aww / adetailer /mask.py
ddoc's picture
Upload 31 files
13c5a27
from __future__ import annotations
from enum import IntEnum
from functools import partial, reduce
from math import dist
import cv2
import numpy as np
from PIL import Image, ImageChops
from adetailer.args import MASK_MERGE_INVERT
from adetailer.common import PredictOutput
class SortBy(IntEnum):
NONE = 0
LEFT_TO_RIGHT = 1
CENTER_TO_EDGE = 2
AREA = 3
class MergeInvert(IntEnum):
NONE = 0
MERGE = 1
MERGE_INVERT = 2
def _dilate(arr: np.ndarray, value: int) -> np.ndarray:
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
return cv2.dilate(arr, kernel, iterations=1)
def _erode(arr: np.ndarray, value: int) -> np.ndarray:
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
return cv2.erode(arr, kernel, iterations=1)
def dilate_erode(img: Image.Image, value: int) -> Image.Image:
"""
The dilate_erode function takes an image and a value.
If the value is positive, it dilates the image by that amount.
If the value is negative, it erodes the image by that amount.
Parameters
----------
img: PIL.Image.Image
the image to be processed
value: int
kernel size of dilation or erosion
Returns
-------
PIL.Image.Image
The image that has been dilated or eroded
"""
if value == 0:
return img
arr = np.array(img)
arr = _dilate(arr, value) if value > 0 else _erode(arr, -value)
return Image.fromarray(arr)
def offset(img: Image.Image, x: int = 0, y: int = 0) -> Image.Image:
"""
The offset function takes an image and offsets it by a given x(β†’) and y(↑) value.
Parameters
----------
mask: Image.Image
Pass the mask image to the function
x: int
β†’
y: int
↑
Returns
-------
PIL.Image.Image
A new image that is offset by x and y
"""
return ImageChops.offset(img, x, -y)
def is_all_black(img: Image.Image) -> bool:
arr = np.array(img)
return cv2.countNonZero(arr) == 0
def bbox_area(bbox: list[float]):
return (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
def mask_preprocess(
masks: list[Image.Image],
kernel: int = 0,
x_offset: int = 0,
y_offset: int = 0,
merge_invert: int | MergeInvert | str = MergeInvert.NONE,
) -> list[Image.Image]:
"""
The mask_preprocess function takes a list of masks and preprocesses them.
It dilates and erodes the masks, and offsets them by x_offset and y_offset.
Parameters
----------
masks: list[Image.Image]
A list of masks
kernel: int
kernel size of dilation or erosion
x_offset: int
β†’
y_offset: int
↑
Returns
-------
list[Image.Image]
A list of processed masks
"""
if not masks:
return []
if x_offset != 0 or y_offset != 0:
masks = [offset(m, x_offset, y_offset) for m in masks]
if kernel != 0:
masks = [dilate_erode(m, kernel) for m in masks]
masks = [m for m in masks if not is_all_black(m)]
masks = mask_merge_invert(masks, mode=merge_invert)
return masks
# Bbox sorting
def _key_left_to_right(bbox: list[float]) -> float:
"""
Left to right
Parameters
----------
bbox: list[float]
list of [x1, y1, x2, y2]
"""
return bbox[0]
def _key_center_to_edge(bbox: list[float], *, center: tuple[float, float]) -> float:
"""
Center to edge
Parameters
----------
bbox: list[float]
list of [x1, y1, x2, y2]
image: Image.Image
the image
"""
bbox_center = ((bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2)
return dist(center, bbox_center)
def _key_area(bbox: list[float]) -> float:
"""
Large to small
Parameters
----------
bbox: list[float]
list of [x1, y1, x2, y2]
"""
return -bbox_area(bbox)
def sort_bboxes(
pred: PredictOutput, order: int | SortBy = SortBy.NONE
) -> PredictOutput:
if order == SortBy.NONE or len(pred.bboxes) <= 1:
return pred
if order == SortBy.LEFT_TO_RIGHT:
key = _key_left_to_right
elif order == SortBy.CENTER_TO_EDGE:
width, height = pred.preview.size
center = (width / 2, height / 2)
key = partial(_key_center_to_edge, center=center)
elif order == SortBy.AREA:
key = _key_area
else:
raise RuntimeError
items = len(pred.bboxes)
idx = sorted(range(items), key=lambda i: key(pred.bboxes[i]))
pred.bboxes = [pred.bboxes[i] for i in idx]
pred.masks = [pred.masks[i] for i in idx]
return pred
# Filter by ratio
def is_in_ratio(bbox: list[float], low: float, high: float, orig_area: int) -> bool:
area = bbox_area(bbox)
return low <= area / orig_area <= high
def filter_by_ratio(pred: PredictOutput, low: float, high: float) -> PredictOutput:
if not pred.bboxes:
return pred
w, h = pred.preview.size
orig_area = w * h
items = len(pred.bboxes)
idx = [i for i in range(items) if is_in_ratio(pred.bboxes[i], low, high, orig_area)]
pred.bboxes = [pred.bboxes[i] for i in idx]
pred.masks = [pred.masks[i] for i in idx]
return pred
# Merge / Invert
def mask_merge(masks: list[Image.Image]) -> list[Image.Image]:
arrs = [np.array(m) for m in masks]
arr = reduce(cv2.bitwise_or, arrs)
return [Image.fromarray(arr)]
def mask_invert(masks: list[Image.Image]) -> list[Image.Image]:
return [ImageChops.invert(m) for m in masks]
def mask_merge_invert(
masks: list[Image.Image], mode: int | MergeInvert | str
) -> list[Image.Image]:
if isinstance(mode, str):
mode = MASK_MERGE_INVERT.index(mode)
if mode == MergeInvert.NONE or not masks:
return masks
if mode == MergeInvert.MERGE:
return mask_merge(masks)
if mode == MergeInvert.MERGE_INVERT:
merged = mask_merge(masks)
return mask_invert(merged)
raise RuntimeError