debbiesoon commited on
Commit
e0eea3a
1 Parent(s): 9d9753e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -7
README.md CHANGED
@@ -7,12 +7,14 @@ model-index:
7
  results: []
8
  ---
9
 
10
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
- should probably proofread and complete it, then remove this comment. -->
12
-
13
  # summarise_v6
14
 
15
- This model is a fine-tuned version of [debbiesoon/summarise](https://huggingface.co/debbiesoon/summarise) on an unknown dataset.
 
 
 
 
 
16
 
17
  ## Model description
18
 
@@ -32,12 +34,22 @@ More information needed
32
 
33
  The following hyperparameters were used during training:
34
  - learning_rate: 5e-05
35
- - train_batch_size: 8
36
- - eval_batch_size: 8
37
  - seed: 42
38
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
39
  - lr_scheduler_type: linear
40
- - num_epochs: 3.0
 
 
 
 
 
 
 
 
 
 
41
 
42
  ### Framework versions
43
 
 
7
  results: []
8
  ---
9
 
 
 
 
10
  # summarise_v6
11
 
12
+ This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the None dataset.
13
+ It achieves the following results on the evaluation set:
14
+ - Loss: 1.0497
15
+ - Rouge2 Precision: 0.3109
16
+ - Rouge2 Recall: 0.406
17
+ - Rouge2 Fmeasure: 0.3375
18
 
19
  ## Model description
20
 
 
34
 
35
  The following hyperparameters were used during training:
36
  - learning_rate: 5e-05
37
+ - train_batch_size: 2
38
+ - eval_batch_size: 2
39
  - seed: 42
40
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
41
  - lr_scheduler_type: linear
42
+ - num_epochs: 1
43
+ - mixed_precision_training: Native AMP
44
+
45
+ ### Training results
46
+
47
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
48
+ |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
49
+ | 1.7163 | 0.22 | 10 | 1.2307 | 0.1428 | 0.5118 | 0.2089 |
50
+ | 1.632 | 0.44 | 20 | 1.1337 | 0.36 | 0.3393 | 0.3181 |
51
+ | 1.0916 | 0.67 | 30 | 1.0738 | 0.2693 | 0.3487 | 0.2731 |
52
+ | 1.573 | 0.89 | 40 | 1.0497 | 0.3109 | 0.406 | 0.3375 |
53
 
54
  ### Framework versions
55