declare-lab-sutd
commited on
Commit
·
fabdab4
1
Parent(s):
98bbf60
Upload DIALECT
Browse files- README.md +124 -0
- config.json +57 -0
- gitattributes.txt +32 -0
- optimizer.pt +3 -0
- pytorch_model.bin +3 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +1 -0
- spiece.model +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- trainer_state.json +1036 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
|
4 |
+
widget:
|
5 |
+
- text: "What is or could be the cause of target? <sep> target: Thanks. Will I be able to take a retest ? <sep> context: A: Did I do well on my test ?, <utt> B: Do you want to know the honest answer ?, <utt> A: Why wouldn't I want to know ?, <utt> B: You had pretty bad scores ., <utt> A: Exactly what do you mean by bad ?, <utt> B: You failed ., <utt> A: How'd I fail it ?, <utt> B: There are a couple of reasons why you didn't pass ., <utt> A: What did I do wrong ?, <utt> B: To sum it all up , you really just don't know how to drive ., <utt> A: Thanks. Will I be able to take a retest ?, <utt> B: Sure you can , in about two and a half weeks . "
|
6 |
+
example_title: "Cause 1"
|
7 |
+
- text: "What is or could be the cause of target? <sep> target: But she did and made me disappointed . <sep> context: A: David , why didn't you clean the room ?, <utt> B: I'm not in the mood ., <utt> A: Why are you feeling depressed ?, <utt> B: I was told my girlfriend was speaking ill of me. That's a real let-down ., <utt> A: I don t think she will do such a thing ., <utt> B: But she did and made me disappointed ., <utt> A: Oh , cheer up . A girlfriend is not everything ., <utt> B: But she means a lot to me ., <utt> A: Then forgive her mistake ., <utt> B: Oh . I just can't forget it "
|
8 |
+
example_title: "Cause 2"
|
9 |
+
- text: "What subsequent event happens or could happen following the target? <sep> target: Oh . I just can't forget it .<sep> context: A: David , why didn't you clean the room ?, <utt> B: I'm not in the mood ., <utt> A: Why are you feeling depressed ?, <utt> B: I was told my girlfriend was speaking ill of me. That \u2019 s a real let-down ., <utt> A: I don t think she will do such a thing ., <utt> B: But she did and made me disappointed ., <utt> A: Oh , cheer up . A girlfriend is not everything ., <utt> B: But she means a lot to me ., <utt> A: Then forgive her mistake ., <utt> B: Oh . I just can't forget it "
|
10 |
+
example_title: "Subsequent Event 1"
|
11 |
+
- text: "What subsequent event happens or could happen following the target? <sep> target: Sure you can , in about two and a half weeks . <sep> context: A: Did I do well on my test ?, <utt> B: Do you want to know the honest answer ?, <utt> A: Why wouldn't I want to know ?, <utt> B: You had pretty bad scores ., <utt> A: Exactly what do you mean by bad ?, <utt> B: You failed ., <utt> A: How'd I fail it ?, <utt> B: There are a couple of reasons why you didn't pass ., <utt> A: What did I do wrong ?, <utt> B: To sum it all up , you really just don't know how to drive ., <utt> A: Thanks. Will I be able to take a retest ?, <utt> B: Sure you can , in about two and a half weeks . "
|
12 |
+
example_title: "Subsequent Event 2"
|
13 |
+
- text: "What is the possible emotional reaction of the listener in response to target? <sep> target: Oh . I just can't forget it .<sep> context: A: David , why didn't you clean the room ?, <utt> B: I'm not in the mood ., <utt> A: Why are you feeling depressed ?, <utt> B: I was told my girlfriend was speaking ill of me. That \u2019 s a real let-down ., <utt> A: I don t think she will do such a thing ., <utt> B: But she did and made me disappointed ., <utt> A: Oh , cheer up . A girlfriend is not everything ., <utt> B: But she means a lot to me ., <utt> A: Then forgive her mistake ., <utt> B: Oh . I just can't forget it "
|
14 |
+
example_title: "Emotional Reaction"
|
15 |
+
- text: "What is or could be the motivation of target? <sep> target: Sure you can , in about two and a half weeks . <sep> context: A: Did I do well on my test ?, <utt> B: Do you want to know the honest answer ?, <utt> A: Why wouldn't I want to know ?, <utt> B: You had pretty bad scores ., <utt> A: Exactly what do you mean by bad ?, <utt> B: You failed ., <utt> A: How'd I fail it ?, <utt> B: There are a couple of reasons why you didn't pass ., <utt> A: What did I do wrong ?, <utt> B: To sum it all up , you really just don't know how to drive ., <utt> A: Thanks. Will I be able to take a retest ?, <utt> B: Sure you can , in about two and a half weeks . "
|
16 |
+
example_title: "Motivation"
|
17 |
+
---
|
18 |
+
|
19 |
+
## DIALogue-level Commonsense Transformer (DIALeCT)
|
20 |
+
The pretrained checkpoint for the paper [Multiview Contextual Commonsense Inference: A New Dataset and Task](https://arxiv.org/abs/2210.02890).
|
21 |
+
|
22 |
+
The model is trained based on the [T5-large](https://huggingface.co/t5-large) checkpoint.
|
23 |
+
|
24 |
+
![model image](https://drive.google.com/uc?export=download&id=14RIbxgXhREdu5xZiKn5D-UUzaQLDNLqf)
|
25 |
+
|
26 |
+
|
27 |
+
## Datasets
|
28 |
+
The dataset used to pretrain the model can be obtained from the [CICERO repo](https://github.com/declare-lab/CICERO) following instructions. The Contextualized Commonsense Inference in Dialogues v2 (CICEROv2) consists of annotated commonsense inferences including cause and emotional reaction, etc. The dialogues are from multiple datasets.
|
29 |
+
| Dataset | #Dialogues| #Instances|
|
30 |
+
| -------- | ----- | --------- |
|
31 |
+
| DailyDialog| 1118| 3973|
|
32 |
+
| MuTual| 1011 | 3384|
|
33 |
+
| Dream| 250 | 994|
|
34 |
+
|
35 |
+
### Examples
|
36 |
+
Some examples of generated results from the pretrained model (the zero-shot setting).
|
37 |
+
|
38 |
+
**Subsequent Event**
|
39 |
+
```
|
40 |
+
What is or could be the subsequent event of the target? <sep>
|
41 |
+
target: Oh . I just can't forget it .<sep>
|
42 |
+
context: A: David , why didn't you clean the room ?, <utt>
|
43 |
+
B: I'm not in the mood ., <utt>
|
44 |
+
A: Why are you feeling depressed ?, <utt>
|
45 |
+
B: I was told my girlfriend was speaking ill of me. That \u2019 s a real let-down ., <utt>
|
46 |
+
A: I don t think she will do such a thing ., <utt>
|
47 |
+
B: But she did and made me disappointed ., <utt>
|
48 |
+
A: Oh , cheer up . A girlfriend is not everything ., <utt>
|
49 |
+
B: But she means a lot to me ., <utt>
|
50 |
+
A: Then forgive her mistake ., <utt>
|
51 |
+
B: Oh . I just can't forget it
|
52 |
+
```
|
53 |
+
Predicted subsequent event:
|
54 |
+
```
|
55 |
+
David's girlfriend apologized to david for her mistake.
|
56 |
+
```
|
57 |
+
|
58 |
+
**Cause**
|
59 |
+
```
|
60 |
+
What is or could be the cause of target? <sep>
|
61 |
+
target: Thanks. Will I be able to take a retest ? <sep>
|
62 |
+
context: A: Did I do well on my test ?, <utt>
|
63 |
+
B: Do you want to know the honest answer ?, <utt>
|
64 |
+
A: Why wouldn't I want to know ?, <utt>
|
65 |
+
B: You had pretty bad scores ., <utt>
|
66 |
+
A: Exactly what do you mean by bad ?, <utt>
|
67 |
+
B: You failed ., <utt>
|
68 |
+
A: How'd I fail it ?, <utt>
|
69 |
+
B: There are a couple of reasons why you didn't pass ., <utt>
|
70 |
+
A: What did I do wrong ?, <utt>
|
71 |
+
B: To sum it all up , you really just don't know how to drive ., <utt>
|
72 |
+
A: Thanks. Will I be able to take a retest ?, <utt>
|
73 |
+
B: Sure you can , in about two and a half weeks .
|
74 |
+
```
|
75 |
+
Predicted cause:
|
76 |
+
```
|
77 |
+
The speaker has failed the driving test.
|
78 |
+
```
|
79 |
+
|
80 |
+
**Emotional Reaction**
|
81 |
+
```
|
82 |
+
What is the possible emotional reaction of the listener in response to target? <sep>
|
83 |
+
target: Oh . I just can't forget it .<sep>
|
84 |
+
context: A: David , why didn't you clean the room ?, <utt>
|
85 |
+
B: I'm not in the mood ., <utt>
|
86 |
+
A: Why are you feeling depressed ?, <utt>
|
87 |
+
B: I was told my girlfriend was speaking ill of me. That \u2019 s a real let-down ., <utt>
|
88 |
+
A: I don t think she will do such a thing ., <utt>
|
89 |
+
B: But she did and made me disappointed ., <utt>
|
90 |
+
A: Oh , cheer up . A girlfriend is not everything ., <utt>
|
91 |
+
B: But she means a lot to me ., <utt>
|
92 |
+
A: Then forgive her mistake ., <utt>
|
93 |
+
B: Oh . I just can't forget it
|
94 |
+
```
|
95 |
+
Predicted emotional reaction:
|
96 |
+
```
|
97 |
+
The listener is hopeful that david will forgive his girlfriend for her mistake.
|
98 |
+
```
|
99 |
+
|
100 |
+
## Inference:
|
101 |
+
The input text should be formatted as follows:
|
102 |
+
|
103 |
+
```
|
104 |
+
Question <sep> target: target_utt <sep> context: A: utterance 1 <utt> B: utterance 2 <utt> A: utterance 3 <utt> B: utterance 4
|
105 |
+
```
|
106 |
+
Question: The question against which we want to make the inference.
|
107 |
+
|
108 |
+
A, B are speaker identifiers
|
109 |
+
|
110 |
+
The ```target_utt``` should be anyone between ```utterance 1, utterance 2, utterance 3, or utterance 4```. Do not use the speaker identifier in the ```target_utt```
|
111 |
+
|
112 |
+
Some samples are provided in the Hosted inference API box examples.
|
113 |
+
|
114 |
+
## BibTeX entry and citation info
|
115 |
+
If you use the model, you can cite:
|
116 |
+
```bibtex
|
117 |
+
@article{Shen2022MultiviewCC,
|
118 |
+
title={Multiview Contextual Commonsense Inference: A New Dataset and Task},
|
119 |
+
author={Siqi Shen and Deepanway Ghosal and Navonil Majumder and Henry Lim and Rada Mihalcea and Soujanya Poria},
|
120 |
+
journal={ArXiv},
|
121 |
+
year={2022},
|
122 |
+
volume={abs/2210.02890}
|
123 |
+
}
|
124 |
+
```
|
config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "t5-large",
|
3 |
+
"architectures": [
|
4 |
+
"T5ForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"d_ff": 4096,
|
7 |
+
"d_kv": 64,
|
8 |
+
"d_model": 1024,
|
9 |
+
"decoder_start_token_id": 0,
|
10 |
+
"dropout_rate": 0.1,
|
11 |
+
"eos_token_id": 1,
|
12 |
+
"feed_forward_proj": "relu",
|
13 |
+
"initializer_factor": 1.0,
|
14 |
+
"is_encoder_decoder": true,
|
15 |
+
"layer_norm_epsilon": 1e-06,
|
16 |
+
"model_type": "t5",
|
17 |
+
"n_positions": 512,
|
18 |
+
"num_decoder_layers": 24,
|
19 |
+
"num_heads": 16,
|
20 |
+
"num_layers": 24,
|
21 |
+
"output_past": true,
|
22 |
+
"pad_token_id": 0,
|
23 |
+
"relative_attention_num_buckets": 32,
|
24 |
+
"task_specific_params": {
|
25 |
+
"summarization": {
|
26 |
+
"early_stopping": true,
|
27 |
+
"length_penalty": 2.0,
|
28 |
+
"max_length": 200,
|
29 |
+
"min_length": 30,
|
30 |
+
"no_repeat_ngram_size": 3,
|
31 |
+
"num_beams": 4,
|
32 |
+
"prefix": "summarize: "
|
33 |
+
},
|
34 |
+
"translation_en_to_de": {
|
35 |
+
"early_stopping": true,
|
36 |
+
"max_length": 300,
|
37 |
+
"num_beams": 4,
|
38 |
+
"prefix": "translate English to German: "
|
39 |
+
},
|
40 |
+
"translation_en_to_fr": {
|
41 |
+
"early_stopping": true,
|
42 |
+
"max_length": 300,
|
43 |
+
"num_beams": 4,
|
44 |
+
"prefix": "translate English to French: "
|
45 |
+
},
|
46 |
+
"translation_en_to_ro": {
|
47 |
+
"early_stopping": true,
|
48 |
+
"max_length": 300,
|
49 |
+
"num_beams": 4,
|
50 |
+
"prefix": "translate English to Romanian: "
|
51 |
+
}
|
52 |
+
},
|
53 |
+
"torch_dtype": "float32",
|
54 |
+
"transformers_version": "4.17.0",
|
55 |
+
"use_cache": true,
|
56 |
+
"vocab_size": 32100
|
57 |
+
}
|
gitattributes.txt
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
24 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4af74482a53cd21b759e7be6d64a671dcf01119f7588761aee10e096a67ecdd
|
3 |
+
size 5353884
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d3dfc3ef553602757800b7a71368f7a98483c17a2bf5757ab36319021d1847a
|
3 |
+
size 2950790023
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0426f98a6f3e83788a3c20a56b703e690d1b9f704c348a8b5e4de89590384588
|
3 |
+
size 14503
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3459dbb8f9c8943d47220d26307cc4ef700fd12b55975294e783c533c39b0469
|
3 |
+
size 14503
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9143d40b5b381261adcb12d94cf28327a88dea56b2c4935acd8ce43b9edc08c
|
3 |
+
size 623
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"]}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
|
3 |
+
size 791656
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "extra_ids": 100, "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"], "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "t5-large", "tokenizer_class": "T5Tokenizer"}
|
trainer_state.json
ADDED
@@ -0,0 +1,1036 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.8414472437961735,
|
5 |
+
"global_step": 75000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.02,
|
12 |
+
"learning_rate": 9.936856727915642e-06,
|
13 |
+
"loss": 1.4639,
|
14 |
+
"step": 500
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.04,
|
18 |
+
"learning_rate": 9.873713455831283e-06,
|
19 |
+
"loss": 1.1219,
|
20 |
+
"step": 1000
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.06,
|
24 |
+
"learning_rate": 9.810570183746922e-06,
|
25 |
+
"loss": 1.0672,
|
26 |
+
"step": 1500
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.08,
|
30 |
+
"learning_rate": 9.747426911662563e-06,
|
31 |
+
"loss": 0.9959,
|
32 |
+
"step": 2000
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.09,
|
36 |
+
"learning_rate": 9.684283639578204e-06,
|
37 |
+
"loss": 0.9887,
|
38 |
+
"step": 2500
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.11,
|
42 |
+
"learning_rate": 9.621140367493844e-06,
|
43 |
+
"loss": 0.9706,
|
44 |
+
"step": 3000
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.13,
|
48 |
+
"learning_rate": 9.557997095409485e-06,
|
49 |
+
"loss": 0.9167,
|
50 |
+
"step": 3500
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.15,
|
54 |
+
"learning_rate": 9.494853823325125e-06,
|
55 |
+
"loss": 0.9241,
|
56 |
+
"step": 4000
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.17,
|
60 |
+
"learning_rate": 9.431710551240765e-06,
|
61 |
+
"loss": 0.9152,
|
62 |
+
"step": 4500
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.19,
|
66 |
+
"learning_rate": 9.368567279156406e-06,
|
67 |
+
"loss": 0.897,
|
68 |
+
"step": 5000
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.19,
|
72 |
+
"eval_loss": 1.8563896417617798,
|
73 |
+
"eval_runtime": 4.2841,
|
74 |
+
"eval_samples_per_second": 116.71,
|
75 |
+
"eval_steps_per_second": 14.706,
|
76 |
+
"step": 5000
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.21,
|
80 |
+
"learning_rate": 9.305424007072047e-06,
|
81 |
+
"loss": 0.879,
|
82 |
+
"step": 5500
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 0.23,
|
86 |
+
"learning_rate": 9.242280734987688e-06,
|
87 |
+
"loss": 0.8759,
|
88 |
+
"step": 6000
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"epoch": 0.25,
|
92 |
+
"learning_rate": 9.179137462903327e-06,
|
93 |
+
"loss": 0.8799,
|
94 |
+
"step": 6500
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.27,
|
98 |
+
"learning_rate": 9.115994190818968e-06,
|
99 |
+
"loss": 0.8683,
|
100 |
+
"step": 7000
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.28,
|
104 |
+
"learning_rate": 9.052850918734609e-06,
|
105 |
+
"loss": 0.8598,
|
106 |
+
"step": 7500
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.3,
|
110 |
+
"learning_rate": 8.98970764665025e-06,
|
111 |
+
"loss": 0.8662,
|
112 |
+
"step": 8000
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"epoch": 0.32,
|
116 |
+
"learning_rate": 8.92656437456589e-06,
|
117 |
+
"loss": 0.8528,
|
118 |
+
"step": 8500
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"epoch": 0.34,
|
122 |
+
"learning_rate": 8.863421102481532e-06,
|
123 |
+
"loss": 0.8444,
|
124 |
+
"step": 9000
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"epoch": 0.36,
|
128 |
+
"learning_rate": 8.800277830397171e-06,
|
129 |
+
"loss": 0.8632,
|
130 |
+
"step": 9500
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.38,
|
134 |
+
"learning_rate": 8.737134558312812e-06,
|
135 |
+
"loss": 0.852,
|
136 |
+
"step": 10000
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.38,
|
140 |
+
"eval_loss": 1.813950777053833,
|
141 |
+
"eval_runtime": 4.2949,
|
142 |
+
"eval_samples_per_second": 116.417,
|
143 |
+
"eval_steps_per_second": 14.669,
|
144 |
+
"step": 10000
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.4,
|
148 |
+
"learning_rate": 8.673991286228453e-06,
|
149 |
+
"loss": 0.8545,
|
150 |
+
"step": 10500
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.42,
|
154 |
+
"learning_rate": 8.610848014144094e-06,
|
155 |
+
"loss": 0.8312,
|
156 |
+
"step": 11000
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.44,
|
160 |
+
"learning_rate": 8.547704742059734e-06,
|
161 |
+
"loss": 0.84,
|
162 |
+
"step": 11500
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"epoch": 0.45,
|
166 |
+
"learning_rate": 8.484561469975375e-06,
|
167 |
+
"loss": 0.8304,
|
168 |
+
"step": 12000
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 0.47,
|
172 |
+
"learning_rate": 8.421418197891016e-06,
|
173 |
+
"loss": 0.83,
|
174 |
+
"step": 12500
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 0.49,
|
178 |
+
"learning_rate": 8.358274925806657e-06,
|
179 |
+
"loss": 0.7981,
|
180 |
+
"step": 13000
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"epoch": 0.51,
|
184 |
+
"learning_rate": 8.295131653722296e-06,
|
185 |
+
"loss": 0.8254,
|
186 |
+
"step": 13500
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 0.53,
|
190 |
+
"learning_rate": 8.231988381637937e-06,
|
191 |
+
"loss": 0.8275,
|
192 |
+
"step": 14000
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.55,
|
196 |
+
"learning_rate": 8.168845109553578e-06,
|
197 |
+
"loss": 0.8141,
|
198 |
+
"step": 14500
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.57,
|
202 |
+
"learning_rate": 8.105701837469219e-06,
|
203 |
+
"loss": 0.8096,
|
204 |
+
"step": 15000
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 0.57,
|
208 |
+
"eval_loss": 1.7879245281219482,
|
209 |
+
"eval_runtime": 4.3051,
|
210 |
+
"eval_samples_per_second": 116.142,
|
211 |
+
"eval_steps_per_second": 14.634,
|
212 |
+
"step": 15000
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.59,
|
216 |
+
"learning_rate": 8.04255856538486e-06,
|
217 |
+
"loss": 0.7986,
|
218 |
+
"step": 15500
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.61,
|
222 |
+
"learning_rate": 7.979415293300499e-06,
|
223 |
+
"loss": 0.8069,
|
224 |
+
"step": 16000
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.63,
|
228 |
+
"learning_rate": 7.91627202121614e-06,
|
229 |
+
"loss": 0.8343,
|
230 |
+
"step": 16500
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.64,
|
234 |
+
"learning_rate": 7.85312874913178e-06,
|
235 |
+
"loss": 0.8069,
|
236 |
+
"step": 17000
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.66,
|
240 |
+
"learning_rate": 7.789985477047422e-06,
|
241 |
+
"loss": 0.8089,
|
242 |
+
"step": 17500
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.68,
|
246 |
+
"learning_rate": 7.726842204963063e-06,
|
247 |
+
"loss": 0.8144,
|
248 |
+
"step": 18000
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.7,
|
252 |
+
"learning_rate": 7.663698932878702e-06,
|
253 |
+
"loss": 0.7886,
|
254 |
+
"step": 18500
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.72,
|
258 |
+
"learning_rate": 7.6005556607943435e-06,
|
259 |
+
"loss": 0.7968,
|
260 |
+
"step": 19000
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.74,
|
264 |
+
"learning_rate": 7.5374123887099835e-06,
|
265 |
+
"loss": 0.7836,
|
266 |
+
"step": 19500
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.76,
|
270 |
+
"learning_rate": 7.474269116625624e-06,
|
271 |
+
"loss": 0.8243,
|
272 |
+
"step": 20000
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.76,
|
276 |
+
"eval_loss": 1.7740414142608643,
|
277 |
+
"eval_runtime": 4.2937,
|
278 |
+
"eval_samples_per_second": 116.45,
|
279 |
+
"eval_steps_per_second": 14.673,
|
280 |
+
"step": 20000
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"epoch": 0.78,
|
284 |
+
"learning_rate": 7.4111258445412644e-06,
|
285 |
+
"loss": 0.7716,
|
286 |
+
"step": 20500
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 0.8,
|
290 |
+
"learning_rate": 7.347982572456905e-06,
|
291 |
+
"loss": 0.7921,
|
292 |
+
"step": 21000
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"epoch": 0.81,
|
296 |
+
"learning_rate": 7.284839300372546e-06,
|
297 |
+
"loss": 0.7943,
|
298 |
+
"step": 21500
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 0.83,
|
302 |
+
"learning_rate": 7.221696028288186e-06,
|
303 |
+
"loss": 0.7644,
|
304 |
+
"step": 22000
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.85,
|
308 |
+
"learning_rate": 7.158552756203827e-06,
|
309 |
+
"loss": 0.7841,
|
310 |
+
"step": 22500
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.87,
|
314 |
+
"learning_rate": 7.095409484119468e-06,
|
315 |
+
"loss": 0.7866,
|
316 |
+
"step": 23000
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 0.89,
|
320 |
+
"learning_rate": 7.032266212035108e-06,
|
321 |
+
"loss": 0.7967,
|
322 |
+
"step": 23500
|
323 |
+
},
|
324 |
+
{
|
325 |
+
"epoch": 0.91,
|
326 |
+
"learning_rate": 6.969122939950749e-06,
|
327 |
+
"loss": 0.7776,
|
328 |
+
"step": 24000
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"epoch": 0.93,
|
332 |
+
"learning_rate": 6.905979667866389e-06,
|
333 |
+
"loss": 0.7704,
|
334 |
+
"step": 24500
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"epoch": 0.95,
|
338 |
+
"learning_rate": 6.84283639578203e-06,
|
339 |
+
"loss": 0.7536,
|
340 |
+
"step": 25000
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 0.95,
|
344 |
+
"eval_loss": 1.7646362781524658,
|
345 |
+
"eval_runtime": 4.2984,
|
346 |
+
"eval_samples_per_second": 116.323,
|
347 |
+
"eval_steps_per_second": 14.657,
|
348 |
+
"step": 25000
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 0.97,
|
352 |
+
"learning_rate": 6.779693123697671e-06,
|
353 |
+
"loss": 0.7886,
|
354 |
+
"step": 25500
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.99,
|
358 |
+
"learning_rate": 6.716549851613311e-06,
|
359 |
+
"loss": 0.7812,
|
360 |
+
"step": 26000
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 1.0,
|
364 |
+
"learning_rate": 6.653406579528952e-06,
|
365 |
+
"loss": 0.7845,
|
366 |
+
"step": 26500
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 1.02,
|
370 |
+
"learning_rate": 6.590263307444592e-06,
|
371 |
+
"loss": 0.7634,
|
372 |
+
"step": 27000
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"epoch": 1.04,
|
376 |
+
"learning_rate": 6.527120035360233e-06,
|
377 |
+
"loss": 0.7592,
|
378 |
+
"step": 27500
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"epoch": 1.06,
|
382 |
+
"learning_rate": 6.4639767632758735e-06,
|
383 |
+
"loss": 0.7494,
|
384 |
+
"step": 28000
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 1.08,
|
388 |
+
"learning_rate": 6.4008334911915135e-06,
|
389 |
+
"loss": 0.749,
|
390 |
+
"step": 28500
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 1.1,
|
394 |
+
"learning_rate": 6.3376902191071544e-06,
|
395 |
+
"loss": 0.7592,
|
396 |
+
"step": 29000
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 1.12,
|
400 |
+
"learning_rate": 6.2745469470227945e-06,
|
401 |
+
"loss": 0.7355,
|
402 |
+
"step": 29500
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 1.14,
|
406 |
+
"learning_rate": 6.211403674938435e-06,
|
407 |
+
"loss": 0.7442,
|
408 |
+
"step": 30000
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 1.14,
|
412 |
+
"eval_loss": 1.762963891029358,
|
413 |
+
"eval_runtime": 4.2966,
|
414 |
+
"eval_samples_per_second": 116.372,
|
415 |
+
"eval_steps_per_second": 14.663,
|
416 |
+
"step": 30000
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 1.16,
|
420 |
+
"learning_rate": 6.148260402854076e-06,
|
421 |
+
"loss": 0.7629,
|
422 |
+
"step": 30500
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 1.17,
|
426 |
+
"learning_rate": 6.085117130769716e-06,
|
427 |
+
"loss": 0.7227,
|
428 |
+
"step": 31000
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 1.19,
|
432 |
+
"learning_rate": 6.021973858685357e-06,
|
433 |
+
"loss": 0.738,
|
434 |
+
"step": 31500
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 1.21,
|
438 |
+
"learning_rate": 5.958830586600998e-06,
|
439 |
+
"loss": 0.7293,
|
440 |
+
"step": 32000
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 1.23,
|
444 |
+
"learning_rate": 5.895687314516638e-06,
|
445 |
+
"loss": 0.7434,
|
446 |
+
"step": 32500
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 1.25,
|
450 |
+
"learning_rate": 5.832544042432279e-06,
|
451 |
+
"loss": 0.7548,
|
452 |
+
"step": 33000
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 1.27,
|
456 |
+
"learning_rate": 5.769400770347921e-06,
|
457 |
+
"loss": 0.7304,
|
458 |
+
"step": 33500
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 1.29,
|
462 |
+
"learning_rate": 5.706257498263561e-06,
|
463 |
+
"loss": 0.7331,
|
464 |
+
"step": 34000
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 1.31,
|
468 |
+
"learning_rate": 5.643114226179202e-06,
|
469 |
+
"loss": 0.7387,
|
470 |
+
"step": 34500
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 1.33,
|
474 |
+
"learning_rate": 5.5799709540948425e-06,
|
475 |
+
"loss": 0.7482,
|
476 |
+
"step": 35000
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 1.33,
|
480 |
+
"eval_loss": 1.7577964067459106,
|
481 |
+
"eval_runtime": 4.9786,
|
482 |
+
"eval_samples_per_second": 100.43,
|
483 |
+
"eval_steps_per_second": 12.654,
|
484 |
+
"step": 35000
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"epoch": 1.34,
|
488 |
+
"learning_rate": 5.5168276820104826e-06,
|
489 |
+
"loss": 0.7177,
|
490 |
+
"step": 35500
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"epoch": 1.36,
|
494 |
+
"learning_rate": 5.4536844099261234e-06,
|
495 |
+
"loss": 0.7227,
|
496 |
+
"step": 36000
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 1.38,
|
500 |
+
"learning_rate": 5.3905411378417635e-06,
|
501 |
+
"loss": 0.723,
|
502 |
+
"step": 36500
|
503 |
+
},
|
504 |
+
{
|
505 |
+
"epoch": 1.4,
|
506 |
+
"learning_rate": 5.327397865757404e-06,
|
507 |
+
"loss": 0.7255,
|
508 |
+
"step": 37000
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 1.42,
|
512 |
+
"learning_rate": 5.264254593673045e-06,
|
513 |
+
"loss": 0.7269,
|
514 |
+
"step": 37500
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 1.44,
|
518 |
+
"learning_rate": 5.201111321588685e-06,
|
519 |
+
"loss": 0.7528,
|
520 |
+
"step": 38000
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 1.46,
|
524 |
+
"learning_rate": 5.137968049504326e-06,
|
525 |
+
"loss": 0.7377,
|
526 |
+
"step": 38500
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 1.48,
|
530 |
+
"learning_rate": 5.074824777419966e-06,
|
531 |
+
"loss": 0.7317,
|
532 |
+
"step": 39000
|
533 |
+
},
|
534 |
+
{
|
535 |
+
"epoch": 1.5,
|
536 |
+
"learning_rate": 5.011681505335607e-06,
|
537 |
+
"loss": 0.7486,
|
538 |
+
"step": 39500
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"epoch": 1.52,
|
542 |
+
"learning_rate": 4.948538233251248e-06,
|
543 |
+
"loss": 0.7126,
|
544 |
+
"step": 40000
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"epoch": 1.52,
|
548 |
+
"eval_loss": 1.7534527778625488,
|
549 |
+
"eval_runtime": 4.2918,
|
550 |
+
"eval_samples_per_second": 116.502,
|
551 |
+
"eval_steps_per_second": 14.679,
|
552 |
+
"step": 40000
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"epoch": 1.53,
|
556 |
+
"learning_rate": 4.885394961166888e-06,
|
557 |
+
"loss": 0.7211,
|
558 |
+
"step": 40500
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"epoch": 1.55,
|
562 |
+
"learning_rate": 4.822251689082529e-06,
|
563 |
+
"loss": 0.7059,
|
564 |
+
"step": 41000
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 1.57,
|
568 |
+
"learning_rate": 4.75910841699817e-06,
|
569 |
+
"loss": 0.7331,
|
570 |
+
"step": 41500
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 1.59,
|
574 |
+
"learning_rate": 4.69596514491381e-06,
|
575 |
+
"loss": 0.7199,
|
576 |
+
"step": 42000
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 1.61,
|
580 |
+
"learning_rate": 4.632821872829451e-06,
|
581 |
+
"loss": 0.7026,
|
582 |
+
"step": 42500
|
583 |
+
},
|
584 |
+
{
|
585 |
+
"epoch": 1.63,
|
586 |
+
"learning_rate": 4.569678600745091e-06,
|
587 |
+
"loss": 0.7181,
|
588 |
+
"step": 43000
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"epoch": 1.65,
|
592 |
+
"learning_rate": 4.506535328660732e-06,
|
593 |
+
"loss": 0.725,
|
594 |
+
"step": 43500
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 1.67,
|
598 |
+
"learning_rate": 4.4433920565763725e-06,
|
599 |
+
"loss": 0.7281,
|
600 |
+
"step": 44000
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"epoch": 1.69,
|
604 |
+
"learning_rate": 4.380248784492013e-06,
|
605 |
+
"loss": 0.714,
|
606 |
+
"step": 44500
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 1.7,
|
610 |
+
"learning_rate": 4.3171055124076535e-06,
|
611 |
+
"loss": 0.7123,
|
612 |
+
"step": 45000
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 1.7,
|
616 |
+
"eval_loss": 1.7550365924835205,
|
617 |
+
"eval_runtime": 4.9628,
|
618 |
+
"eval_samples_per_second": 100.749,
|
619 |
+
"eval_steps_per_second": 12.694,
|
620 |
+
"step": 45000
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 1.72,
|
624 |
+
"learning_rate": 4.2539622403232935e-06,
|
625 |
+
"loss": 0.7039,
|
626 |
+
"step": 45500
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 1.74,
|
630 |
+
"learning_rate": 4.190818968238934e-06,
|
631 |
+
"loss": 0.7207,
|
632 |
+
"step": 46000
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 1.76,
|
636 |
+
"learning_rate": 4.127675696154575e-06,
|
637 |
+
"loss": 0.7245,
|
638 |
+
"step": 46500
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 1.78,
|
642 |
+
"learning_rate": 4.064532424070215e-06,
|
643 |
+
"loss": 0.7058,
|
644 |
+
"step": 47000
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 1.8,
|
648 |
+
"learning_rate": 4.001389151985856e-06,
|
649 |
+
"loss": 0.7216,
|
650 |
+
"step": 47500
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 1.82,
|
654 |
+
"learning_rate": 3.938245879901496e-06,
|
655 |
+
"loss": 0.7339,
|
656 |
+
"step": 48000
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 1.84,
|
660 |
+
"learning_rate": 3.875102607817137e-06,
|
661 |
+
"loss": 0.7354,
|
662 |
+
"step": 48500
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 1.86,
|
666 |
+
"learning_rate": 3.8119593357327776e-06,
|
667 |
+
"loss": 0.7281,
|
668 |
+
"step": 49000
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 1.88,
|
672 |
+
"learning_rate": 3.7488160636484185e-06,
|
673 |
+
"loss": 0.7297,
|
674 |
+
"step": 49500
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 1.89,
|
678 |
+
"learning_rate": 3.685672791564059e-06,
|
679 |
+
"loss": 0.7211,
|
680 |
+
"step": 50000
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 1.89,
|
684 |
+
"eval_loss": 1.7511944770812988,
|
685 |
+
"eval_runtime": 4.9613,
|
686 |
+
"eval_samples_per_second": 100.78,
|
687 |
+
"eval_steps_per_second": 12.698,
|
688 |
+
"step": 50000
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 1.91,
|
692 |
+
"learning_rate": 3.6225295194797e-06,
|
693 |
+
"loss": 0.7116,
|
694 |
+
"step": 50500
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"epoch": 1.93,
|
698 |
+
"learning_rate": 3.5593862473953407e-06,
|
699 |
+
"loss": 0.7168,
|
700 |
+
"step": 51000
|
701 |
+
},
|
702 |
+
{
|
703 |
+
"epoch": 1.95,
|
704 |
+
"learning_rate": 3.496242975310981e-06,
|
705 |
+
"loss": 0.7073,
|
706 |
+
"step": 51500
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 1.97,
|
710 |
+
"learning_rate": 3.4330997032266216e-06,
|
711 |
+
"loss": 0.7085,
|
712 |
+
"step": 52000
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"epoch": 1.99,
|
716 |
+
"learning_rate": 3.369956431142262e-06,
|
717 |
+
"loss": 0.7143,
|
718 |
+
"step": 52500
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 2.01,
|
722 |
+
"learning_rate": 3.306813159057903e-06,
|
723 |
+
"loss": 0.7134,
|
724 |
+
"step": 53000
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 2.03,
|
728 |
+
"learning_rate": 3.2436698869735434e-06,
|
729 |
+
"loss": 0.6899,
|
730 |
+
"step": 53500
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 2.05,
|
734 |
+
"learning_rate": 3.180526614889184e-06,
|
735 |
+
"loss": 0.6816,
|
736 |
+
"step": 54000
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 2.06,
|
740 |
+
"learning_rate": 3.1173833428048244e-06,
|
741 |
+
"loss": 0.7157,
|
742 |
+
"step": 54500
|
743 |
+
},
|
744 |
+
{
|
745 |
+
"epoch": 2.08,
|
746 |
+
"learning_rate": 3.054240070720465e-06,
|
747 |
+
"loss": 0.6791,
|
748 |
+
"step": 55000
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"epoch": 2.08,
|
752 |
+
"eval_loss": 1.7588887214660645,
|
753 |
+
"eval_runtime": 4.9575,
|
754 |
+
"eval_samples_per_second": 100.856,
|
755 |
+
"eval_steps_per_second": 12.708,
|
756 |
+
"step": 55000
|
757 |
+
},
|
758 |
+
{
|
759 |
+
"epoch": 2.1,
|
760 |
+
"learning_rate": 2.9910967986361057e-06,
|
761 |
+
"loss": 0.693,
|
762 |
+
"step": 55500
|
763 |
+
},
|
764 |
+
{
|
765 |
+
"epoch": 2.12,
|
766 |
+
"learning_rate": 2.927953526551746e-06,
|
767 |
+
"loss": 0.6793,
|
768 |
+
"step": 56000
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"epoch": 2.14,
|
772 |
+
"learning_rate": 2.8648102544673866e-06,
|
773 |
+
"loss": 0.6825,
|
774 |
+
"step": 56500
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 2.16,
|
778 |
+
"learning_rate": 2.801666982383027e-06,
|
779 |
+
"loss": 0.6897,
|
780 |
+
"step": 57000
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 2.18,
|
784 |
+
"learning_rate": 2.738523710298668e-06,
|
785 |
+
"loss": 0.6834,
|
786 |
+
"step": 57500
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 2.2,
|
790 |
+
"learning_rate": 2.6753804382143085e-06,
|
791 |
+
"loss": 0.6959,
|
792 |
+
"step": 58000
|
793 |
+
},
|
794 |
+
{
|
795 |
+
"epoch": 2.22,
|
796 |
+
"learning_rate": 2.612237166129949e-06,
|
797 |
+
"loss": 0.6977,
|
798 |
+
"step": 58500
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"epoch": 2.24,
|
802 |
+
"learning_rate": 2.5490938940455894e-06,
|
803 |
+
"loss": 0.6881,
|
804 |
+
"step": 59000
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 2.25,
|
808 |
+
"learning_rate": 2.4859506219612303e-06,
|
809 |
+
"loss": 0.7066,
|
810 |
+
"step": 59500
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"epoch": 2.27,
|
814 |
+
"learning_rate": 2.4228073498768707e-06,
|
815 |
+
"loss": 0.6731,
|
816 |
+
"step": 60000
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 2.27,
|
820 |
+
"eval_loss": 1.7606250047683716,
|
821 |
+
"eval_runtime": 4.9678,
|
822 |
+
"eval_samples_per_second": 100.649,
|
823 |
+
"eval_steps_per_second": 12.682,
|
824 |
+
"step": 60000
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 2.29,
|
828 |
+
"learning_rate": 2.3596640777925116e-06,
|
829 |
+
"loss": 0.6904,
|
830 |
+
"step": 60500
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 2.31,
|
834 |
+
"learning_rate": 2.296520805708152e-06,
|
835 |
+
"loss": 0.6873,
|
836 |
+
"step": 61000
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 2.33,
|
840 |
+
"learning_rate": 2.2333775336237925e-06,
|
841 |
+
"loss": 0.701,
|
842 |
+
"step": 61500
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 2.35,
|
846 |
+
"learning_rate": 2.170234261539433e-06,
|
847 |
+
"loss": 0.6964,
|
848 |
+
"step": 62000
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 2.37,
|
852 |
+
"learning_rate": 2.1070909894550735e-06,
|
853 |
+
"loss": 0.7201,
|
854 |
+
"step": 62500
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 2.39,
|
858 |
+
"learning_rate": 2.0439477173707144e-06,
|
859 |
+
"loss": 0.6866,
|
860 |
+
"step": 63000
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 2.41,
|
864 |
+
"learning_rate": 1.980804445286355e-06,
|
865 |
+
"loss": 0.6929,
|
866 |
+
"step": 63500
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 2.42,
|
870 |
+
"learning_rate": 1.9176611732019953e-06,
|
871 |
+
"loss": 0.6939,
|
872 |
+
"step": 64000
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 2.44,
|
876 |
+
"learning_rate": 1.8545179011176362e-06,
|
877 |
+
"loss": 0.701,
|
878 |
+
"step": 64500
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 2.46,
|
882 |
+
"learning_rate": 1.7913746290332768e-06,
|
883 |
+
"loss": 0.682,
|
884 |
+
"step": 65000
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 2.46,
|
888 |
+
"eval_loss": 1.7586958408355713,
|
889 |
+
"eval_runtime": 4.3201,
|
890 |
+
"eval_samples_per_second": 115.738,
|
891 |
+
"eval_steps_per_second": 14.583,
|
892 |
+
"step": 65000
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 2.48,
|
896 |
+
"learning_rate": 1.7282313569489173e-06,
|
897 |
+
"loss": 0.6694,
|
898 |
+
"step": 65500
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 2.5,
|
902 |
+
"learning_rate": 1.6650880848645578e-06,
|
903 |
+
"loss": 0.7003,
|
904 |
+
"step": 66000
|
905 |
+
},
|
906 |
+
{
|
907 |
+
"epoch": 2.52,
|
908 |
+
"learning_rate": 1.6019448127801984e-06,
|
909 |
+
"loss": 0.6837,
|
910 |
+
"step": 66500
|
911 |
+
},
|
912 |
+
{
|
913 |
+
"epoch": 2.54,
|
914 |
+
"learning_rate": 1.538801540695839e-06,
|
915 |
+
"loss": 0.7013,
|
916 |
+
"step": 67000
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 2.56,
|
920 |
+
"learning_rate": 1.4756582686114796e-06,
|
921 |
+
"loss": 0.6882,
|
922 |
+
"step": 67500
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"epoch": 2.58,
|
926 |
+
"learning_rate": 1.41251499652712e-06,
|
927 |
+
"loss": 0.6961,
|
928 |
+
"step": 68000
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 2.6,
|
932 |
+
"learning_rate": 1.3493717244427607e-06,
|
933 |
+
"loss": 0.6827,
|
934 |
+
"step": 68500
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 2.61,
|
938 |
+
"learning_rate": 1.2862284523584012e-06,
|
939 |
+
"loss": 0.6844,
|
940 |
+
"step": 69000
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 2.63,
|
944 |
+
"learning_rate": 1.2230851802740419e-06,
|
945 |
+
"loss": 0.6992,
|
946 |
+
"step": 69500
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 2.65,
|
950 |
+
"learning_rate": 1.1599419081896825e-06,
|
951 |
+
"loss": 0.6857,
|
952 |
+
"step": 70000
|
953 |
+
},
|
954 |
+
{
|
955 |
+
"epoch": 2.65,
|
956 |
+
"eval_loss": 1.7555959224700928,
|
957 |
+
"eval_runtime": 4.9634,
|
958 |
+
"eval_samples_per_second": 100.737,
|
959 |
+
"eval_steps_per_second": 12.693,
|
960 |
+
"step": 70000
|
961 |
+
},
|
962 |
+
{
|
963 |
+
"epoch": 2.67,
|
964 |
+
"learning_rate": 1.096798636105323e-06,
|
965 |
+
"loss": 0.6833,
|
966 |
+
"step": 70500
|
967 |
+
},
|
968 |
+
{
|
969 |
+
"epoch": 2.69,
|
970 |
+
"learning_rate": 1.0336553640209637e-06,
|
971 |
+
"loss": 0.6754,
|
972 |
+
"step": 71000
|
973 |
+
},
|
974 |
+
{
|
975 |
+
"epoch": 2.71,
|
976 |
+
"learning_rate": 9.705120919366043e-07,
|
977 |
+
"loss": 0.675,
|
978 |
+
"step": 71500
|
979 |
+
},
|
980 |
+
{
|
981 |
+
"epoch": 2.73,
|
982 |
+
"learning_rate": 9.073688198522448e-07,
|
983 |
+
"loss": 0.6849,
|
984 |
+
"step": 72000
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 2.75,
|
988 |
+
"learning_rate": 8.442255477678854e-07,
|
989 |
+
"loss": 0.6903,
|
990 |
+
"step": 72500
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 2.77,
|
994 |
+
"learning_rate": 7.810822756835259e-07,
|
995 |
+
"loss": 0.6832,
|
996 |
+
"step": 73000
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 2.78,
|
1000 |
+
"learning_rate": 7.179390035991665e-07,
|
1001 |
+
"loss": 0.6823,
|
1002 |
+
"step": 73500
|
1003 |
+
},
|
1004 |
+
{
|
1005 |
+
"epoch": 2.8,
|
1006 |
+
"learning_rate": 6.547957315148072e-07,
|
1007 |
+
"loss": 0.6854,
|
1008 |
+
"step": 74000
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"epoch": 2.82,
|
1012 |
+
"learning_rate": 5.916524594304478e-07,
|
1013 |
+
"loss": 0.681,
|
1014 |
+
"step": 74500
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"epoch": 2.84,
|
1018 |
+
"learning_rate": 5.285091873460883e-07,
|
1019 |
+
"loss": 0.6806,
|
1020 |
+
"step": 75000
|
1021 |
+
},
|
1022 |
+
{
|
1023 |
+
"epoch": 2.84,
|
1024 |
+
"eval_loss": 1.7584295272827148,
|
1025 |
+
"eval_runtime": 4.313,
|
1026 |
+
"eval_samples_per_second": 115.929,
|
1027 |
+
"eval_steps_per_second": 14.607,
|
1028 |
+
"step": 75000
|
1029 |
+
}
|
1030 |
+
],
|
1031 |
+
"max_steps": 79185,
|
1032 |
+
"num_train_epochs": 3,
|
1033 |
+
"total_flos": 1.939234887273808e+18,
|
1034 |
+
"trial_name": null,
|
1035 |
+
"trial_params": null
|
1036 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3cf757e80970ef6259c37f0cf6ad11af6969ec9ebab554e228573405a1bae239
|
3 |
+
size 3183
|