def1 / scripts /deforum_helpers /depth_adabins.py
ddoc's picture
Upload 188 files
81f4d3a
# Copyright (C) 2023 Deforum LLC
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, version 3 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# Contact the authors: https://deforum.github.io/
import torch
import numpy as np
from PIL import Image
import torchvision.transforms.functional as TF
from .general_utils import download_file_with_checksum
from infer import InferenceHelper
class AdaBinsModel:
_instance = None
def __new__(cls, *args, **kwargs):
keep_in_vram = kwargs.get('keep_in_vram', False)
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance._initialize(*args, keep_in_vram=keep_in_vram)
return cls._instance
def _initialize(self, models_path, keep_in_vram=False):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.keep_in_vram = keep_in_vram
self.adabins_helper = None
download_file_with_checksum(url='https://github.com/hithereai/deforum-for-automatic1111-webui/releases/download/AdaBins/AdaBins_nyu.pt', expected_checksum='643db9785c663aca72f66739427642726b03acc6c4c1d3755a4587aa2239962746410d63722d87b49fc73581dbc98ed8e3f7e996ff7b9c0d56d0fbc98e23e41a', dest_folder=models_path, dest_filename='AdaBins_nyu.pt')
self.adabins_helper = InferenceHelper(models_path=models_path, dataset='nyu', device=self.device)
def predict(self, img_pil, prev_img_cv2):
w, h = prev_img_cv2.shape[1], prev_img_cv2.shape[0]
adabins_depth = np.array([])
use_adabins = True
MAX_ADABINS_AREA, MIN_ADABINS_AREA = 500000, 448 * 448
image_pil_area, resized = w * h, False
if image_pil_area not in range(MIN_ADABINS_AREA, MAX_ADABINS_AREA + 1):
scale = ((MAX_ADABINS_AREA if image_pil_area > MAX_ADABINS_AREA else MIN_ADABINS_AREA) / image_pil_area) ** 0.5
depth_input = img_pil.resize((int(w * scale), int(h * scale)), Image.LANCZOS if image_pil_area > MAX_ADABINS_AREA else Image.BICUBIC)
print(f"AdaBins depth resized to {depth_input.width}x{depth_input.height}")
resized = True
else:
depth_input = img_pil
try:
with torch.no_grad():
_, adabins_depth = self.adabins_helper.predict_pil(depth_input)
if resized:
adabins_depth = TF.resize(torch.from_numpy(adabins_depth), torch.Size([h, w]), interpolation=TF.InterpolationMode.BICUBIC).cpu().numpy()
adabins_depth = adabins_depth.squeeze()
except Exception as e:
print("AdaBins exception encountered. Falling back to pure MiDaS/Zoe (only if running in Legacy Midas/Zoe+AdaBins mode)")
use_adabins = False
torch.cuda.empty_cache()
return use_adabins, adabins_depth
def to(self, device):
self.device = device
if self.adabins_helper is not None:
self.adabins_helper.to(device)
def delete_model(self):
del self.adabins_helper