dayvidwang
commited on
Commit
·
05a838b
1
Parent(s):
e2ec5e9
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: twitter_ner
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# twitter_ner
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0142
|
23 |
+
- Precision: 0.9328
|
24 |
+
- Recall: 0.9504
|
25 |
+
- F1: 0.9415
|
26 |
+
- Accuracy: 0.9978
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 8e-05
|
46 |
+
- train_batch_size: 64
|
47 |
+
- eval_batch_size: 64
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 8
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 30 | 0.2020 | 0.2932 | 0.0479 | 0.0824 | 0.9516 |
|
58 |
+
| No log | 2.0 | 60 | 0.1365 | 0.4653 | 0.3328 | 0.3880 | 0.9651 |
|
59 |
+
| No log | 3.0 | 90 | 0.0783 | 0.6292 | 0.6125 | 0.6207 | 0.9803 |
|
60 |
+
| No log | 4.0 | 120 | 0.0465 | 0.7196 | 0.7793 | 0.7483 | 0.9877 |
|
61 |
+
| No log | 5.0 | 150 | 0.0285 | 0.8493 | 0.8725 | 0.8608 | 0.9936 |
|
62 |
+
| No log | 6.0 | 180 | 0.0197 | 0.9012 | 0.9204 | 0.9107 | 0.9963 |
|
63 |
+
| No log | 7.0 | 210 | 0.0157 | 0.9124 | 0.9350 | 0.9235 | 0.9969 |
|
64 |
+
| No log | 8.0 | 240 | 0.0142 | 0.9328 | 0.9504 | 0.9415 | 0.9978 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.30.1
|
70 |
+
- Pytorch 2.0.1+cu117
|
71 |
+
- Datasets 2.12.0
|
72 |
+
- Tokenizers 0.13.3
|