davidrd123 commited on
Commit
83cebd8
1 Parent(s): 11324c5

Upload PPO LunarLander-v2 trained agent, 1st try, 1000000 steps

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 252.84 +/- 18.71
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f973d235dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f973d235e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f973d235ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f973d235f80>", "_build": "<function ActorCriticPolicy._build at 0x7f973d23c050>", "forward": "<function ActorCriticPolicy.forward at 0x7f973d23c0e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f973d23c170>", "_predict": "<function ActorCriticPolicy._predict at 0x7f973d23c200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f973d23c290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f973d23c320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f973d23c3b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f973d27bd20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651966673.0150166, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALM3Eb28Kuc+JcwBvX94g76CplC7R3tFvQAAAAAAAAAAsAR4vtZGij9TH+E9axucvlKwGr7V7FA+AAAAAAAAAAAAkni9nIUXPoTyAj0j73G+doe8vf7P8LwAAAAAAAAAAJpKub003m4++s6vPUn2jr40h2o8BRd0vQAAAAAAAAAA8/HvvVGF6D5w5lk8I+eKvuXfnb3LrnS8AAAAAAAAAACaL688C+4jP71GZL5mAW2+FOPrva7Ubr0AAAAAAAAAACbF2z1qZyc/Jh14vsZyeL51MqO9moirvQAAAAAAAAAAc3THvUaW5z4mFCk+HTOOvmVLSjxVuCS8AAAAAAAAAABNWCE9A6inP2rR4T7myP6+A0M7va5gkL0AAAAAAAAAADMfEz3RmNw+Z9Q7vsaQiL4t0RC+taXSuwAAAAAAAAAATTdAvVKrgLuO5/S6jd2FPPEEu7y98mU9AACAPwAAgD/NjJe59sQvuvggjzU8YD4wETbXOULns7QAAIA/AACAPzMJRD0U4Oq6kFSMurkRcjxQZ/e78K9TPQAAgD8AAIA/ZnW4vZcFCz+/hYc9AkGLvuQLTz33IZa9AAAAAAAAAACanaY7/ThyP3hhrj1dhJS+GZJMu8uLtT0AAAAAAAAAALPmLL02NAu8rX1/O1bVrjyVD2a9ooeQPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaoe/JitzckCUhpRSlIwBbJRNFgGMAXSUR0CRCKlGgBcSdX2UKGgGaAloD0MIx2MGKuMNRUCUhpRSlGgVS/JoFkdAkQjl/2Cd0HV9lChoBmgJaA9DCNieWRIgjnFAlIaUUpRoFU1HAWgWR0CRCRFdszl+dX2UKGgGaAloD0MIvM0bJwXOcECUhpRSlGgVTXoBaBZHQJEKf37DVH51fZQoaAZoCWgPQwgxW7IqAphxQJSGlFKUaBVNXQFoFkdAkQqqRp1zQ3V9lChoBmgJaA9DCEM4ZtmTcG9AlIaUUpRoFU06AWgWR0CRH5UxVQyidX2UKGgGaAloD0MIzo5U3/n1PkCUhpRSlGgVS9xoFkdAkSIuXmeUZHV9lChoBmgJaA9DCOF5qdiYXW9AlIaUUpRoFU1KAWgWR0CRIkcYIjW1dX2UKGgGaAloD0MI1GUxsbmlcECUhpRSlGgVTS0BaBZHQJEjD+4smOV1fZQoaAZoCWgPQwhAbVSnA7lAQJSGlFKUaBVNBwFoFkdAkSUiHM2WIHV9lChoBmgJaA9DCH3rw3oj0nBAlIaUUpRoFU0qAmgWR0CRJYCxeLNwdX2UKGgGaAloD0MISE4mbhVHbECUhpRSlGgVTTIBaBZHQJEloT4+KTB1fZQoaAZoCWgPQwhRpPs5BfNIQJSGlFKUaBVL8mgWR0CRJ4ajvd/KdX2UKGgGaAloD0MIvqPGhNggcUCUhpRSlGgVTSoBaBZHQJEoETakAPx1fZQoaAZoCWgPQwj203/W/C9xQJSGlFKUaBVNMQFoFkdAkSgoOtnwonV9lChoBmgJaA9DCN9wH7m1w25AlIaUUpRoFU1eAWgWR0CRKKHWSU1RdX2UKGgGaAloD0MIixnh7UHPb0CUhpRSlGgVTVMBaBZHQJEo2K4x1xN1fZQoaAZoCWgPQwhuwVJdgBNwQJSGlFKUaBVNawFoFkdAkSkIR7JGOXV9lChoBmgJaA9DCOY+OQoQR29AlIaUUpRoFU1kAWgWR0CRKb8Sf16FdX2UKGgGaAloD0MI7rCJzFzHb0CUhpRSlGgVTXQBaBZHQJEpz7ALy+Z1fZQoaAZoCWgPQwhM32sIDkxyQJSGlFKUaBVNQQFoFkdAkSv0pqh11XV9lChoBmgJaA9DCHeC/dd5iHBAlIaUUpRoFU0MAWgWR0CRLIEv0yxidX2UKGgGaAloD0MIdNNmnAZWb0CUhpRSlGgVTSgBaBZHQJEuY3HaN+91fZQoaAZoCWgPQwikwthCEDlvQJSGlFKUaBVNWAFoFkdAkS+keQuEmXV9lChoBmgJaA9DCDFhNCvbBUJAlIaUUpRoFUvkaBZHQJEv6IvalDZ1fZQoaAZoCWgPQwimJsEbku9xQJSGlFKUaBVNMgFoFkdAkTFV6eGwinV9lChoBmgJaA9DCFSsGoT5GnBAlIaUUpRoFU1dAWgWR0CRMyqaw2VFdX2UKGgGaAloD0MIP1WFBmLKckCUhpRSlGgVTSgBaBZHQJEznKQq7RR1fZQoaAZoCWgPQwjgoSjQJyRyQJSGlFKUaBVNgAFoFkdAkTRrKq4pdHV9lChoBmgJaA9DCOf7qfGSCXJAlIaUUpRoFU05AWgWR0CRNO1JUYKqdX2UKGgGaAloD0MIUrgeheuNbkCUhpRSlGgVTR8BaBZHQJE1Q//vOQh1fZQoaAZoCWgPQwjye5v+bJhyQJSGlFKUaBVNDwFoFkdAkTd4XO4XoHV9lChoBmgJaA9DCCvAd5v3/3BAlIaUUpRoFU11AWgWR0CRN6+m3vx6dX2UKGgGaAloD0MIxhUXR2XAcECUhpRSlGgVTR0BaBZHQJE4si/wiJR1fZQoaAZoCWgPQwi/uipQCyduQJSGlFKUaBVNtgFoFkdAkTmZbD/EO3V9lChoBmgJaA9DCPZE14UfxnBAlIaUUpRoFU2ZAWgWR0CROkSQYDT0dX2UKGgGaAloD0MIZohjXVzfbUCUhpRSlGgVTScBaBZHQJE7FH09QoF1fZQoaAZoCWgPQwhkBFQ4gvxsQJSGlFKUaBVN0gFoFkdAkTuq7yxzJnV9lChoBmgJaA9DCHzuBPuvQG5AlIaUUpRoFU0bAWgWR0CRPUeAd4mkdX2UKGgGaAloD0MIi4o4neR3b0CUhpRSlGgVTS0BaBZHQJE/1dqtYCB1fZQoaAZoCWgPQwgIqkavRixwQJSGlFKUaBVNfAFoFkdAkT/aG5+Yt3V9lChoBmgJaA9DCGmn5nLDenFAlIaUUpRoFU15AWgWR0CRP/oh6jWTdX2UKGgGaAloD0MIZD+LpYjBcUCUhpRSlGgVTTIBaBZHQJFAYlIEr5J1fZQoaAZoCWgPQwgMBWwHYx5xQJSGlFKUaBVNOgFoFkdAkUHNSZSeiHV9lChoBmgJaA9DCMMpc/PN+HBAlIaUUpRoFU1DAWgWR0CRQnbxVhkRdX2UKGgGaAloD0MI+dnIdVNcc0CUhpRSlGgVTVoBaBZHQJFCnxNIsiB1fZQoaAZoCWgPQwi37XvUX4ptQJSGlFKUaBVNIgFoFkdAkUNlQZXMhXV9lChoBmgJaA9DCHNjesKSknBAlIaUUpRoFU0zAWgWR0CRQ9a8Hv+gdX2UKGgGaAloD0MIb/Wc9P6RcECUhpRSlGgVTUEBaBZHQJFFgxesxPB1fZQoaAZoCWgPQwid2a7QBw9iQJSGlFKUaBVN6ANoFkdAkUYIaDPGAHV9lChoBmgJaA9DCAjpKXIISHNAlIaUUpRoFU0qAWgWR0CRRh7eEZivdX2UKGgGaAloD0MIveDTnDzqbECUhpRSlGgVTUsBaBZHQJFGrcpLEk11fZQoaAZoCWgPQwhwfO2ZpT5rQJSGlFKUaBVNcAFoFkdAkV3hKtga33V9lChoBmgJaA9DCKGjVS1prnBAlIaUUpRoFU2ZAWgWR0CRXxgXMyJsdX2UKGgGaAloD0MIMLyS5LmSRUCUhpRSlGgVS+poFkdAkV9sFINEw3V9lChoBmgJaA9DCOrouBoZw3JAlIaUUpRoFU09AWgWR0CRYMsenyd4dX2UKGgGaAloD0MIdQXbiGd9cECUhpRSlGgVTVcBaBZHQJFhiPbO/tZ1fZQoaAZoCWgPQwhI/fUKSxVyQJSGlFKUaBVNYAFoFkdAkWHOUY8+zXV9lChoBmgJaA9DCNkmFY11JXJAlIaUUpRoFU0TAWgWR0CRYwfozN2UdX2UKGgGaAloD0MI9Bd6xCgcckCUhpRSlGgVTWQBaBZHQJFkOGUOd5J1fZQoaAZoCWgPQwhL6gQ00SVwQJSGlFKUaBVNnQFoFkdAkWR7nPmganV9lChoBmgJaA9DCJKumXzzZ3FAlIaUUpRoFU1iAWgWR0CRZebKA8SxdX2UKGgGaAloD0MIMj7MXranckCUhpRSlGgVTQkCaBZHQJFmkRlHz6J1fZQoaAZoCWgPQwhCk8SS8gdtQJSGlFKUaBVNWQFoFkdAkWfEKqn3tnV9lChoBmgJaA9DCCUFFsCUEXFAlIaUUpRoFU1AAWgWR0CRaAHdGiHqdX2UKGgGaAloD0MIB5s6j8qucUCUhpRSlGgVTWUBaBZHQJFovEzfrKN1fZQoaAZoCWgPQwi5T44CRM1MQJSGlFKUaBVL5GgWR0CRaTFdLQHBdX2UKGgGaAloD0MIcf+R6VA1cECUhpRSlGgVTQ4BaBZHQJFpiBSUC7t1fZQoaAZoCWgPQwh8SPjeX3RxQJSGlFKUaBVNHAFoFkdAkWsPm9xp+XV9lChoBmgJaA9DCHB87ZkljW1AlIaUUpRoFU3EAWgWR0CRbI+gUUO/dX2UKGgGaAloD0MIGF+0x8tZcUCUhpRSlGgVTRwBaBZHQJFtdng5zYF1fZQoaAZoCWgPQwh1H4DU5npwQJSGlFKUaBVNZAFoFkdAkW/UqlP8AXV9lChoBmgJaA9DCH/Bbtg2KHFAlIaUUpRoFU1eAWgWR0CRcEMtsenydX2UKGgGaAloD0MIyxEykOcpcUCUhpRSlGgVTSgBaBZHQJFw2CQLeAN1fZQoaAZoCWgPQwjSyOcVz55xQJSGlFKUaBVNMAFoFkdAkXDyojv/i3V9lChoBmgJaA9DCAfTMHxEcnBAlIaUUpRoFU0mAWgWR0CRcuS00FbFdX2UKGgGaAloD0MI71NVaKAmb0CUhpRSlGgVTT0BaBZHQJFzNNL127p1fZQoaAZoCWgPQwiEEfsEkBRxQJSGlFKUaBVNEAFoFkdAkXOA5R0lq3V9lChoBmgJaA9DCLt+wW6Y6nJAlIaUUpRoFU0nAWgWR0CRdTdd3SrpdX2UKGgGaAloD0MIgsmNImsvbkCUhpRSlGgVTbEBaBZHQJF1OURnOB11fZQoaAZoCWgPQwggDDz33gdzQJSGlFKUaBVNJQFoFkdAkXWUlJHy3HV9lChoBmgJaA9DCFaDMLd7+25AlIaUUpRoFU0gAWgWR0CRdbpH7P6bdX2UKGgGaAloD0MIYRvxZDcEcUCUhpRSlGgVTXQBaBZHQJF3Dspobn51fZQoaAZoCWgPQwiKq8q+KwNxQJSGlFKUaBVNUQFoFkdAkXjzzVc2SHV9lChoBmgJaA9DCBx4tdzZVHBAlIaUUpRoFU1FAWgWR0CRetf9xZMddX2UKGgGaAloD0MIo3a/CnBDcECUhpRSlGgVTR0BaBZHQJF7usIVuaZ1fZQoaAZoCWgPQwgapyGqcOlvQJSGlFKUaBVNfgFoFkdAkXxwlfJFLHV9lChoBmgJaA9DCFwea0YGy25AlIaUUpRoFU07AWgWR0CRfKbzshPkdX2UKGgGaAloD0MIv4HJjaIhckCUhpRSlGgVTRUBaBZHQJF+UVymygR1fZQoaAZoCWgPQwj2fqMd9xlxQJSGlFKUaBVNHwFoFkdAkX50K/mDDnV9lChoBmgJaA9DCGqlEMglwGRAlIaUUpRoFU3oA2gWR0CRf51e0G/vdX2UKGgGaAloD0MIBfwaSQI1bECUhpRSlGgVTXUBaBZHQJGAGs+3Yth1fZQoaAZoCWgPQwhT51HxfxFvQJSGlFKUaBVNgAFoFkdAkYBvQjUutnV9lChoBmgJaA9DCHeE04JXqXFAlIaUUpRoFU0dAWgWR0CRgPff4yoGdX2UKGgGaAloD0MIwha7fVZcbkCUhpRSlGgVTV8BaBZHQJGBeJTER8N1fZQoaAZoCWgPQwgKv9TPG4pvQJSGlFKUaBVNQwFoFkdAkYHzUy57PnV9lChoBmgJaA9DCFXCE3r9U3NAlIaUUpRoFU1DAWgWR0CRgfTd+G47dX2UKGgGaAloD0MIZhah2AqpbkCUhpRSlGgVTSgBaBZHQJGCtrSE12t1fZQoaAZoCWgPQwh2GJP+3utwQJSGlFKUaBVNYQFoFkdAkYNJooNNJ3V9lChoBmgJaA9DCJBmLJpOX3JAlIaUUpRoFU1GAWgWR0CRhVHqeK8+dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2b.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14e86fc45f470a4c44fe551266fed838694709deeb77585881bcd217180ccf58
3
+ size 144042
ppo-LunarLander-v2b/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2b/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f973d235dd0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f973d235e60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f973d235ef0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f973d235f80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f973d23c050>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f973d23c0e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f973d23c170>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f973d23c200>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f973d23c290>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f973d23c320>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f973d23c3b0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f973d27bd20>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651966673.0150166,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALM3Eb28Kuc+JcwBvX94g76CplC7R3tFvQAAAAAAAAAAsAR4vtZGij9TH+E9axucvlKwGr7V7FA+AAAAAAAAAAAAkni9nIUXPoTyAj0j73G+doe8vf7P8LwAAAAAAAAAAJpKub003m4++s6vPUn2jr40h2o8BRd0vQAAAAAAAAAA8/HvvVGF6D5w5lk8I+eKvuXfnb3LrnS8AAAAAAAAAACaL688C+4jP71GZL5mAW2+FOPrva7Ubr0AAAAAAAAAACbF2z1qZyc/Jh14vsZyeL51MqO9moirvQAAAAAAAAAAc3THvUaW5z4mFCk+HTOOvmVLSjxVuCS8AAAAAAAAAABNWCE9A6inP2rR4T7myP6+A0M7va5gkL0AAAAAAAAAADMfEz3RmNw+Z9Q7vsaQiL4t0RC+taXSuwAAAAAAAAAATTdAvVKrgLuO5/S6jd2FPPEEu7y98mU9AACAPwAAgD/NjJe59sQvuvggjzU8YD4wETbXOULns7QAAIA/AACAPzMJRD0U4Oq6kFSMurkRcjxQZ/e78K9TPQAAgD8AAIA/ZnW4vZcFCz+/hYc9AkGLvuQLTz33IZa9AAAAAAAAAACanaY7/ThyP3hhrj1dhJS+GZJMu8uLtT0AAAAAAAAAALPmLL02NAu8rX1/O1bVrjyVD2a9ooeQPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaoe/JitzckCUhpRSlIwBbJRNFgGMAXSUR0CRCKlGgBcSdX2UKGgGaAloD0MIx2MGKuMNRUCUhpRSlGgVS/JoFkdAkQjl/2Cd0HV9lChoBmgJaA9DCNieWRIgjnFAlIaUUpRoFU1HAWgWR0CRCRFdszl+dX2UKGgGaAloD0MIvM0bJwXOcECUhpRSlGgVTXoBaBZHQJEKf37DVH51fZQoaAZoCWgPQwgxW7IqAphxQJSGlFKUaBVNXQFoFkdAkQqqRp1zQ3V9lChoBmgJaA9DCEM4ZtmTcG9AlIaUUpRoFU06AWgWR0CRH5UxVQyidX2UKGgGaAloD0MIzo5U3/n1PkCUhpRSlGgVS9xoFkdAkSIuXmeUZHV9lChoBmgJaA9DCOF5qdiYXW9AlIaUUpRoFU1KAWgWR0CRIkcYIjW1dX2UKGgGaAloD0MI1GUxsbmlcECUhpRSlGgVTS0BaBZHQJEjD+4smOV1fZQoaAZoCWgPQwhAbVSnA7lAQJSGlFKUaBVNBwFoFkdAkSUiHM2WIHV9lChoBmgJaA9DCH3rw3oj0nBAlIaUUpRoFU0qAmgWR0CRJYCxeLNwdX2UKGgGaAloD0MISE4mbhVHbECUhpRSlGgVTTIBaBZHQJEloT4+KTB1fZQoaAZoCWgPQwhRpPs5BfNIQJSGlFKUaBVL8mgWR0CRJ4ajvd/KdX2UKGgGaAloD0MIvqPGhNggcUCUhpRSlGgVTSoBaBZHQJEoETakAPx1fZQoaAZoCWgPQwj203/W/C9xQJSGlFKUaBVNMQFoFkdAkSgoOtnwonV9lChoBmgJaA9DCN9wH7m1w25AlIaUUpRoFU1eAWgWR0CRKKHWSU1RdX2UKGgGaAloD0MIixnh7UHPb0CUhpRSlGgVTVMBaBZHQJEo2K4x1xN1fZQoaAZoCWgPQwhuwVJdgBNwQJSGlFKUaBVNawFoFkdAkSkIR7JGOXV9lChoBmgJaA9DCOY+OQoQR29AlIaUUpRoFU1kAWgWR0CRKb8Sf16FdX2UKGgGaAloD0MI7rCJzFzHb0CUhpRSlGgVTXQBaBZHQJEpz7ALy+Z1fZQoaAZoCWgPQwhM32sIDkxyQJSGlFKUaBVNQQFoFkdAkSv0pqh11XV9lChoBmgJaA9DCHeC/dd5iHBAlIaUUpRoFU0MAWgWR0CRLIEv0yxidX2UKGgGaAloD0MIdNNmnAZWb0CUhpRSlGgVTSgBaBZHQJEuY3HaN+91fZQoaAZoCWgPQwikwthCEDlvQJSGlFKUaBVNWAFoFkdAkS+keQuEmXV9lChoBmgJaA9DCDFhNCvbBUJAlIaUUpRoFUvkaBZHQJEv6IvalDZ1fZQoaAZoCWgPQwimJsEbku9xQJSGlFKUaBVNMgFoFkdAkTFV6eGwinV9lChoBmgJaA9DCFSsGoT5GnBAlIaUUpRoFU1dAWgWR0CRMyqaw2VFdX2UKGgGaAloD0MIP1WFBmLKckCUhpRSlGgVTSgBaBZHQJEznKQq7RR1fZQoaAZoCWgPQwjgoSjQJyRyQJSGlFKUaBVNgAFoFkdAkTRrKq4pdHV9lChoBmgJaA9DCOf7qfGSCXJAlIaUUpRoFU05AWgWR0CRNO1JUYKqdX2UKGgGaAloD0MIUrgeheuNbkCUhpRSlGgVTR8BaBZHQJE1Q//vOQh1fZQoaAZoCWgPQwjye5v+bJhyQJSGlFKUaBVNDwFoFkdAkTd4XO4XoHV9lChoBmgJaA9DCCvAd5v3/3BAlIaUUpRoFU11AWgWR0CRN6+m3vx6dX2UKGgGaAloD0MIxhUXR2XAcECUhpRSlGgVTR0BaBZHQJE4si/wiJR1fZQoaAZoCWgPQwi/uipQCyduQJSGlFKUaBVNtgFoFkdAkTmZbD/EO3V9lChoBmgJaA9DCPZE14UfxnBAlIaUUpRoFU2ZAWgWR0CROkSQYDT0dX2UKGgGaAloD0MIZohjXVzfbUCUhpRSlGgVTScBaBZHQJE7FH09QoF1fZQoaAZoCWgPQwhkBFQ4gvxsQJSGlFKUaBVN0gFoFkdAkTuq7yxzJnV9lChoBmgJaA9DCHzuBPuvQG5AlIaUUpRoFU0bAWgWR0CRPUeAd4mkdX2UKGgGaAloD0MIi4o4neR3b0CUhpRSlGgVTS0BaBZHQJE/1dqtYCB1fZQoaAZoCWgPQwgIqkavRixwQJSGlFKUaBVNfAFoFkdAkT/aG5+Yt3V9lChoBmgJaA9DCGmn5nLDenFAlIaUUpRoFU15AWgWR0CRP/oh6jWTdX2UKGgGaAloD0MIZD+LpYjBcUCUhpRSlGgVTTIBaBZHQJFAYlIEr5J1fZQoaAZoCWgPQwgMBWwHYx5xQJSGlFKUaBVNOgFoFkdAkUHNSZSeiHV9lChoBmgJaA9DCMMpc/PN+HBAlIaUUpRoFU1DAWgWR0CRQnbxVhkRdX2UKGgGaAloD0MI+dnIdVNcc0CUhpRSlGgVTVoBaBZHQJFCnxNIsiB1fZQoaAZoCWgPQwi37XvUX4ptQJSGlFKUaBVNIgFoFkdAkUNlQZXMhXV9lChoBmgJaA9DCHNjesKSknBAlIaUUpRoFU0zAWgWR0CRQ9a8Hv+gdX2UKGgGaAloD0MIb/Wc9P6RcECUhpRSlGgVTUEBaBZHQJFFgxesxPB1fZQoaAZoCWgPQwid2a7QBw9iQJSGlFKUaBVN6ANoFkdAkUYIaDPGAHV9lChoBmgJaA9DCAjpKXIISHNAlIaUUpRoFU0qAWgWR0CRRh7eEZivdX2UKGgGaAloD0MIveDTnDzqbECUhpRSlGgVTUsBaBZHQJFGrcpLEk11fZQoaAZoCWgPQwhwfO2ZpT5rQJSGlFKUaBVNcAFoFkdAkV3hKtga33V9lChoBmgJaA9DCKGjVS1prnBAlIaUUpRoFU2ZAWgWR0CRXxgXMyJsdX2UKGgGaAloD0MIMLyS5LmSRUCUhpRSlGgVS+poFkdAkV9sFINEw3V9lChoBmgJaA9DCOrouBoZw3JAlIaUUpRoFU09AWgWR0CRYMsenyd4dX2UKGgGaAloD0MIdQXbiGd9cECUhpRSlGgVTVcBaBZHQJFhiPbO/tZ1fZQoaAZoCWgPQwhI/fUKSxVyQJSGlFKUaBVNYAFoFkdAkWHOUY8+zXV9lChoBmgJaA9DCNkmFY11JXJAlIaUUpRoFU0TAWgWR0CRYwfozN2UdX2UKGgGaAloD0MI9Bd6xCgcckCUhpRSlGgVTWQBaBZHQJFkOGUOd5J1fZQoaAZoCWgPQwhL6gQ00SVwQJSGlFKUaBVNnQFoFkdAkWR7nPmganV9lChoBmgJaA9DCJKumXzzZ3FAlIaUUpRoFU1iAWgWR0CRZebKA8SxdX2UKGgGaAloD0MIMj7MXranckCUhpRSlGgVTQkCaBZHQJFmkRlHz6J1fZQoaAZoCWgPQwhCk8SS8gdtQJSGlFKUaBVNWQFoFkdAkWfEKqn3tnV9lChoBmgJaA9DCCUFFsCUEXFAlIaUUpRoFU1AAWgWR0CRaAHdGiHqdX2UKGgGaAloD0MIB5s6j8qucUCUhpRSlGgVTWUBaBZHQJFovEzfrKN1fZQoaAZoCWgPQwi5T44CRM1MQJSGlFKUaBVL5GgWR0CRaTFdLQHBdX2UKGgGaAloD0MIcf+R6VA1cECUhpRSlGgVTQ4BaBZHQJFpiBSUC7t1fZQoaAZoCWgPQwh8SPjeX3RxQJSGlFKUaBVNHAFoFkdAkWsPm9xp+XV9lChoBmgJaA9DCHB87ZkljW1AlIaUUpRoFU3EAWgWR0CRbI+gUUO/dX2UKGgGaAloD0MIGF+0x8tZcUCUhpRSlGgVTRwBaBZHQJFtdng5zYF1fZQoaAZoCWgPQwh1H4DU5npwQJSGlFKUaBVNZAFoFkdAkW/UqlP8AXV9lChoBmgJaA9DCH/Bbtg2KHFAlIaUUpRoFU1eAWgWR0CRcEMtsenydX2UKGgGaAloD0MIyxEykOcpcUCUhpRSlGgVTSgBaBZHQJFw2CQLeAN1fZQoaAZoCWgPQwjSyOcVz55xQJSGlFKUaBVNMAFoFkdAkXDyojv/i3V9lChoBmgJaA9DCAfTMHxEcnBAlIaUUpRoFU0mAWgWR0CRcuS00FbFdX2UKGgGaAloD0MI71NVaKAmb0CUhpRSlGgVTT0BaBZHQJFzNNL127p1fZQoaAZoCWgPQwiEEfsEkBRxQJSGlFKUaBVNEAFoFkdAkXOA5R0lq3V9lChoBmgJaA9DCLt+wW6Y6nJAlIaUUpRoFU0nAWgWR0CRdTdd3SrpdX2UKGgGaAloD0MIgsmNImsvbkCUhpRSlGgVTbEBaBZHQJF1OURnOB11fZQoaAZoCWgPQwggDDz33gdzQJSGlFKUaBVNJQFoFkdAkXWUlJHy3HV9lChoBmgJaA9DCFaDMLd7+25AlIaUUpRoFU0gAWgWR0CRdbpH7P6bdX2UKGgGaAloD0MIYRvxZDcEcUCUhpRSlGgVTXQBaBZHQJF3Dspobn51fZQoaAZoCWgPQwiKq8q+KwNxQJSGlFKUaBVNUQFoFkdAkXjzzVc2SHV9lChoBmgJaA9DCBx4tdzZVHBAlIaUUpRoFU1FAWgWR0CRetf9xZMddX2UKGgGaAloD0MIo3a/CnBDcECUhpRSlGgVTR0BaBZHQJF7usIVuaZ1fZQoaAZoCWgPQwgapyGqcOlvQJSGlFKUaBVNfgFoFkdAkXxwlfJFLHV9lChoBmgJaA9DCFwea0YGy25AlIaUUpRoFU07AWgWR0CRfKbzshPkdX2UKGgGaAloD0MIv4HJjaIhckCUhpRSlGgVTRUBaBZHQJF+UVymygR1fZQoaAZoCWgPQwj2fqMd9xlxQJSGlFKUaBVNHwFoFkdAkX50K/mDDnV9lChoBmgJaA9DCGqlEMglwGRAlIaUUpRoFU3oA2gWR0CRf51e0G/vdX2UKGgGaAloD0MIBfwaSQI1bECUhpRSlGgVTXUBaBZHQJGAGs+3Yth1fZQoaAZoCWgPQwhT51HxfxFvQJSGlFKUaBVNgAFoFkdAkYBvQjUutnV9lChoBmgJaA9DCHeE04JXqXFAlIaUUpRoFU0dAWgWR0CRgPff4yoGdX2UKGgGaAloD0MIwha7fVZcbkCUhpRSlGgVTV8BaBZHQJGBeJTER8N1fZQoaAZoCWgPQwgKv9TPG4pvQJSGlFKUaBVNQwFoFkdAkYHzUy57PnV9lChoBmgJaA9DCFXCE3r9U3NAlIaUUpRoFU1DAWgWR0CRgfTd+G47dX2UKGgGaAloD0MIZhah2AqpbkCUhpRSlGgVTSgBaBZHQJGCtrSE12t1fZQoaAZoCWgPQwh2GJP+3utwQJSGlFKUaBVNYQFoFkdAkYNJooNNJ3V9lChoBmgJaA9DCJBmLJpOX3JAlIaUUpRoFU1GAWgWR0CRhVHqeK8+dWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2b/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95f70d0f3e9896c44061ff79f3086482fa3fe4ee028a8515c4e91fa21260aed9
3
+ size 84829
ppo-LunarLander-v2b/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2e04266b779a56c3abf1c70bc1e3e55093012521e4170c728e43a268128830a
3
+ size 43201
ppo-LunarLander-v2b/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2b/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0c49225f7acaf2bc65ee0bc6a687a73e55df195cdc6a8346b61e54dda227fde
3
+ size 188257
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 252.83609113411472, "std_reward": 18.70582174963603, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T23:57:02.475909"}