|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import cv2 |
|
import torch |
|
import numpy as np |
|
from .general_utils import download_file_with_checksum |
|
from midas.dpt_depth import DPTDepthModel |
|
from midas.transforms import Resize, NormalizeImage, PrepareForNet |
|
import torchvision.transforms as T |
|
|
|
class MidasDepth: |
|
def __init__(self, models_path, device, half_precision=True, midas_model_type='Midas-3-Hybrid'): |
|
if midas_model_type.lower() == 'midas-3.1-beitlarge': |
|
self.midas_model_filename = 'dpt_beit_large_512.pt' |
|
self.midas_model_checksum='66cbb00ea7bccd6e43d3fd277bd21002d8d8c2c5c487e5fcd1e1d70c691688a19122418b3ddfa94e62ab9f086957aa67bbec39afe2b41c742aaaf0699ee50b33' |
|
self.midas_model_url = 'https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_512.pt' |
|
self.resize_px = 512 |
|
self.backbone = 'beitl16_512' |
|
else: |
|
self.midas_model_filename = 'dpt_large-midas-2f21e586.pt' |
|
self.midas_model_checksum = 'fcc4829e65d00eeed0a38e9001770676535d2e95c8a16965223aba094936e1316d569563552a852d471f310f83f597e8a238987a26a950d667815e08adaebc06' |
|
self.midas_model_url = 'https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt' |
|
self.resize_px = 384 |
|
self.backbone = 'vitl16_384' |
|
self.device = device |
|
self.normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
self.midas_transform = T.Compose([ |
|
Resize(self.resize_px, self.resize_px, resize_target=None, keep_aspect_ratio=True, ensure_multiple_of=32, |
|
resize_method="minimal", image_interpolation_method=cv2.INTER_CUBIC), |
|
self.normalization, |
|
PrepareForNet() |
|
]) |
|
|
|
download_file_with_checksum(url=self.midas_model_url, expected_checksum=self.midas_model_checksum, dest_folder=models_path, dest_filename=self.midas_model_filename) |
|
|
|
self.load_midas_model(models_path, self.midas_model_filename) |
|
if half_precision: |
|
self.midas_model = self.midas_model.half() |
|
|
|
def load_midas_model(self, models_path, midas_model_filename): |
|
model_file = os.path.join(models_path, midas_model_filename) |
|
print(f"Loading MiDaS model from {midas_model_filename}...") |
|
self.midas_model = DPTDepthModel( |
|
path=model_file, |
|
backbone=self.backbone, |
|
non_negative=True, |
|
) |
|
self.midas_model.eval().to(self.device, memory_format=torch.channels_last if self.device == torch.device("cuda") else None) |
|
|
|
def predict(self, prev_img_cv2, half_precision): |
|
img_midas = prev_img_cv2.astype(np.float32) / 255.0 |
|
img_midas_input = self.midas_transform({"image": img_midas})["image"] |
|
sample = torch.from_numpy(img_midas_input).float().to(self.device).unsqueeze(0) |
|
|
|
if self.device.type == "cuda" or self.device.type == "mps": |
|
sample = sample.to(memory_format=torch.channels_last) |
|
if half_precision: |
|
sample = sample.half() |
|
|
|
with torch.no_grad(): |
|
midas_depth = self.midas_model.forward(sample) |
|
midas_depth = torch.nn.functional.interpolate( |
|
midas_depth.unsqueeze(1), |
|
size=img_midas.shape[:2], |
|
mode="bicubic", |
|
align_corners=False, |
|
).squeeze().cpu().numpy() |
|
|
|
torch.cuda.empty_cache() |
|
depth_tensor = torch.from_numpy(np.expand_dims(midas_depth, axis=0)).squeeze().to(self.device) |
|
|
|
return depth_tensor |
|
|
|
def to(self, device): |
|
self.device = device |
|
self.midas_model = self.midas_model.to(device, memory_format=torch.channels_last if device == torch.device("cuda") else None) |