dean-r commited on
Commit
b314a17
·
1 Parent(s): a4c1a8a

inital commit - Trained PPO agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 261.00 +/- 12.55
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f951e8d0280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f951e8d0310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f951e8d03a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f951e8d0430>", "_build": "<function ActorCriticPolicy._build at 0x7f951e8d04c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f951e8d0550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f951e8d05e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f951e8d0670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f951e8d0700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f951e8d0790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f951e8d0820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f951e8d08b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f951e8ca870>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677874121586991313, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACYY272tOmk/CFn2vVrGkL7bG4W99e/yOgAAAAAAAAAAs9xpvhsujT/BxwK/Ewuyvt0zeb7dUni9AAAAAAAAAACa4Iw9rjmDuqtvJjkPaww0TgH7OQPZQbgAAAAAAAAAAPY3g75dkFu9wFEjO8EHHTr+6r0+ojhxugAAgD8AAIA/M++sOyDfij6+KoC9NEx9vkW8IbxeHIO9AAAAAAAAAABmYa280GyqP6LkkL6r/QG/NBbMPOnJKj0AAAAAAAAAAEa3JL6bqJk/XtiRvj5Zx76duye+bmzCvAAAAAAAAAAAMzToPPaMcLrKvc86QtbGNWzDkjq76/K5AACAPwAAgD8z5xK+dDtBPgvaDz4k50C+4K3BPOtIobwAAAAAAAAAAECLkL09GRq7Cmbyu7bQTb5WkmA8jWynPQAAAAAAAIA/ZuABPAUgrrvuB5y9wZOAPKpABT32Y1u9AACAPwAAgD8A17s8J/mjPxNcuD3WNZ++DLxOPc7r9D0AAAAAAAAAAM17BL4hfbY9YDFfPhkAW74scHk9SlOWPAAAAAAAAAAAA2dovjdLaT/oQvo8/Wikvnz+C76+6CI+AAAAAAAAAAD6R0G+8edSPvZrjT3SsV2+yuGRvUbdJT0AAAAAAAAAAA3nhz0wz94+Tu4Zvlf3Z75pi4c89XEhPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRu9UwH0NcECUhpRSlIwBbJRNUwGMAXSUR0CTAgQ2uPmxdX2UKGgGaAloD0MI8x38xIHCb0CUhpRSlGgVTRUCaBZHQJMFJvJiiIt1fZQoaAZoCWgPQwjv4ZLjDiJyQJSGlFKUaBVNsQJoFkdAkwU22Xsw+XV9lChoBmgJaA9DCMZq8/9qSnBAlIaUUpRoFU1JAWgWR0CTBtGEf1YhdX2UKGgGaAloD0MIMJ5BQ78AckCUhpRSlGgVTd0BaBZHQJMIRIYm9g51fZQoaAZoCWgPQwiFJokl5ZxyQJSGlFKUaBVNEQFoFkdAkw/wlKK51HV9lChoBmgJaA9DCFZmSutvKHBAlIaUUpRoFU1hAWgWR0CTERTER8MNdX2UKGgGaAloD0MIOGVuvtGYckCUhpRSlGgVTfMCaBZHQJMRLDvVmSR1fZQoaAZoCWgPQwh64jlbQChHQJSGlFKUaBVNAwFoFkdAkxROBQN1AHV9lChoBmgJaA9DCAtfX+vS2XFAlIaUUpRoFU1fAWgWR0CTFMpXZGrkdX2UKGgGaAloD0MIHccPlYZlckCUhpRSlGgVTRoCaBZHQJMWQb3oLXt1fZQoaAZoCWgPQwhW0opvKJpvQJSGlFKUaBVNyQFoFkdAkxaM7MgU13V9lChoBmgJaA9DCBwmGqRgg3BAlIaUUpRoFU3EAWgWR0CTKuf7aZhKdX2UKGgGaAloD0MIBtZx/NAlcUCUhpRSlGgVTfACaBZHQJMrQ3kxREZ1fZQoaAZoCWgPQwhZhjjWBf1xQJSGlFKUaBVNvgFoFkdAkyvVG5MDfXV9lChoBmgJaA9DCPNZngf3525AlIaUUpRoFU3nAWgWR0CTK96a9bosdX2UKGgGaAloD0MISbn7HF87ckCUhpRSlGgVTYgBaBZHQJMsR6LOzIF1fZQoaAZoCWgPQwhdwMsMGwhsQJSGlFKUaBVNvwNoFkdAkyzHWe6I33V9lChoBmgJaA9DCPFFe7xQfXFAlIaUUpRoFU2eAWgWR0CTLPwoLG70dX2UKGgGaAloD0MIQtE8gEUDa0CUhpRSlGgVTegBaBZHQJMxQW69TP11fZQoaAZoCWgPQwg5X+y9OC9wQJSGlFKUaBVNTgFoFkdAkzGS0Sh8IHV9lChoBmgJaA9DCNLI5xXP3GBAlIaUUpRoFU3oA2gWR0CTMmhRqGlAdX2UKGgGaAloD0MI3gAz38GobUCUhpRSlGgVTTMBaBZHQJMzS5PM0P91fZQoaAZoCWgPQwhBYyZRLwZFQJSGlFKUaBVNEwFoFkdAkzQR6By0bHV9lChoBmgJaA9DCDRN2H5yGnFAlIaUUpRoFU24AWgWR0CTNN+MIeHSdX2UKGgGaAloD0MIQMHFihprb0CUhpRSlGgVTUwBaBZHQJM2TkuHvc91fZQoaAZoCWgPQwjxZDczuhZwQJSGlFKUaBVNQQFoFkdAkzh/bO/tY3V9lChoBmgJaA9DCINMMnJWEHBAlIaUUpRoFU1SAWgWR0CTOJ+cH4XXdX2UKGgGaAloD0MIPC8VG/Nbb0CUhpRSlGgVTTkBaBZHQJM419mYjSp1fZQoaAZoCWgPQwhI+N7foMZwQJSGlFKUaBVNOQFoFkdAkzmj0Dlo13V9lChoBmgJaA9DCDliLT7FLHFAlIaUUpRoFU1aAWgWR0CTOdQV9F4LdX2UKGgGaAloD0MIaJWZ0nrpbECUhpRSlGgVTXUBaBZHQJM57LTx5LR1fZQoaAZoCWgPQwih8xq7RHJsQJSGlFKUaBVNYgFoFkdAkzvFFUhmoXV9lChoBmgJaA9DCBqH+l2Yn3FAlIaUUpRoFU1kAmgWR0CTPpsw+MZQdX2UKGgGaAloD0MIP6vMlFYzckCUhpRSlGgVTTIBaBZHQJM/lntfG+91fZQoaAZoCWgPQwhz843oHitwQJSGlFKUaBVNNwFoFkdAk0BNF8XvY3V9lChoBmgJaA9DCOCGGK95VW5AlIaUUpRoFU06AWgWR0CTQY5NGmUGdX2UKGgGaAloD0MId4L91/nQcUCUhpRSlGgVTTIBaBZHQJNGZ43WFvh1fZQoaAZoCWgPQwhFSUik7ZZvQJSGlFKUaBVNhgFoFkdAk0diyhSLqHV9lChoBmgJaA9DCMiVehYEz3BAlIaUUpRoFU2UAWgWR0CTShsj3VTadX2UKGgGaAloD0MIJ6CJsGEIcUCUhpRSlGgVTUwBaBZHQJNKJ3s5XEJ1fZQoaAZoCWgPQwjtC+iFuxBwQJSGlFKUaBVNcAFoFkdAk0uSDZlFt3V9lChoBmgJaA9DCDXTvU7qMW9AlIaUUpRoFU1iAWgWR0CTS+6pYLb6dX2UKGgGaAloD0MIRdlbyvnmO0CUhpRSlGgVS+hoFkdAk0wlJlJ6IHV9lChoBmgJaA9DCIJvmj77zHBAlIaUUpRoFU0DAmgWR0CTTjdSl3yJdX2UKGgGaAloD0MI4iL3dHWzcECUhpRSlGgVTcYBaBZHQJNPZbC79Q51fZQoaAZoCWgPQwg/qmG/J41wQJSGlFKUaBVNuwFoFkdAk1AEJF9a2XV9lChoBmgJaA9DCHcTfNP0vm9AlIaUUpRoFU1VAWgWR0CTUA2LHdXUdX2UKGgGaAloD0MI1hu1wjQIcECUhpRSlGgVTXABaBZHQJNSOwC8vmJ1fZQoaAZoCWgPQwjaWfROBahLQJSGlFKUaBVL3WgWR0CTU1MdtEXtdX2UKGgGaAloD0MIhey8jU1kYECUhpRSlGgVTegDaBZHQJNU7dKujh11fZQoaAZoCWgPQwg8LT9wldtuQJSGlFKUaBVNSgFoFkdAk1T8nmaH9HV9lChoBmgJaA9DCKA1P/4SlHBAlIaUUpRoFU1QAWgWR0CTax9wFTvRdX2UKGgGaAloD0MIRWgEG9dKcUCUhpRSlGgVTTsBaBZHQJNrgl3Qla91fZQoaAZoCWgPQwgV4/xNaN5xQJSGlFKUaBVNOgFoFkdAk2vSzcAR03V9lChoBmgJaA9DCLlTOlg/F3JAlIaUUpRoFU0tAWgWR0CTbXlhw2l3dX2UKGgGaAloD0MIarx0k5iXbkCUhpRSlGgVTc4BaBZHQJNuK07bL2Z1fZQoaAZoCWgPQwg/yLJg4oVuQJSGlFKUaBVNLgFoFkdAk28xjOLR8nV9lChoBmgJaA9DCG0bRkFwGnJAlIaUUpRoFU2MAWgWR0CTb1nGsFMadX2UKGgGaAloD0MIyCb5ET96bkCUhpRSlGgVTT8BaBZHQJNv1i+cpb51fZQoaAZoCWgPQwgjhbLwtahxQJSGlFKUaBVNcgFoFkdAk3E6/RE4N3V9lChoBmgJaA9DCBVUVP0KR3JAlIaUUpRoFU0/AWgWR0CTcmWf9P1tdX2UKGgGaAloD0MIpFUt6WjJcUCUhpRSlGgVTT0BaBZHQJNzrfO2RaJ1fZQoaAZoCWgPQwiMgXUcP6BuQJSGlFKUaBVNRQFoFkdAk3ZK2BreqXV9lChoBmgJaA9DCOCD1y5tGXJAlIaUUpRoFU1NAWgWR0CTdsLQXyiFdX2UKGgGaAloD0MI2GSNeggtckCUhpRSlGgVTTMBaBZHQJN5VljEvTR1fZQoaAZoCWgPQwiH/Z5YpxRwQJSGlFKUaBVNPQFoFkdAk3pvqxC6YnV9lChoBmgJaA9DCHHJcaf0FnFAlIaUUpRoFU1JAWgWR0CTe4gr6LwXdX2UKGgGaAloD0MIeESF6ubeYECUhpRSlGgVTegDaBZHQJN76sijcmB1fZQoaAZoCWgPQwiY9zjThPhsQJSGlFKUaBVNLQFoFkdAk30ilFc6eXV9lChoBmgJaA9DCFrxDYWPWHFAlIaUUpRoFU1FAWgWR0CTfX4ku6ErdX2UKGgGaAloD0MIwtmtZTL6UUCUhpRSlGgVTegDaBZHQJN+RbxEv011fZQoaAZoCWgPQwjLvcCsUDRFQJSGlFKUaBVL6GgWR0CTfst1IRRNdX2UKGgGaAloD0MIEtkHWdZRckCUhpRSlGgVTUYBaBZHQJOAhIH1OCZ1fZQoaAZoCWgPQwj4qpUJP6huQJSGlFKUaBVNYQFoFkdAk4D6LGaQWHV9lChoBmgJaA9DCMsTCDtFYnFAlIaUUpRoFU1pAWgWR0CTgYKjBVMmdX2UKGgGaAloD0MI51CGqljDcECUhpRSlGgVTT4BaBZHQJOBwsf7rLR1fZQoaAZoCWgPQwjWV1cF6ltlQJSGlFKUaBVN6ANoFkdAk4NOyRjjJnV9lChoBmgJaA9DCAgEOpP2L3BAlIaUUpRoFU1aAWgWR0CThEZ5zHS4dX2UKGgGaAloD0MIUBvV6YAEcUCUhpRSlGgVTTcBaBZHQJOGrAwfyPN1fZQoaAZoCWgPQwgTDVLwFE1yQJSGlFKUaBVNcwFoFkdAk4bKJZW7v3V9lChoBmgJaA9DCH6rdeKyXnJAlIaUUpRoFU14AWgWR0CTh0vGZNO/dX2UKGgGaAloD0MI7zzxnK3mbECUhpRSlGgVTQsBaBZHQJOHgAdXDFZ1fZQoaAZoCWgPQwhe9utO9+JuQJSGlFKUaBVNLwFoFkdAk4e8TFl05nV9lChoBmgJaA9DCD/lmCyusHFAlIaUUpRoFU1JAWgWR0CTiM9pAUtadX2UKGgGaAloD0MI46dxb/7CcECUhpRSlGgVTScBaBZHQJOJjQgLZzx1fZQoaAZoCWgPQwgPKQZINKtDQJSGlFKUaBVL/mgWR0CTibAk9lmOdX2UKGgGaAloD0MI7l7uk+OncUCUhpRSlGgVTbABaBZHQJOLb668QI51fZQoaAZoCWgPQwjHRiBel9NxQJSGlFKUaBVNUQFoFkdAk4w4c3l0YHV9lChoBmgJaA9DCIicvp7vSnFAlIaUUpRoFU0uAWgWR0CTjXqeK8+SdX2UKGgGaAloD0MI85GU9HA3cUCUhpRSlGgVTWYBaBZHQJONv8CPp6h1fZQoaAZoCWgPQwg+BFWjl8BwQJSGlFKUaBVNYgFoFkdAk43MlLOAy3V9lChoBmgJaA9DCOF5qdgYz29AlIaUUpRoFU0jAWgWR0CTjjqWC2+gdX2UKGgGaAloD0MIt9CVCFTvOkCUhpRSlGgVTQABaBZHQJOPXAdn0051fZQoaAZoCWgPQwgEAMee/UdxQJSGlFKUaBVNQQFoFkdAk5HirHU+cHV9lChoBmgJaA9DCBMoYhEDznBAlIaUUpRoFU04AWgWR0CTkhgA6uGLdX2UKGgGaAloD0MI4gD6ff+/cUCUhpRSlGgVTU4BaBZHQJOTQZ1mrbR1fZQoaAZoCWgPQwjaBBiWfypwQJSGlFKUaBVNTwFoFkdAk5OTjBEa2nV9lChoBmgJaA9DCP5GO274AHBAlIaUUpRoFU09AWgWR0CTlCSU1Q67dX2UKGgGaAloD0MICr/Uz9sKckCUhpRSlGgVTTIBaBZHQJOUt+jM3ZR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo_lunar.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6cdfe18d8119ec38beaa5773661a6008042f9829ab1d9bf3205d0d0a51a714b
3
+ size 147420
ppo_lunar/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo_lunar/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f951e8d0280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f951e8d0310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f951e8d03a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f951e8d0430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f951e8d04c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f951e8d0550>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f951e8d05e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f951e8d0670>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f951e8d0700>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f951e8d0790>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f951e8d0820>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f951e8d08b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f951e8ca870>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677874121586991313,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACYY272tOmk/CFn2vVrGkL7bG4W99e/yOgAAAAAAAAAAs9xpvhsujT/BxwK/Ewuyvt0zeb7dUni9AAAAAAAAAACa4Iw9rjmDuqtvJjkPaww0TgH7OQPZQbgAAAAAAAAAAPY3g75dkFu9wFEjO8EHHTr+6r0+ojhxugAAgD8AAIA/M++sOyDfij6+KoC9NEx9vkW8IbxeHIO9AAAAAAAAAABmYa280GyqP6LkkL6r/QG/NBbMPOnJKj0AAAAAAAAAAEa3JL6bqJk/XtiRvj5Zx76duye+bmzCvAAAAAAAAAAAMzToPPaMcLrKvc86QtbGNWzDkjq76/K5AACAPwAAgD8z5xK+dDtBPgvaDz4k50C+4K3BPOtIobwAAAAAAAAAAECLkL09GRq7Cmbyu7bQTb5WkmA8jWynPQAAAAAAAIA/ZuABPAUgrrvuB5y9wZOAPKpABT32Y1u9AACAPwAAgD8A17s8J/mjPxNcuD3WNZ++DLxOPc7r9D0AAAAAAAAAAM17BL4hfbY9YDFfPhkAW74scHk9SlOWPAAAAAAAAAAAA2dovjdLaT/oQvo8/Wikvnz+C76+6CI+AAAAAAAAAAD6R0G+8edSPvZrjT3SsV2+yuGRvUbdJT0AAAAAAAAAAA3nhz0wz94+Tu4Zvlf3Z75pi4c89XEhPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRu9UwH0NcECUhpRSlIwBbJRNUwGMAXSUR0CTAgQ2uPmxdX2UKGgGaAloD0MI8x38xIHCb0CUhpRSlGgVTRUCaBZHQJMFJvJiiIt1fZQoaAZoCWgPQwjv4ZLjDiJyQJSGlFKUaBVNsQJoFkdAkwU22Xsw+XV9lChoBmgJaA9DCMZq8/9qSnBAlIaUUpRoFU1JAWgWR0CTBtGEf1YhdX2UKGgGaAloD0MIMJ5BQ78AckCUhpRSlGgVTd0BaBZHQJMIRIYm9g51fZQoaAZoCWgPQwiFJokl5ZxyQJSGlFKUaBVNEQFoFkdAkw/wlKK51HV9lChoBmgJaA9DCFZmSutvKHBAlIaUUpRoFU1hAWgWR0CTERTER8MNdX2UKGgGaAloD0MIOGVuvtGYckCUhpRSlGgVTfMCaBZHQJMRLDvVmSR1fZQoaAZoCWgPQwh64jlbQChHQJSGlFKUaBVNAwFoFkdAkxROBQN1AHV9lChoBmgJaA9DCAtfX+vS2XFAlIaUUpRoFU1fAWgWR0CTFMpXZGrkdX2UKGgGaAloD0MIHccPlYZlckCUhpRSlGgVTRoCaBZHQJMWQb3oLXt1fZQoaAZoCWgPQwhW0opvKJpvQJSGlFKUaBVNyQFoFkdAkxaM7MgU13V9lChoBmgJaA9DCBwmGqRgg3BAlIaUUpRoFU3EAWgWR0CTKuf7aZhKdX2UKGgGaAloD0MIBtZx/NAlcUCUhpRSlGgVTfACaBZHQJMrQ3kxREZ1fZQoaAZoCWgPQwhZhjjWBf1xQJSGlFKUaBVNvgFoFkdAkyvVG5MDfXV9lChoBmgJaA9DCPNZngf3525AlIaUUpRoFU3nAWgWR0CTK96a9bosdX2UKGgGaAloD0MISbn7HF87ckCUhpRSlGgVTYgBaBZHQJMsR6LOzIF1fZQoaAZoCWgPQwhdwMsMGwhsQJSGlFKUaBVNvwNoFkdAkyzHWe6I33V9lChoBmgJaA9DCPFFe7xQfXFAlIaUUpRoFU2eAWgWR0CTLPwoLG70dX2UKGgGaAloD0MIQtE8gEUDa0CUhpRSlGgVTegBaBZHQJMxQW69TP11fZQoaAZoCWgPQwg5X+y9OC9wQJSGlFKUaBVNTgFoFkdAkzGS0Sh8IHV9lChoBmgJaA9DCNLI5xXP3GBAlIaUUpRoFU3oA2gWR0CTMmhRqGlAdX2UKGgGaAloD0MI3gAz38GobUCUhpRSlGgVTTMBaBZHQJMzS5PM0P91fZQoaAZoCWgPQwhBYyZRLwZFQJSGlFKUaBVNEwFoFkdAkzQR6By0bHV9lChoBmgJaA9DCDRN2H5yGnFAlIaUUpRoFU24AWgWR0CTNN+MIeHSdX2UKGgGaAloD0MIQMHFihprb0CUhpRSlGgVTUwBaBZHQJM2TkuHvc91fZQoaAZoCWgPQwjxZDczuhZwQJSGlFKUaBVNQQFoFkdAkzh/bO/tY3V9lChoBmgJaA9DCINMMnJWEHBAlIaUUpRoFU1SAWgWR0CTOJ+cH4XXdX2UKGgGaAloD0MIPC8VG/Nbb0CUhpRSlGgVTTkBaBZHQJM419mYjSp1fZQoaAZoCWgPQwhI+N7foMZwQJSGlFKUaBVNOQFoFkdAkzmj0Dlo13V9lChoBmgJaA9DCDliLT7FLHFAlIaUUpRoFU1aAWgWR0CTOdQV9F4LdX2UKGgGaAloD0MIaJWZ0nrpbECUhpRSlGgVTXUBaBZHQJM57LTx5LR1fZQoaAZoCWgPQwih8xq7RHJsQJSGlFKUaBVNYgFoFkdAkzvFFUhmoXV9lChoBmgJaA9DCBqH+l2Yn3FAlIaUUpRoFU1kAmgWR0CTPpsw+MZQdX2UKGgGaAloD0MIP6vMlFYzckCUhpRSlGgVTTIBaBZHQJM/lntfG+91fZQoaAZoCWgPQwhz843oHitwQJSGlFKUaBVNNwFoFkdAk0BNF8XvY3V9lChoBmgJaA9DCOCGGK95VW5AlIaUUpRoFU06AWgWR0CTQY5NGmUGdX2UKGgGaAloD0MId4L91/nQcUCUhpRSlGgVTTIBaBZHQJNGZ43WFvh1fZQoaAZoCWgPQwhFSUik7ZZvQJSGlFKUaBVNhgFoFkdAk0diyhSLqHV9lChoBmgJaA9DCMiVehYEz3BAlIaUUpRoFU2UAWgWR0CTShsj3VTadX2UKGgGaAloD0MIJ6CJsGEIcUCUhpRSlGgVTUwBaBZHQJNKJ3s5XEJ1fZQoaAZoCWgPQwjtC+iFuxBwQJSGlFKUaBVNcAFoFkdAk0uSDZlFt3V9lChoBmgJaA9DCDXTvU7qMW9AlIaUUpRoFU1iAWgWR0CTS+6pYLb6dX2UKGgGaAloD0MIRdlbyvnmO0CUhpRSlGgVS+hoFkdAk0wlJlJ6IHV9lChoBmgJaA9DCIJvmj77zHBAlIaUUpRoFU0DAmgWR0CTTjdSl3yJdX2UKGgGaAloD0MI4iL3dHWzcECUhpRSlGgVTcYBaBZHQJNPZbC79Q51fZQoaAZoCWgPQwg/qmG/J41wQJSGlFKUaBVNuwFoFkdAk1AEJF9a2XV9lChoBmgJaA9DCHcTfNP0vm9AlIaUUpRoFU1VAWgWR0CTUA2LHdXUdX2UKGgGaAloD0MI1hu1wjQIcECUhpRSlGgVTXABaBZHQJNSOwC8vmJ1fZQoaAZoCWgPQwjaWfROBahLQJSGlFKUaBVL3WgWR0CTU1MdtEXtdX2UKGgGaAloD0MIhey8jU1kYECUhpRSlGgVTegDaBZHQJNU7dKujh11fZQoaAZoCWgPQwg8LT9wldtuQJSGlFKUaBVNSgFoFkdAk1T8nmaH9HV9lChoBmgJaA9DCKA1P/4SlHBAlIaUUpRoFU1QAWgWR0CTax9wFTvRdX2UKGgGaAloD0MIRWgEG9dKcUCUhpRSlGgVTTsBaBZHQJNrgl3Qla91fZQoaAZoCWgPQwgV4/xNaN5xQJSGlFKUaBVNOgFoFkdAk2vSzcAR03V9lChoBmgJaA9DCLlTOlg/F3JAlIaUUpRoFU0tAWgWR0CTbXlhw2l3dX2UKGgGaAloD0MIarx0k5iXbkCUhpRSlGgVTc4BaBZHQJNuK07bL2Z1fZQoaAZoCWgPQwg/yLJg4oVuQJSGlFKUaBVNLgFoFkdAk28xjOLR8nV9lChoBmgJaA9DCG0bRkFwGnJAlIaUUpRoFU2MAWgWR0CTb1nGsFMadX2UKGgGaAloD0MIyCb5ET96bkCUhpRSlGgVTT8BaBZHQJNv1i+cpb51fZQoaAZoCWgPQwgjhbLwtahxQJSGlFKUaBVNcgFoFkdAk3E6/RE4N3V9lChoBmgJaA9DCBVUVP0KR3JAlIaUUpRoFU0/AWgWR0CTcmWf9P1tdX2UKGgGaAloD0MIpFUt6WjJcUCUhpRSlGgVTT0BaBZHQJNzrfO2RaJ1fZQoaAZoCWgPQwiMgXUcP6BuQJSGlFKUaBVNRQFoFkdAk3ZK2BreqXV9lChoBmgJaA9DCOCD1y5tGXJAlIaUUpRoFU1NAWgWR0CTdsLQXyiFdX2UKGgGaAloD0MI2GSNeggtckCUhpRSlGgVTTMBaBZHQJN5VljEvTR1fZQoaAZoCWgPQwiH/Z5YpxRwQJSGlFKUaBVNPQFoFkdAk3pvqxC6YnV9lChoBmgJaA9DCHHJcaf0FnFAlIaUUpRoFU1JAWgWR0CTe4gr6LwXdX2UKGgGaAloD0MIeESF6ubeYECUhpRSlGgVTegDaBZHQJN76sijcmB1fZQoaAZoCWgPQwiY9zjThPhsQJSGlFKUaBVNLQFoFkdAk30ilFc6eXV9lChoBmgJaA9DCFrxDYWPWHFAlIaUUpRoFU1FAWgWR0CTfX4ku6ErdX2UKGgGaAloD0MIwtmtZTL6UUCUhpRSlGgVTegDaBZHQJN+RbxEv011fZQoaAZoCWgPQwjLvcCsUDRFQJSGlFKUaBVL6GgWR0CTfst1IRRNdX2UKGgGaAloD0MIEtkHWdZRckCUhpRSlGgVTUYBaBZHQJOAhIH1OCZ1fZQoaAZoCWgPQwj4qpUJP6huQJSGlFKUaBVNYQFoFkdAk4D6LGaQWHV9lChoBmgJaA9DCMsTCDtFYnFAlIaUUpRoFU1pAWgWR0CTgYKjBVMmdX2UKGgGaAloD0MI51CGqljDcECUhpRSlGgVTT4BaBZHQJOBwsf7rLR1fZQoaAZoCWgPQwjWV1cF6ltlQJSGlFKUaBVN6ANoFkdAk4NOyRjjJnV9lChoBmgJaA9DCAgEOpP2L3BAlIaUUpRoFU1aAWgWR0CThEZ5zHS4dX2UKGgGaAloD0MIUBvV6YAEcUCUhpRSlGgVTTcBaBZHQJOGrAwfyPN1fZQoaAZoCWgPQwgTDVLwFE1yQJSGlFKUaBVNcwFoFkdAk4bKJZW7v3V9lChoBmgJaA9DCH6rdeKyXnJAlIaUUpRoFU14AWgWR0CTh0vGZNO/dX2UKGgGaAloD0MI7zzxnK3mbECUhpRSlGgVTQsBaBZHQJOHgAdXDFZ1fZQoaAZoCWgPQwhe9utO9+JuQJSGlFKUaBVNLwFoFkdAk4e8TFl05nV9lChoBmgJaA9DCD/lmCyusHFAlIaUUpRoFU1JAWgWR0CTiM9pAUtadX2UKGgGaAloD0MI46dxb/7CcECUhpRSlGgVTScBaBZHQJOJjQgLZzx1fZQoaAZoCWgPQwgPKQZINKtDQJSGlFKUaBVL/mgWR0CTibAk9lmOdX2UKGgGaAloD0MI7l7uk+OncUCUhpRSlGgVTbABaBZHQJOLb668QI51fZQoaAZoCWgPQwjHRiBel9NxQJSGlFKUaBVNUQFoFkdAk4w4c3l0YHV9lChoBmgJaA9DCIicvp7vSnFAlIaUUpRoFU0uAWgWR0CTjXqeK8+SdX2UKGgGaAloD0MI85GU9HA3cUCUhpRSlGgVTWYBaBZHQJONv8CPp6h1fZQoaAZoCWgPQwg+BFWjl8BwQJSGlFKUaBVNYgFoFkdAk43MlLOAy3V9lChoBmgJaA9DCOF5qdgYz29AlIaUUpRoFU0jAWgWR0CTjjqWC2+gdX2UKGgGaAloD0MIt9CVCFTvOkCUhpRSlGgVTQABaBZHQJOPXAdn0051fZQoaAZoCWgPQwgEAMee/UdxQJSGlFKUaBVNQQFoFkdAk5HirHU+cHV9lChoBmgJaA9DCBMoYhEDznBAlIaUUpRoFU04AWgWR0CTkhgA6uGLdX2UKGgGaAloD0MI4gD6ff+/cUCUhpRSlGgVTU4BaBZHQJOTQZ1mrbR1fZQoaAZoCWgPQwjaBBiWfypwQJSGlFKUaBVNTwFoFkdAk5OTjBEa2nV9lChoBmgJaA9DCP5GO274AHBAlIaUUpRoFU09AWgWR0CTlCSU1Q67dX2UKGgGaAloD0MICr/Uz9sKckCUhpRSlGgVTTIBaBZHQJOUt+jM3ZR1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo_lunar/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60f9e250193938250cefc248969aa24d9b7c634cc0e1865c377ef4e0017e00d2
3
+ size 87929
ppo_lunar/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3e62d9616f702b1178d239f2fc6a203884774e672ef84f1be286e1a0472f911
3
+ size 43393
ppo_lunar/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_lunar/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (227 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 261.0004938850142, "std_reward": 12.547116361887525, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-03T20:30:53.843664"}