roberta-base-bne-finetuned-ner / trainer_state.json
josecannete's picture
adding model finetuned on NER
00accf4
{
"best_metric": 0.08214916288852692,
"best_model_checkpoint": "/home/jcanete/ft-data/all_results/ner/roberta_base_bne/epochs_4_bs_32_lr_3e-5/checkpoint-500",
"epoch": 4.0,
"global_step": 1044,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.38,
"eval_accuracy": 0.9629454334483496,
"eval_f1": 0.7416711342574863,
"eval_loss": 0.1347309798002243,
"eval_precision": 0.7229023589131084,
"eval_recall": 0.7614404780625884,
"eval_runtime": 2.0941,
"eval_samples_per_second": 914.935,
"eval_steps_per_second": 28.651,
"step": 100
},
{
"epoch": 0.77,
"eval_accuracy": 0.9751748144981526,
"eval_f1": 0.846393519239757,
"eval_loss": 0.09219810366630554,
"eval_precision": 0.8385553326130576,
"eval_recall": 0.8543796194370183,
"eval_runtime": 2.0125,
"eval_samples_per_second": 952.045,
"eval_steps_per_second": 29.814,
"step": 200
},
{
"epoch": 1.15,
"eval_accuracy": 0.9743656294848698,
"eval_f1": 0.8412611054328171,
"eval_loss": 0.09414725750684738,
"eval_precision": 0.8411949685534591,
"eval_recall": 0.8413272527126907,
"eval_runtime": 2.0091,
"eval_samples_per_second": 953.677,
"eval_steps_per_second": 29.865,
"step": 300
},
{
"epoch": 1.53,
"eval_accuracy": 0.9758313230938349,
"eval_f1": 0.854766575127501,
"eval_loss": 0.08752118051052094,
"eval_precision": 0.8529595991230817,
"eval_recall": 0.8565812234628086,
"eval_runtime": 2.0067,
"eval_samples_per_second": 954.82,
"eval_steps_per_second": 29.9,
"step": 400
},
{
"epoch": 1.92,
"learning_rate": 1.5689655172413794e-05,
"loss": 0.1335,
"step": 500
},
{
"epoch": 1.92,
"eval_accuracy": 0.9778161165226419,
"eval_f1": 0.8677048922447697,
"eval_loss": 0.08214916288852692,
"eval_precision": 0.8679779701022816,
"eval_recall": 0.8674319861613461,
"eval_runtime": 2.0137,
"eval_samples_per_second": 951.47,
"eval_steps_per_second": 29.796,
"step": 500
},
{
"epoch": 2.3,
"eval_accuracy": 0.9771443402851996,
"eval_f1": 0.859778020947319,
"eval_loss": 0.0927521213889122,
"eval_precision": 0.8547008547008547,
"eval_recall": 0.8649158672747287,
"eval_runtime": 2.07,
"eval_samples_per_second": 925.61,
"eval_steps_per_second": 28.986,
"step": 600
},
{
"epoch": 2.68,
"eval_accuracy": 0.9763504229136768,
"eval_f1": 0.8577878103837472,
"eval_loss": 0.092233806848526,
"eval_precision": 0.8492601726263872,
"eval_recall": 0.8664884415788646,
"eval_runtime": 2.0104,
"eval_samples_per_second": 953.047,
"eval_steps_per_second": 29.845,
"step": 700
},
{
"epoch": 3.07,
"eval_accuracy": 0.9773428196280802,
"eval_f1": 0.8647045046451715,
"eval_loss": 0.09490890055894852,
"eval_precision": 0.8586046511627907,
"eval_recall": 0.8708916496304451,
"eval_runtime": 1.9928,
"eval_samples_per_second": 961.47,
"eval_steps_per_second": 30.109,
"step": 800
},
{
"epoch": 3.45,
"eval_accuracy": 0.9767321139576781,
"eval_f1": 0.859104384459354,
"eval_loss": 0.09667886048555374,
"eval_precision": 0.852453940238427,
"eval_recall": 0.8658594118572103,
"eval_runtime": 2.002,
"eval_samples_per_second": 957.043,
"eval_steps_per_second": 29.97,
"step": 900
},
{
"epoch": 3.83,
"learning_rate": 1.32183908045977e-06,
"loss": 0.0189,
"step": 1000
},
{
"epoch": 3.83,
"eval_accuracy": 0.977556566612721,
"eval_f1": 0.8655850772004076,
"eval_loss": 0.09368374198675156,
"eval_precision": 0.8628125,
"eval_recall": 0.8683755307438277,
"eval_runtime": 2.004,
"eval_samples_per_second": 956.073,
"eval_steps_per_second": 29.94,
"step": 1000
},
{
"epoch": 4.0,
"step": 1044,
"total_flos": 1723769471413440.0,
"train_loss": 0.07351639238810631,
"train_runtime": 113.4173,
"train_samples_per_second": 293.571,
"train_steps_per_second": 9.205
}
],
"max_steps": 1044,
"num_train_epochs": 4,
"total_flos": 1723769471413440.0,
"trial_name": null,
"trial_params": null
}