ddebnath commited on
Commit
5e86b2e
·
1 Parent(s): c05ef17

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -0
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - generated
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: layoutlmv3-finetuned-invoice
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: generated
20
+ type: generated
21
+ config: sroie
22
+ split: train
23
+ args: sroie
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.9959514170040485
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.9979716024340771
31
+ - name: F1
32
+ type: f1
33
+ value: 0.9969604863221885
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9995786812723826
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # layoutlmv3-finetuned-invoice
43
+
44
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the generated dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.0028
47
+ - Precision: 0.9960
48
+ - Recall: 0.9980
49
+ - F1: 0.9970
50
+ - Accuracy: 0.9996
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 1e-05
70
+ - train_batch_size: 2
71
+ - eval_batch_size: 2
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - training_steps: 2000
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 2.0 | 100 | 0.0502 | 0.97 | 0.9838 | 0.9768 | 0.9968 |
82
+ | No log | 4.0 | 200 | 0.0194 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
83
+ | No log | 6.0 | 300 | 0.0160 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
84
+ | No log | 8.0 | 400 | 0.0123 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
85
+ | 0.053 | 10.0 | 500 | 0.0089 | 0.9757 | 0.9757 | 0.9757 | 0.9966 |
86
+ | 0.053 | 12.0 | 600 | 0.0058 | 0.9959 | 0.9919 | 0.9939 | 0.9992 |
87
+ | 0.053 | 14.0 | 700 | 0.0046 | 0.9939 | 0.9919 | 0.9929 | 0.9989 |
88
+ | 0.053 | 16.0 | 800 | 0.0037 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
89
+ | 0.053 | 18.0 | 900 | 0.0068 | 0.9959 | 0.9878 | 0.9919 | 0.9987 |
90
+ | 0.0057 | 20.0 | 1000 | 0.0054 | 0.9919 | 0.9959 | 0.9939 | 0.9992 |
91
+ | 0.0057 | 22.0 | 1100 | 0.0057 | 0.9919 | 0.9959 | 0.9939 | 0.9992 |
92
+ | 0.0057 | 24.0 | 1200 | 0.0049 | 0.9919 | 0.9959 | 0.9939 | 0.9992 |
93
+ | 0.0057 | 26.0 | 1300 | 0.0052 | 0.9919 | 0.9959 | 0.9939 | 0.9992 |
94
+ | 0.0057 | 28.0 | 1400 | 0.0030 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
95
+ | 0.0022 | 30.0 | 1500 | 0.0028 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
96
+ | 0.0022 | 32.0 | 1600 | 0.0030 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
97
+ | 0.0022 | 34.0 | 1700 | 0.0030 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
98
+ | 0.0022 | 36.0 | 1800 | 0.0037 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
99
+ | 0.0022 | 38.0 | 1900 | 0.0037 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
100
+ | 0.0017 | 40.0 | 2000 | 0.0037 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
101
+
102
+
103
+ ### Framework versions
104
+
105
+ - Transformers 4.23.1
106
+ - Pytorch 1.12.1+cu113
107
+ - Datasets 2.6.1
108
+ - Tokenizers 0.13.1