:seq_len], axis=1) + |
|
np.linalg.norm( |
|
transposed_joint_score_feature[0:seq_len - 1] - transposed_joint_score_feature[1:seq_len], axis=1)) |
|
* 0.5 > self.separate_threshold).nonzero()[0] |
|
separate_position_preds.append([pos.item() for pos in separate_pos]) |
|
if len(separate_pos) > 0: |
|
spans = [(0, separate_pos[0].item() + 1)] + [(separate_pos[idx].item() + 1, separate_pos[idx + 1].item() + 1) |
|
for idx in range(len(separate_pos) - 1)] + [(separate_pos[-1].item() + 1, seq_len)] |
|
else: |
|
spans = [(0, seq_len)] |
|
|
|
|
|
merged_spans = [(span, ) for span in spans] |
|
ents = [] |
|
index2span = {} |
|
for span in merged_spans: |
|
target_indices = [] |
|
for sp in span: |
|
target_indices += [idx for idx in range(sp[0], sp[1])] |
|
score = np.mean(joint_score[target_indices, :, :][:, target_indices, :], axis=(0, 1)) |
|
if not (np.max(score[ent_label]) < score[self.none_idx]): |
|
pred = ent_label[np.argmax(score[ent_label])].item() |
|
pred_label = self.vocab.get_token_from_index(pred, 'ent_rel_id') |
|
ents.append(target_indices) |
|
index2span[tuple(target_indices)] = span |
|
ent_pred[span] = pred_label |
|
|
|
for ent1 in ents: |
|
for ent2 in ents: |
|
if ent1 == ent2: |
|
continue |
|
score = np.mean(joint_score[ent1, :, :][:, ent2, :], axis=(0, 1)) |
|
if not (np.max(score[rel_label]) < score[self.none_idx]): |
|
pred = rel_label[np.argmax(score[rel_label])].item() |
|
pred_label = self.vocab.get_token_from_index(pred, 'ent_rel_id') |
|
rel_pred[(index2span[tuple(ent1)], index2span[tuple(ent2)])] = pred_label |
|
elif (ent_pred[index2span[tuple(ent1)]] == "Relation" and |
|
ent_pred[index2span[tuple(ent2)]] == "Argument") or\ |
|
(ent_pred[index2span[tuple(ent1)]] == "Argument" |
|
and ent_pred[index2span[tuple(ent2)]] == "Relation"): |
|
joint_score_tensor = torch.from_numpy(pred_label_tensors[ent1, :, :][:, ent2, :]) |
|
batch_joint_pred_sorted = torch.argsort(joint_score_tensor, dim=-1, descending=True) |
|
most_possible_label = torch.argmax(joint_score_tensor, dim=-1) |
|
|
|
second_possible_label = batch_joint_pred_sorted[..., 1] |
|
subj_indices = torch.nonzero(most_possible_label == 3) |
|
obj_indices = torch.nonzero(most_possible_label == 4) |
|
if subj_indices.nelement() != 0 and obj_indices.nelement() == 0: |
|
second_possible_label = second_possible_label[(most_possible_label != 3).nonzero(as_tuple=True)] |
|
second_possible_label = (second_possible_label * 1.0).mean() |
|
if 2.7 < second_possible_label <= 3.3: |
|
rel_pred[(index2span[tuple(ent1)], index2span[tuple(ent2)])] = "Subject" |
|
|
|
elif obj_indices.nelement() != 0 and subj_indices.nelement() == 0: |
|
second_possible_label = second_possible_label[(most_possible_label != 4).nonzero(as_tuple=True)] |
|
second_possible_label = (second_possible_label * 1.0).mean() |
|
if 3.5 < second_possible_label <= 4: |
|
rel_pred[(index2span[tuple(ent1)], index2span[tuple(ent2)])] = "Object" |
|
|
|
else: |
|
if 1 <= (ent2[0] - ent1[-1]) < 3: |
|
second_possible_label = (second_possible_label * 1.0).mean().item() |
|
if ent_pred[index2span[tuple(ent1)]] == "Relation" or \ |
|
(ent_pred[index2span[tuple(ent2)]] == "Relation" and ent2[0] == seq_len - 6): |
|
|
|
rel_pred[(index2span[tuple(ent1)], index2span[tuple(ent2)])] = "Object" |
|
else: |
|
if 2.7 < second_possible_label <= 3.3: |
|
rel_pred[(index2span[tuple(ent1)], index2span[tuple(ent2)])] = "Subject" |
|
|
|
ent_preds.append(ent_pred) |
|
rel_preds.append(rel_pred) |
|
|
|
return separate_position_preds, ent_preds, rel_preds |
|
|