dbarbedillo
commited on
Commit
•
405cbbc
1
Parent(s):
3b19961
Upload PPO LunarLander-v2-4_3 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2-4.zip +3 -0
- ppo-LunarLander-v2-4/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-4/data +94 -0
- ppo-LunarLander-v2-4/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-4/policy.pth +3 -0
- ppo-LunarLander-v2-4/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-4/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 299.29 +/- 17.28
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9d6daa79e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9d6daa7a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9d6daa7b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9d6daa7b90>", "_build": "<function ActorCriticPolicy._build at 0x7f9d6daa7c20>", "forward": "<function ActorCriticPolicy.forward at 0x7f9d6daa7cb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9d6daa7d40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9d6daa7dd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9d6daa7e60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9d6daa7ef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9d6daa7f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9d6dae7e70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgTdJRSlIwNYm91bmRlZF9iZWxvd5RoECiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoE3SUUpSMDWJvdW5kZWRfYWJvdmWUaBAolggAAAAAAAAAAAAAAAAAAACUaB9LCIWUaBN0lFKUjApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLCIWUdWIu", "dtype": "float32", "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null, "_shape": [8]}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZQpdWIu", "n": 4, "dtype": "int64", "_np_random": null, "_shape": []}, "n_envs": 16, "num_timesteps": 10010624, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651958325.2154298, "learning_rate": 0.001, "tensorboard_log": "./logs/", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqGZD3NjJ0/o6PTPop6UL8SvZY9VrybPgAAAAAAAAAAzck4vc9Ddj2mj1Y+x0rmvgcvcTzCRiM+AAAAAAAAAACz0t+9X9w1P+h8bz0LcUa/zRhJvp0psj0AAAAAAAAAAJoekr1c/zU5gXQgPGZjWLwEtdG6MEEFvQAAAAAAAAAAzZoTvHbqaLzLoHu+JXDpvFgCDj1bJhy8AACAPwAAgD/AFL+9rZNVPwZWu71kTzW/5DRGvv2aCL0AAAAAAAAAAFqst7060z8+ANypPpSsHb+pyoM9BvpzPgAAAAAAAAAAoHtSPlFcST/Nz2U9Bukrv/nHEj/mugi9AAAAAAAAAADNTF+8FO8pPkrQ+zvlGBG/bP7+vNtIzTsAAAAAAAAAAHpPjD6OCzg/XRkzviqIYb+VJQo/b0u3vgAAAAAAAAAA83eNvry8UT9m/gU+ULAzv7PSCL8FZHA+AAAAAAAAAABmOH69XFtruhe8pDxMI/U8+45Hu0Vb0b0AAIA/AACAP82c2jsF66O7K9dHvVX4pzyzGPo8A/+NvQAAgD8AAIA/avmaPtsmez9qA9q8H6Eev2jtUD+KYJW9AAAAAAAAAACaaQo7PaJIu9mGhD3w3088skhvvNrENT0AAIA/AACAP808zLoPWwK8KjpevnCcC76wNh49vqHwPgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIY3rCEk9CcECUhpRSlIwBbJRLkowBdJRHQLc+lAiFCcB1fZQoaAZoCWgPQwhXCoFcIoNzQJSGlFKUaBVLt2gWR0C3PrPHDJlrdX2UKGgGaAloD0MIjq1nCEeycUCUhpRSlGgVS5ZoFkdAtz7dgVoHs3V9lChoBmgJaA9DCMbBpWOOFHRAlIaUUpRoFUvBaBZHQLc+6cslLOB1fZQoaAZoCWgPQwgcJET5QrtyQJSGlFKUaBVNcAFoFkdAtz8A1TBInXV9lChoBmgJaA9DCNF6+DIReXNAlIaUUpRoFUuraBZHQLc/DFpwjt51fZQoaAZoCWgPQwgvppnu9UZxQJSGlFKUaBVN8wFoFkdAtz8rEMspX3V9lChoBmgJaA9DCCYd5WD2iXBAlIaUUpRoFUugaBZHQLc/LN2TxG51fZQoaAZoCWgPQwgA5IQJo/dwQJSGlFKUaBVLm2gWR0C3PyzdLxqgdX2UKGgGaAloD0MIdlH0wMc1c0CUhpRSlGgVS9NoFkdAtz80i3XqaHV9lChoBmgJaA9DCIuKOJ0ka3JAlIaUUpRoFUvSaBZHQLc/O7aIval1fZQoaAZoCWgPQwhegehJmZZyQJSGlFKUaBVLumgWR0C3P0mJSBK+dX2UKGgGaAloD0MInNuEeyWXckCUhpRSlGgVS69oFkdAtz9M32mHg3V9lChoBmgJaA9DCMcPlUZMlnJAlIaUUpRoFUuxaBZHQLc/b65oXbd1fZQoaAZoCWgPQwibqntk84JzQJSGlFKUaBVLw2gWR0C3P5G8dxQ0dX2UKGgGaAloD0MIyuGTTiTsckCUhpRSlGgVS8FoFkdAt0Trl8w6AHV9lChoBmgJaA9DCHmVtU3xpHJAlIaUUpRoFUu3aBZHQLdE6lAu7H11fZQoaAZoCWgPQwiSzyueOppzQJSGlFKUaBVL3mgWR0C3ROpQHiWFdX2UKGgGaAloD0MImiUBaqpDckCUhpRSlGgVS4loFkdAt0TwMWoFV3V9lChoBmgJaA9DCDblCu8yl3NAlIaUUpRoFUuuaBZHQLdE9Ew35vd1fZQoaAZoCWgPQwhMNEjB00FxQJSGlFKUaBVLqmgWR0C3RPovWYnfdX2UKGgGaAloD0MIx9eeWdKtcUCUhpRSlGgVS5hoFkdAt0UKUC7sfXV9lChoBmgJaA9DCG1wIvp1NnFAlIaUUpRoFUuaaBZHQLdFFEwnH/91fZQoaAZoCWgPQwiCrn0BvQJ0QJSGlFKUaBVLwWgWR0C3RTNDpkf+dX2UKGgGaAloD0MIgsXhzO+6cUCUhpRSlGgVS8RoFkdAt0U3XHzYmXV9lChoBmgJaA9DCAt8Rbde0HJAlIaUUpRoFUu8aBZHQLdFUTfBN211fZQoaAZoCWgPQwjekhywq09zQJSGlFKUaBVLy2gWR0C3RWIbCJoCdX2UKGgGaAloD0MIPuqvVxiBcUCUhpRSlGgVS7FoFkdAt0Vog2ZRbnV9lChoBmgJaA9DCF9AL9z5qXJAlIaUUpRoFUu6aBZHQLdFlpn6Eal1fZQoaAZoCWgPQwj1TC8x1vFwQJSGlFKUaBVLl2gWR0C3RaxcZ9/jdX2UKGgGaAloD0MIWABTBg7Zc0CUhpRSlGgVS6BoFkdAt0W4IyCWeHV9lChoBmgJaA9DCMFXdOu1ynFAlIaUUpRoFUugaBZHQLdFyMbm2b51fZQoaAZoCWgPQwga+FEN+xtyQJSGlFKUaBVLtmgWR0C3Rdotcv/SdX2UKGgGaAloD0MIeEKvP8kUckCUhpRSlGgVS69oFkdAt0XuaLGaQXV9lChoBmgJaA9DCHoAi/z6yHJAlIaUUpRoFUuQaBZHQLdF80V8CxN1fZQoaAZoCWgPQwiAYmTJHCx0QJSGlFKUaBVLzmgWR0C3RfWTs6aLdX2UKGgGaAloD0MIu7n4256+cUCUhpRSlGgVS79oFkdAt0YNpCa7VnV9lChoBmgJaA9DCGFxOPOr2W9AlIaUUpRoFUukaBZHQLdGO/gBLf11fZQoaAZoCWgPQwiYGTbK+uRnQJSGlFKUaBVN6ANoFkdAt0ZM3eenRHV9lChoBmgJaA9DCJoGRfMA7HJAlIaUUpRoFU0KAWgWR0C3Rk+wkgOjdX2UKGgGaAloD0MI0PHR4gzCcUCUhpRSlGgVS8FoFkdAt0ZTh2nsLXV9lChoBmgJaA9DCI/f2/QnO3FAlIaUUpRoFUv2aBZHQLdGfQBPsRh1fZQoaAZoCWgPQwhUyQBQBWh0QJSGlFKUaBVL2GgWR0C3RoTvy9VWdX2UKGgGaAloD0MIpDmy8gt6c0CUhpRSlGgVS7toFkdAt0aLFLnLaHV9lChoBmgJaA9DCAaf5uRFN3NAlIaUUpRoFUuhaBZHQLdGiYu01Il1fZQoaAZoCWgPQwiVEKyqF+ByQJSGlFKUaBVLrGgWR0C3Rowa3qiXdX2UKGgGaAloD0MIKnPzjejHcUCUhpRSlGgVS6loFkdAt0ah3X7LuHV9lChoBmgJaA9DCL+c2a4Qr3FAlIaUUpRoFUucaBZHQLdGuvIOpbV1fZQoaAZoCWgPQwjMCdrkcJ5wQJSGlFKUaBVLsGgWR0C3RrmoWHk+dX2UKGgGaAloD0MIfPKwUOt8cUCUhpRSlGgVS61oFkdAt0bIQ9RrJ3V9lChoBmgJaA9DCAGkNnGyEHRAlIaUUpRoFUvBaBZHQLdG5Gx2SuB1fZQoaAZoCWgPQwjNWgpIe4hxQJSGlFKUaBVLimgWR0C3RuRqsU7CdX2UKGgGaAloD0MIZoaNsv4YZkCUhpRSlGgVTegDaBZHQLdG4+n62v11fZQoaAZoCWgPQwhB8s6hjJNwQJSGlFKUaBVLrmgWR0C3Rub8FY+0dX2UKGgGaAloD0MIndoZpnZYcECUhpRSlGgVS5poFkdAt0b8/r0J4XV9lChoBmgJaA9DCIRGsHF98HJAlIaUUpRoFUuxaBZHQLdHF9+gDih1fZQoaAZoCWgPQwijkjoBTVRwQJSGlFKUaBVLomgWR0C3RyrRSgoPdX2UKGgGaAloD0MI3bQZpyFjcUCUhpRSlGgVS5hoFkdAt0crEtNBW3V9lChoBmgJaA9DCBYvFobI13BAlIaUUpRoFUuhaBZHQLdHNdNFjNJ1fZQoaAZoCWgPQwh6GFqd3LtyQJSGlFKUaBVL82gWR0C3R1eeJ53UdX2UKGgGaAloD0MIfCjRkkfFcECUhpRSlGgVS8poFkdAt0dasHSncnV9lChoBmgJaA9DCBqlS/9StXFAlIaUUpRoFUuSaBZHQLdHW7aqS5l1fZQoaAZoCWgPQwjusInMXNlwQJSGlFKUaBVLqmgWR0C3R2e8oQWfdX2UKGgGaAloD0MIrfnxl9ZgckCUhpRSlGgVS8VoFkdAt0duJQ+EAnV9lChoBmgJaA9DCMy0/SurhHNAlIaUUpRoFUvEaBZHQLdHgl5nlGR1fZQoaAZoCWgPQwi/mgMEM35wQJSGlFKUaBVLoWgWR0C3R4Ia1kUcdX2UKGgGaAloD0MIlUVhF4XbcUCUhpRSlGgVS7FoFkdAt0eRN47ihnV9lChoBmgJaA9DCEdaKm/HS3BAlIaUUpRoFUuYaBZHQLdHlInjQzF1fZQoaAZoCWgPQwi5xJEHIpBzQJSGlFKUaBVLwWgWR0C3R6LhJiAldX2UKGgGaAloD0MIpONqZBcdcECUhpRSlGgVS5NoFkdAt0es3VCoj3V9lChoBmgJaA9DCCBFnbnHNHJAlIaUUpRoFUukaBZHQLdH11yNn5B1fZQoaAZoCWgPQwj8jXbcsNBxQJSGlFKUaBVLrGgWR0C3R+xagVXWdX2UKGgGaAloD0MIZwsIrYfsckCUhpRSlGgVS8xoFkdAt0gErFwT/XV9lChoBmgJaA9DCPJ4Wn7gHHJAlIaUUpRoFUumaBZHQLdIEDF6zE91fZQoaAZoCWgPQwgS3EjZ4g9zQJSGlFKUaBVLnmgWR0C3SBSJj2BbdX2UKGgGaAloD0MIf0+sU+VVcECUhpRSlGgVS5toFkdAt0gYpDu0C3V9lChoBmgJaA9DCNfZkH+mtnRAlIaUUpRoFUuxaBZHQLdIGGLDQ7d1fZQoaAZoCWgPQwj+KOrM/XNyQJSGlFKUaBVLt2gWR0C3SCGZ7XxwdX2UKGgGaAloD0MIUbtfBTj6c0CUhpRSlGgVS6ZoFkdAt0g6Lfk3j3V9lChoBmgJaA9DCKJCdXNxwHFAlIaUUpRoFUujaBZHQLdISABkqc51fZQoaAZoCWgPQwjt153uPHJxQJSGlFKUaBVLpmgWR0C3SE8pw0fpdX2UKGgGaAloD0MIysStglguc0CUhpRSlGgVS7xoFkdAt0hTQ/oq1HV9lChoBmgJaA9DCCridJIthHJAlIaUUpRoFUu4aBZHQLdIcfv4M4N1fZQoaAZoCWgPQwhT7Ggcam1wQJSGlFKUaBVLlmgWR0C3SH8KohpydX2UKGgGaAloD0MI7nppikD0ckCUhpRSlGgVS8doFkdAt0iN47ihnXV9lChoBmgJaA9DCPq19dN/J29AlIaUUpRoFUudaBZHQLdInDnNgSh1fZQoaAZoCWgPQwj3kVuT7gJyQJSGlFKUaBVLoWgWR0C3SM/wEyLydX2UKGgGaAloD0MIg6RPq6hlckCUhpRSlGgVS69oFkdAt0jYYrJ8v3V9lChoBmgJaA9DCN0ostbQMXJAlIaUUpRoFUu0aBZHQLdI5zu4PPN1fZQoaAZoCWgPQwiWPQlsjgNzQJSGlFKUaBVL0GgWR0C3SPRKDkELdX2UKGgGaAloD0MIELOXbScqckCUhpRSlGgVS41oFkdAt0j0y44IbHV9lChoBmgJaA9DCMXGvI44dnFAlIaUUpRoFUuwaBZHQLdJCD/VAiV1fZQoaAZoCWgPQwhzol2FFIlwQJSGlFKUaBVLn2gWR0C3SQ4lQdjodX2UKGgGaAloD0MIRIoBEk0acECUhpRSlGgVS99oFkdAt0kW12JSBXV9lChoBmgJaA9DCCkjLgBN4XFAlIaUUpRoFU1OAmgWR0C3SRbZezD5dX2UKGgGaAloD0MIrWhznNufc0CUhpRSlGgVS9VoFkdAt0kZJz1bq3V9lChoBmgJaA9DCJSGGoXkdHNAlIaUUpRoFUvAaBZHQLdJJfQrtmd1fZQoaAZoCWgPQwimuoCXmeFxQJSGlFKUaBVLomgWR0C3SS2hysCDdX2UKGgGaAloD0MIMPMd/MSbcUCUhpRSlGgVS5loFkdAt0k8OYplSXV9lChoBmgJaA9DCEUOETdn03JAlIaUUpRoFUupaBZHQLdJWaouPFN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 9776, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVoQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxzQzpcVXNlcnNcZGFuaWVcQW5hY29uZGEzXGVudnNcc3RhYmxlYmFzZWxpbmVzLXB5MzczLWh1Z2dpbmdmYWNlXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-4.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cac1b01a70b930b97e1e142af991b7ee69ec0122b5341d34edaa239a98b35c6f
|
3 |
+
size 143966
|
ppo-LunarLander-v2-4/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2-4/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9d6daa79e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9d6daa7a70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9d6daa7b00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9d6daa7b90>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9d6daa7c20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9d6daa7cb0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9d6daa7d40>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9d6daa7dd0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9d6daa7e60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9d6daa7ef0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9d6daa7f80>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f9d6dae7e70>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgTdJRSlIwNYm91bmRlZF9iZWxvd5RoECiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoE3SUUpSMDWJvdW5kZWRfYWJvdmWUaBAolggAAAAAAAAAAAAAAAAAAACUaB9LCIWUaBN0lFKUjApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLCIWUdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
28 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
29 |
+
"bounded_below": "[False False False False False False False False]",
|
30 |
+
"bounded_above": "[False False False False False False False False]",
|
31 |
+
"_np_random": null,
|
32 |
+
"_shape": [
|
33 |
+
8
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZQpdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"dtype": "int64",
|
41 |
+
"_np_random": null,
|
42 |
+
"_shape": []
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 10010624,
|
46 |
+
"_total_timesteps": 10000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651958325.2154298,
|
51 |
+
"learning_rate": 0.001,
|
52 |
+
"tensorboard_log": "./logs/",
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqGZD3NjJ0/o6PTPop6UL8SvZY9VrybPgAAAAAAAAAAzck4vc9Ddj2mj1Y+x0rmvgcvcTzCRiM+AAAAAAAAAACz0t+9X9w1P+h8bz0LcUa/zRhJvp0psj0AAAAAAAAAAJoekr1c/zU5gXQgPGZjWLwEtdG6MEEFvQAAAAAAAAAAzZoTvHbqaLzLoHu+JXDpvFgCDj1bJhy8AACAPwAAgD/AFL+9rZNVPwZWu71kTzW/5DRGvv2aCL0AAAAAAAAAAFqst7060z8+ANypPpSsHb+pyoM9BvpzPgAAAAAAAAAAoHtSPlFcST/Nz2U9Bukrv/nHEj/mugi9AAAAAAAAAADNTF+8FO8pPkrQ+zvlGBG/bP7+vNtIzTsAAAAAAAAAAHpPjD6OCzg/XRkzviqIYb+VJQo/b0u3vgAAAAAAAAAA83eNvry8UT9m/gU+ULAzv7PSCL8FZHA+AAAAAAAAAABmOH69XFtruhe8pDxMI/U8+45Hu0Vb0b0AAIA/AACAP82c2jsF66O7K9dHvVX4pzyzGPo8A/+NvQAAgD8AAIA/avmaPtsmez9qA9q8H6Eev2jtUD+KYJW9AAAAAAAAAACaaQo7PaJIu9mGhD3w3088skhvvNrENT0AAIA/AACAP808zLoPWwK8KjpevnCcC76wNh49vqHwPgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0010623999999999079,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIY3rCEk9CcECUhpRSlIwBbJRLkowBdJRHQLc+lAiFCcB1fZQoaAZoCWgPQwhXCoFcIoNzQJSGlFKUaBVLt2gWR0C3PrPHDJlrdX2UKGgGaAloD0MIjq1nCEeycUCUhpRSlGgVS5ZoFkdAtz7dgVoHs3V9lChoBmgJaA9DCMbBpWOOFHRAlIaUUpRoFUvBaBZHQLc+6cslLOB1fZQoaAZoCWgPQwgcJET5QrtyQJSGlFKUaBVNcAFoFkdAtz8A1TBInXV9lChoBmgJaA9DCNF6+DIReXNAlIaUUpRoFUuraBZHQLc/DFpwjt51fZQoaAZoCWgPQwgvppnu9UZxQJSGlFKUaBVN8wFoFkdAtz8rEMspX3V9lChoBmgJaA9DCCYd5WD2iXBAlIaUUpRoFUugaBZHQLc/LN2TxG51fZQoaAZoCWgPQwgA5IQJo/dwQJSGlFKUaBVLm2gWR0C3PyzdLxqgdX2UKGgGaAloD0MIdlH0wMc1c0CUhpRSlGgVS9NoFkdAtz80i3XqaHV9lChoBmgJaA9DCIuKOJ0ka3JAlIaUUpRoFUvSaBZHQLc/O7aIval1fZQoaAZoCWgPQwhegehJmZZyQJSGlFKUaBVLumgWR0C3P0mJSBK+dX2UKGgGaAloD0MInNuEeyWXckCUhpRSlGgVS69oFkdAtz9M32mHg3V9lChoBmgJaA9DCMcPlUZMlnJAlIaUUpRoFUuxaBZHQLc/b65oXbd1fZQoaAZoCWgPQwibqntk84JzQJSGlFKUaBVLw2gWR0C3P5G8dxQ0dX2UKGgGaAloD0MIyuGTTiTsckCUhpRSlGgVS8FoFkdAt0Trl8w6AHV9lChoBmgJaA9DCHmVtU3xpHJAlIaUUpRoFUu3aBZHQLdE6lAu7H11fZQoaAZoCWgPQwiSzyueOppzQJSGlFKUaBVL3mgWR0C3ROpQHiWFdX2UKGgGaAloD0MImiUBaqpDckCUhpRSlGgVS4loFkdAt0TwMWoFV3V9lChoBmgJaA9DCDblCu8yl3NAlIaUUpRoFUuuaBZHQLdE9Ew35vd1fZQoaAZoCWgPQwhMNEjB00FxQJSGlFKUaBVLqmgWR0C3RPovWYnfdX2UKGgGaAloD0MIx9eeWdKtcUCUhpRSlGgVS5hoFkdAt0UKUC7sfXV9lChoBmgJaA9DCG1wIvp1NnFAlIaUUpRoFUuaaBZHQLdFFEwnH/91fZQoaAZoCWgPQwiCrn0BvQJ0QJSGlFKUaBVLwWgWR0C3RTNDpkf+dX2UKGgGaAloD0MIgsXhzO+6cUCUhpRSlGgVS8RoFkdAt0U3XHzYmXV9lChoBmgJaA9DCAt8Rbde0HJAlIaUUpRoFUu8aBZHQLdFUTfBN211fZQoaAZoCWgPQwjekhywq09zQJSGlFKUaBVLy2gWR0C3RWIbCJoCdX2UKGgGaAloD0MIPuqvVxiBcUCUhpRSlGgVS7FoFkdAt0Vog2ZRbnV9lChoBmgJaA9DCF9AL9z5qXJAlIaUUpRoFUu6aBZHQLdFlpn6Eal1fZQoaAZoCWgPQwj1TC8x1vFwQJSGlFKUaBVLl2gWR0C3RaxcZ9/jdX2UKGgGaAloD0MIWABTBg7Zc0CUhpRSlGgVS6BoFkdAt0W4IyCWeHV9lChoBmgJaA9DCMFXdOu1ynFAlIaUUpRoFUugaBZHQLdFyMbm2b51fZQoaAZoCWgPQwga+FEN+xtyQJSGlFKUaBVLtmgWR0C3Rdotcv/SdX2UKGgGaAloD0MIeEKvP8kUckCUhpRSlGgVS69oFkdAt0XuaLGaQXV9lChoBmgJaA9DCHoAi/z6yHJAlIaUUpRoFUuQaBZHQLdF80V8CxN1fZQoaAZoCWgPQwiAYmTJHCx0QJSGlFKUaBVLzmgWR0C3RfWTs6aLdX2UKGgGaAloD0MIu7n4256+cUCUhpRSlGgVS79oFkdAt0YNpCa7VnV9lChoBmgJaA9DCGFxOPOr2W9AlIaUUpRoFUukaBZHQLdGO/gBLf11fZQoaAZoCWgPQwiYGTbK+uRnQJSGlFKUaBVN6ANoFkdAt0ZM3eenRHV9lChoBmgJaA9DCJoGRfMA7HJAlIaUUpRoFU0KAWgWR0C3Rk+wkgOjdX2UKGgGaAloD0MI0PHR4gzCcUCUhpRSlGgVS8FoFkdAt0ZTh2nsLXV9lChoBmgJaA9DCI/f2/QnO3FAlIaUUpRoFUv2aBZHQLdGfQBPsRh1fZQoaAZoCWgPQwhUyQBQBWh0QJSGlFKUaBVL2GgWR0C3RoTvy9VWdX2UKGgGaAloD0MIpDmy8gt6c0CUhpRSlGgVS7toFkdAt0aLFLnLaHV9lChoBmgJaA9DCAaf5uRFN3NAlIaUUpRoFUuhaBZHQLdGiYu01Il1fZQoaAZoCWgPQwiVEKyqF+ByQJSGlFKUaBVLrGgWR0C3Rowa3qiXdX2UKGgGaAloD0MIKnPzjejHcUCUhpRSlGgVS6loFkdAt0ah3X7LuHV9lChoBmgJaA9DCL+c2a4Qr3FAlIaUUpRoFUucaBZHQLdGuvIOpbV1fZQoaAZoCWgPQwjMCdrkcJ5wQJSGlFKUaBVLsGgWR0C3RrmoWHk+dX2UKGgGaAloD0MIfPKwUOt8cUCUhpRSlGgVS61oFkdAt0bIQ9RrJ3V9lChoBmgJaA9DCAGkNnGyEHRAlIaUUpRoFUvBaBZHQLdG5Gx2SuB1fZQoaAZoCWgPQwjNWgpIe4hxQJSGlFKUaBVLimgWR0C3RuRqsU7CdX2UKGgGaAloD0MIZoaNsv4YZkCUhpRSlGgVTegDaBZHQLdG4+n62v11fZQoaAZoCWgPQwhB8s6hjJNwQJSGlFKUaBVLrmgWR0C3Rub8FY+0dX2UKGgGaAloD0MIndoZpnZYcECUhpRSlGgVS5poFkdAt0b8/r0J4XV9lChoBmgJaA9DCIRGsHF98HJAlIaUUpRoFUuxaBZHQLdHF9+gDih1fZQoaAZoCWgPQwijkjoBTVRwQJSGlFKUaBVLomgWR0C3RyrRSgoPdX2UKGgGaAloD0MI3bQZpyFjcUCUhpRSlGgVS5hoFkdAt0crEtNBW3V9lChoBmgJaA9DCBYvFobI13BAlIaUUpRoFUuhaBZHQLdHNdNFjNJ1fZQoaAZoCWgPQwh6GFqd3LtyQJSGlFKUaBVL82gWR0C3R1eeJ53UdX2UKGgGaAloD0MIfCjRkkfFcECUhpRSlGgVS8poFkdAt0dasHSncnV9lChoBmgJaA9DCBqlS/9StXFAlIaUUpRoFUuSaBZHQLdHW7aqS5l1fZQoaAZoCWgPQwjusInMXNlwQJSGlFKUaBVLqmgWR0C3R2e8oQWfdX2UKGgGaAloD0MIrfnxl9ZgckCUhpRSlGgVS8VoFkdAt0duJQ+EAnV9lChoBmgJaA9DCMy0/SurhHNAlIaUUpRoFUvEaBZHQLdHgl5nlGR1fZQoaAZoCWgPQwi/mgMEM35wQJSGlFKUaBVLoWgWR0C3R4Ia1kUcdX2UKGgGaAloD0MIlUVhF4XbcUCUhpRSlGgVS7FoFkdAt0eRN47ihnV9lChoBmgJaA9DCEdaKm/HS3BAlIaUUpRoFUuYaBZHQLdHlInjQzF1fZQoaAZoCWgPQwi5xJEHIpBzQJSGlFKUaBVLwWgWR0C3R6LhJiAldX2UKGgGaAloD0MIpONqZBcdcECUhpRSlGgVS5NoFkdAt0es3VCoj3V9lChoBmgJaA9DCCBFnbnHNHJAlIaUUpRoFUukaBZHQLdH11yNn5B1fZQoaAZoCWgPQwj8jXbcsNBxQJSGlFKUaBVLrGgWR0C3R+xagVXWdX2UKGgGaAloD0MIZwsIrYfsckCUhpRSlGgVS8xoFkdAt0gErFwT/XV9lChoBmgJaA9DCPJ4Wn7gHHJAlIaUUpRoFUumaBZHQLdIEDF6zE91fZQoaAZoCWgPQwgS3EjZ4g9zQJSGlFKUaBVLnmgWR0C3SBSJj2BbdX2UKGgGaAloD0MIf0+sU+VVcECUhpRSlGgVS5toFkdAt0gYpDu0C3V9lChoBmgJaA9DCNfZkH+mtnRAlIaUUpRoFUuxaBZHQLdIGGLDQ7d1fZQoaAZoCWgPQwj+KOrM/XNyQJSGlFKUaBVLt2gWR0C3SCGZ7XxwdX2UKGgGaAloD0MIUbtfBTj6c0CUhpRSlGgVS6ZoFkdAt0g6Lfk3j3V9lChoBmgJaA9DCKJCdXNxwHFAlIaUUpRoFUujaBZHQLdISABkqc51fZQoaAZoCWgPQwjt153uPHJxQJSGlFKUaBVLpmgWR0C3SE8pw0fpdX2UKGgGaAloD0MIysStglguc0CUhpRSlGgVS7xoFkdAt0hTQ/oq1HV9lChoBmgJaA9DCCridJIthHJAlIaUUpRoFUu4aBZHQLdIcfv4M4N1fZQoaAZoCWgPQwhT7Ggcam1wQJSGlFKUaBVLlmgWR0C3SH8KohpydX2UKGgGaAloD0MI7nppikD0ckCUhpRSlGgVS8doFkdAt0iN47ihnXV9lChoBmgJaA9DCPq19dN/J29AlIaUUpRoFUudaBZHQLdInDnNgSh1fZQoaAZoCWgPQwj3kVuT7gJyQJSGlFKUaBVLoWgWR0C3SM/wEyLydX2UKGgGaAloD0MIg6RPq6hlckCUhpRSlGgVS69oFkdAt0jYYrJ8v3V9lChoBmgJaA9DCN0ostbQMXJAlIaUUpRoFUu0aBZHQLdI5zu4PPN1fZQoaAZoCWgPQwiWPQlsjgNzQJSGlFKUaBVL0GgWR0C3SPRKDkELdX2UKGgGaAloD0MIELOXbScqckCUhpRSlGgVS41oFkdAt0j0y44IbHV9lChoBmgJaA9DCMXGvI44dnFAlIaUUpRoFUuwaBZHQLdJCD/VAiV1fZQoaAZoCWgPQwhzol2FFIlwQJSGlFKUaBVLn2gWR0C3SQ4lQdjodX2UKGgGaAloD0MIRIoBEk0acECUhpRSlGgVS99oFkdAt0kW12JSBXV9lChoBmgJaA9DCCkjLgBN4XFAlIaUUpRoFU1OAmgWR0C3SRbZezD5dX2UKGgGaAloD0MIrWhznNufc0CUhpRSlGgVS9VoFkdAt0kZJz1bq3V9lChoBmgJaA9DCJSGGoXkdHNAlIaUUpRoFUvAaBZHQLdJJfQrtmd1fZQoaAZoCWgPQwimuoCXmeFxQJSGlFKUaBVLomgWR0C3SS2hysCDdX2UKGgGaAloD0MIMPMd/MSbcUCUhpRSlGgVS5loFkdAt0k8OYplSXV9lChoBmgJaA9DCEUOETdn03JAlIaUUpRoFUupaBZHQLdJWaouPFN1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 9776,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVoQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxzQzpcVXNlcnNcZGFuaWVcQW5hY29uZGEzXGVudnNcc3RhYmxlYmFzZWxpbmVzLXB5MzczLWh1Z2dpbmdmYWNlXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2-4/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:958ed5e66a2219feb6c557e7e2f8406373299d485079f8a793d115d93c48bdb0
|
3 |
+
size 84893
|
ppo-LunarLander-v2-4/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdd8b726784b1a962c1366ee17a8e0ad9e01e98973bb3a0088ecb829b245f81d
|
3 |
+
size 43201
|
ppo-LunarLander-v2-4/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-4/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d2e020262c109dd61dc5969fdee9fa352ffb13edd91cb45b137a9d259e830e64
|
3 |
+
size 193381
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 299.28959315467057, "std_reward": 17.28366938247645, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T02:11:39.119021"}
|