davidrd123
commited on
Commit
•
83cebd8
1
Parent(s):
11324c5
Upload PPO LunarLander-v2 trained agent, 1st try, 1000000 steps
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2b.zip +3 -0
- ppo-LunarLander-v2b/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2b/data +94 -0
- ppo-LunarLander-v2b/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2b/policy.pth +3 -0
- ppo-LunarLander-v2b/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2b/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 252.84 +/- 18.71
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f973d235dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f973d235e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f973d235ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f973d235f80>", "_build": "<function ActorCriticPolicy._build at 0x7f973d23c050>", "forward": "<function ActorCriticPolicy.forward at 0x7f973d23c0e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f973d23c170>", "_predict": "<function ActorCriticPolicy._predict at 0x7f973d23c200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f973d23c290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f973d23c320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f973d23c3b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f973d27bd20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651966673.0150166, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALM3Eb28Kuc+JcwBvX94g76CplC7R3tFvQAAAAAAAAAAsAR4vtZGij9TH+E9axucvlKwGr7V7FA+AAAAAAAAAAAAkni9nIUXPoTyAj0j73G+doe8vf7P8LwAAAAAAAAAAJpKub003m4++s6vPUn2jr40h2o8BRd0vQAAAAAAAAAA8/HvvVGF6D5w5lk8I+eKvuXfnb3LrnS8AAAAAAAAAACaL688C+4jP71GZL5mAW2+FOPrva7Ubr0AAAAAAAAAACbF2z1qZyc/Jh14vsZyeL51MqO9moirvQAAAAAAAAAAc3THvUaW5z4mFCk+HTOOvmVLSjxVuCS8AAAAAAAAAABNWCE9A6inP2rR4T7myP6+A0M7va5gkL0AAAAAAAAAADMfEz3RmNw+Z9Q7vsaQiL4t0RC+taXSuwAAAAAAAAAATTdAvVKrgLuO5/S6jd2FPPEEu7y98mU9AACAPwAAgD/NjJe59sQvuvggjzU8YD4wETbXOULns7QAAIA/AACAPzMJRD0U4Oq6kFSMurkRcjxQZ/e78K9TPQAAgD8AAIA/ZnW4vZcFCz+/hYc9AkGLvuQLTz33IZa9AAAAAAAAAACanaY7/ThyP3hhrj1dhJS+GZJMu8uLtT0AAAAAAAAAALPmLL02NAu8rX1/O1bVrjyVD2a9ooeQPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaoe/JitzckCUhpRSlIwBbJRNFgGMAXSUR0CRCKlGgBcSdX2UKGgGaAloD0MIx2MGKuMNRUCUhpRSlGgVS/JoFkdAkQjl/2Cd0HV9lChoBmgJaA9DCNieWRIgjnFAlIaUUpRoFU1HAWgWR0CRCRFdszl+dX2UKGgGaAloD0MIvM0bJwXOcECUhpRSlGgVTXoBaBZHQJEKf37DVH51fZQoaAZoCWgPQwgxW7IqAphxQJSGlFKUaBVNXQFoFkdAkQqqRp1zQ3V9lChoBmgJaA9DCEM4ZtmTcG9AlIaUUpRoFU06AWgWR0CRH5UxVQyidX2UKGgGaAloD0MIzo5U3/n1PkCUhpRSlGgVS9xoFkdAkSIuXmeUZHV9lChoBmgJaA9DCOF5qdiYXW9AlIaUUpRoFU1KAWgWR0CRIkcYIjW1dX2UKGgGaAloD0MI1GUxsbmlcECUhpRSlGgVTS0BaBZHQJEjD+4smOV1fZQoaAZoCWgPQwhAbVSnA7lAQJSGlFKUaBVNBwFoFkdAkSUiHM2WIHV9lChoBmgJaA9DCH3rw3oj0nBAlIaUUpRoFU0qAmgWR0CRJYCxeLNwdX2UKGgGaAloD0MISE4mbhVHbECUhpRSlGgVTTIBaBZHQJEloT4+KTB1fZQoaAZoCWgPQwhRpPs5BfNIQJSGlFKUaBVL8mgWR0CRJ4ajvd/KdX2UKGgGaAloD0MIvqPGhNggcUCUhpRSlGgVTSoBaBZHQJEoETakAPx1fZQoaAZoCWgPQwj203/W/C9xQJSGlFKUaBVNMQFoFkdAkSgoOtnwonV9lChoBmgJaA9DCN9wH7m1w25AlIaUUpRoFU1eAWgWR0CRKKHWSU1RdX2UKGgGaAloD0MIixnh7UHPb0CUhpRSlGgVTVMBaBZHQJEo2K4x1xN1fZQoaAZoCWgPQwhuwVJdgBNwQJSGlFKUaBVNawFoFkdAkSkIR7JGOXV9lChoBmgJaA9DCOY+OQoQR29AlIaUUpRoFU1kAWgWR0CRKb8Sf16FdX2UKGgGaAloD0MI7rCJzFzHb0CUhpRSlGgVTXQBaBZHQJEpz7ALy+Z1fZQoaAZoCWgPQwhM32sIDkxyQJSGlFKUaBVNQQFoFkdAkSv0pqh11XV9lChoBmgJaA9DCHeC/dd5iHBAlIaUUpRoFU0MAWgWR0CRLIEv0yxidX2UKGgGaAloD0MIdNNmnAZWb0CUhpRSlGgVTSgBaBZHQJEuY3HaN+91fZQoaAZoCWgPQwikwthCEDlvQJSGlFKUaBVNWAFoFkdAkS+keQuEmXV9lChoBmgJaA9DCDFhNCvbBUJAlIaUUpRoFUvkaBZHQJEv6IvalDZ1fZQoaAZoCWgPQwimJsEbku9xQJSGlFKUaBVNMgFoFkdAkTFV6eGwinV9lChoBmgJaA9DCFSsGoT5GnBAlIaUUpRoFU1dAWgWR0CRMyqaw2VFdX2UKGgGaAloD0MIP1WFBmLKckCUhpRSlGgVTSgBaBZHQJEznKQq7RR1fZQoaAZoCWgPQwjgoSjQJyRyQJSGlFKUaBVNgAFoFkdAkTRrKq4pdHV9lChoBmgJaA9DCOf7qfGSCXJAlIaUUpRoFU05AWgWR0CRNO1JUYKqdX2UKGgGaAloD0MIUrgeheuNbkCUhpRSlGgVTR8BaBZHQJE1Q//vOQh1fZQoaAZoCWgPQwjye5v+bJhyQJSGlFKUaBVNDwFoFkdAkTd4XO4XoHV9lChoBmgJaA9DCCvAd5v3/3BAlIaUUpRoFU11AWgWR0CRN6+m3vx6dX2UKGgGaAloD0MIxhUXR2XAcECUhpRSlGgVTR0BaBZHQJE4si/wiJR1fZQoaAZoCWgPQwi/uipQCyduQJSGlFKUaBVNtgFoFkdAkTmZbD/EO3V9lChoBmgJaA9DCPZE14UfxnBAlIaUUpRoFU2ZAWgWR0CROkSQYDT0dX2UKGgGaAloD0MIZohjXVzfbUCUhpRSlGgVTScBaBZHQJE7FH09QoF1fZQoaAZoCWgPQwhkBFQ4gvxsQJSGlFKUaBVN0gFoFkdAkTuq7yxzJnV9lChoBmgJaA9DCHzuBPuvQG5AlIaUUpRoFU0bAWgWR0CRPUeAd4mkdX2UKGgGaAloD0MIi4o4neR3b0CUhpRSlGgVTS0BaBZHQJE/1dqtYCB1fZQoaAZoCWgPQwgIqkavRixwQJSGlFKUaBVNfAFoFkdAkT/aG5+Yt3V9lChoBmgJaA9DCGmn5nLDenFAlIaUUpRoFU15AWgWR0CRP/oh6jWTdX2UKGgGaAloD0MIZD+LpYjBcUCUhpRSlGgVTTIBaBZHQJFAYlIEr5J1fZQoaAZoCWgPQwgMBWwHYx5xQJSGlFKUaBVNOgFoFkdAkUHNSZSeiHV9lChoBmgJaA9DCMMpc/PN+HBAlIaUUpRoFU1DAWgWR0CRQnbxVhkRdX2UKGgGaAloD0MI+dnIdVNcc0CUhpRSlGgVTVoBaBZHQJFCnxNIsiB1fZQoaAZoCWgPQwi37XvUX4ptQJSGlFKUaBVNIgFoFkdAkUNlQZXMhXV9lChoBmgJaA9DCHNjesKSknBAlIaUUpRoFU0zAWgWR0CRQ9a8Hv+gdX2UKGgGaAloD0MIb/Wc9P6RcECUhpRSlGgVTUEBaBZHQJFFgxesxPB1fZQoaAZoCWgPQwid2a7QBw9iQJSGlFKUaBVN6ANoFkdAkUYIaDPGAHV9lChoBmgJaA9DCAjpKXIISHNAlIaUUpRoFU0qAWgWR0CRRh7eEZivdX2UKGgGaAloD0MIveDTnDzqbECUhpRSlGgVTUsBaBZHQJFGrcpLEk11fZQoaAZoCWgPQwhwfO2ZpT5rQJSGlFKUaBVNcAFoFkdAkV3hKtga33V9lChoBmgJaA9DCKGjVS1prnBAlIaUUpRoFU2ZAWgWR0CRXxgXMyJsdX2UKGgGaAloD0MIMLyS5LmSRUCUhpRSlGgVS+poFkdAkV9sFINEw3V9lChoBmgJaA9DCOrouBoZw3JAlIaUUpRoFU09AWgWR0CRYMsenyd4dX2UKGgGaAloD0MIdQXbiGd9cECUhpRSlGgVTVcBaBZHQJFhiPbO/tZ1fZQoaAZoCWgPQwhI/fUKSxVyQJSGlFKUaBVNYAFoFkdAkWHOUY8+zXV9lChoBmgJaA9DCNkmFY11JXJAlIaUUpRoFU0TAWgWR0CRYwfozN2UdX2UKGgGaAloD0MI9Bd6xCgcckCUhpRSlGgVTWQBaBZHQJFkOGUOd5J1fZQoaAZoCWgPQwhL6gQ00SVwQJSGlFKUaBVNnQFoFkdAkWR7nPmganV9lChoBmgJaA9DCJKumXzzZ3FAlIaUUpRoFU1iAWgWR0CRZebKA8SxdX2UKGgGaAloD0MIMj7MXranckCUhpRSlGgVTQkCaBZHQJFmkRlHz6J1fZQoaAZoCWgPQwhCk8SS8gdtQJSGlFKUaBVNWQFoFkdAkWfEKqn3tnV9lChoBmgJaA9DCCUFFsCUEXFAlIaUUpRoFU1AAWgWR0CRaAHdGiHqdX2UKGgGaAloD0MIB5s6j8qucUCUhpRSlGgVTWUBaBZHQJFovEzfrKN1fZQoaAZoCWgPQwi5T44CRM1MQJSGlFKUaBVL5GgWR0CRaTFdLQHBdX2UKGgGaAloD0MIcf+R6VA1cECUhpRSlGgVTQ4BaBZHQJFpiBSUC7t1fZQoaAZoCWgPQwh8SPjeX3RxQJSGlFKUaBVNHAFoFkdAkWsPm9xp+XV9lChoBmgJaA9DCHB87ZkljW1AlIaUUpRoFU3EAWgWR0CRbI+gUUO/dX2UKGgGaAloD0MIGF+0x8tZcUCUhpRSlGgVTRwBaBZHQJFtdng5zYF1fZQoaAZoCWgPQwh1H4DU5npwQJSGlFKUaBVNZAFoFkdAkW/UqlP8AXV9lChoBmgJaA9DCH/Bbtg2KHFAlIaUUpRoFU1eAWgWR0CRcEMtsenydX2UKGgGaAloD0MIyxEykOcpcUCUhpRSlGgVTSgBaBZHQJFw2CQLeAN1fZQoaAZoCWgPQwjSyOcVz55xQJSGlFKUaBVNMAFoFkdAkXDyojv/i3V9lChoBmgJaA9DCAfTMHxEcnBAlIaUUpRoFU0mAWgWR0CRcuS00FbFdX2UKGgGaAloD0MI71NVaKAmb0CUhpRSlGgVTT0BaBZHQJFzNNL127p1fZQoaAZoCWgPQwiEEfsEkBRxQJSGlFKUaBVNEAFoFkdAkXOA5R0lq3V9lChoBmgJaA9DCLt+wW6Y6nJAlIaUUpRoFU0nAWgWR0CRdTdd3SrpdX2UKGgGaAloD0MIgsmNImsvbkCUhpRSlGgVTbEBaBZHQJF1OURnOB11fZQoaAZoCWgPQwggDDz33gdzQJSGlFKUaBVNJQFoFkdAkXWUlJHy3HV9lChoBmgJaA9DCFaDMLd7+25AlIaUUpRoFU0gAWgWR0CRdbpH7P6bdX2UKGgGaAloD0MIYRvxZDcEcUCUhpRSlGgVTXQBaBZHQJF3Dspobn51fZQoaAZoCWgPQwiKq8q+KwNxQJSGlFKUaBVNUQFoFkdAkXjzzVc2SHV9lChoBmgJaA9DCBx4tdzZVHBAlIaUUpRoFU1FAWgWR0CRetf9xZMddX2UKGgGaAloD0MIo3a/CnBDcECUhpRSlGgVTR0BaBZHQJF7usIVuaZ1fZQoaAZoCWgPQwgapyGqcOlvQJSGlFKUaBVNfgFoFkdAkXxwlfJFLHV9lChoBmgJaA9DCFwea0YGy25AlIaUUpRoFU07AWgWR0CRfKbzshPkdX2UKGgGaAloD0MIv4HJjaIhckCUhpRSlGgVTRUBaBZHQJF+UVymygR1fZQoaAZoCWgPQwj2fqMd9xlxQJSGlFKUaBVNHwFoFkdAkX50K/mDDnV9lChoBmgJaA9DCGqlEMglwGRAlIaUUpRoFU3oA2gWR0CRf51e0G/vdX2UKGgGaAloD0MIBfwaSQI1bECUhpRSlGgVTXUBaBZHQJGAGs+3Yth1fZQoaAZoCWgPQwhT51HxfxFvQJSGlFKUaBVNgAFoFkdAkYBvQjUutnV9lChoBmgJaA9DCHeE04JXqXFAlIaUUpRoFU0dAWgWR0CRgPff4yoGdX2UKGgGaAloD0MIwha7fVZcbkCUhpRSlGgVTV8BaBZHQJGBeJTER8N1fZQoaAZoCWgPQwgKv9TPG4pvQJSGlFKUaBVNQwFoFkdAkYHzUy57PnV9lChoBmgJaA9DCFXCE3r9U3NAlIaUUpRoFU1DAWgWR0CRgfTd+G47dX2UKGgGaAloD0MIZhah2AqpbkCUhpRSlGgVTSgBaBZHQJGCtrSE12t1fZQoaAZoCWgPQwh2GJP+3utwQJSGlFKUaBVNYQFoFkdAkYNJooNNJ3V9lChoBmgJaA9DCJBmLJpOX3JAlIaUUpRoFU1GAWgWR0CRhVHqeK8+dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2b.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14e86fc45f470a4c44fe551266fed838694709deeb77585881bcd217180ccf58
|
3 |
+
size 144042
|
ppo-LunarLander-v2b/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2b/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f973d235dd0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f973d235e60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f973d235ef0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f973d235f80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f973d23c050>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f973d23c0e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f973d23c170>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f973d23c200>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f973d23c290>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f973d23c320>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f973d23c3b0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f973d27bd20>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651966673.0150166,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALM3Eb28Kuc+JcwBvX94g76CplC7R3tFvQAAAAAAAAAAsAR4vtZGij9TH+E9axucvlKwGr7V7FA+AAAAAAAAAAAAkni9nIUXPoTyAj0j73G+doe8vf7P8LwAAAAAAAAAAJpKub003m4++s6vPUn2jr40h2o8BRd0vQAAAAAAAAAA8/HvvVGF6D5w5lk8I+eKvuXfnb3LrnS8AAAAAAAAAACaL688C+4jP71GZL5mAW2+FOPrva7Ubr0AAAAAAAAAACbF2z1qZyc/Jh14vsZyeL51MqO9moirvQAAAAAAAAAAc3THvUaW5z4mFCk+HTOOvmVLSjxVuCS8AAAAAAAAAABNWCE9A6inP2rR4T7myP6+A0M7va5gkL0AAAAAAAAAADMfEz3RmNw+Z9Q7vsaQiL4t0RC+taXSuwAAAAAAAAAATTdAvVKrgLuO5/S6jd2FPPEEu7y98mU9AACAPwAAgD/NjJe59sQvuvggjzU8YD4wETbXOULns7QAAIA/AACAPzMJRD0U4Oq6kFSMurkRcjxQZ/e78K9TPQAAgD8AAIA/ZnW4vZcFCz+/hYc9AkGLvuQLTz33IZa9AAAAAAAAAACanaY7/ThyP3hhrj1dhJS+GZJMu8uLtT0AAAAAAAAAALPmLL02NAu8rX1/O1bVrjyVD2a9ooeQPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaoe/JitzckCUhpRSlIwBbJRNFgGMAXSUR0CRCKlGgBcSdX2UKGgGaAloD0MIx2MGKuMNRUCUhpRSlGgVS/JoFkdAkQjl/2Cd0HV9lChoBmgJaA9DCNieWRIgjnFAlIaUUpRoFU1HAWgWR0CRCRFdszl+dX2UKGgGaAloD0MIvM0bJwXOcECUhpRSlGgVTXoBaBZHQJEKf37DVH51fZQoaAZoCWgPQwgxW7IqAphxQJSGlFKUaBVNXQFoFkdAkQqqRp1zQ3V9lChoBmgJaA9DCEM4ZtmTcG9AlIaUUpRoFU06AWgWR0CRH5UxVQyidX2UKGgGaAloD0MIzo5U3/n1PkCUhpRSlGgVS9xoFkdAkSIuXmeUZHV9lChoBmgJaA9DCOF5qdiYXW9AlIaUUpRoFU1KAWgWR0CRIkcYIjW1dX2UKGgGaAloD0MI1GUxsbmlcECUhpRSlGgVTS0BaBZHQJEjD+4smOV1fZQoaAZoCWgPQwhAbVSnA7lAQJSGlFKUaBVNBwFoFkdAkSUiHM2WIHV9lChoBmgJaA9DCH3rw3oj0nBAlIaUUpRoFU0qAmgWR0CRJYCxeLNwdX2UKGgGaAloD0MISE4mbhVHbECUhpRSlGgVTTIBaBZHQJEloT4+KTB1fZQoaAZoCWgPQwhRpPs5BfNIQJSGlFKUaBVL8mgWR0CRJ4ajvd/KdX2UKGgGaAloD0MIvqPGhNggcUCUhpRSlGgVTSoBaBZHQJEoETakAPx1fZQoaAZoCWgPQwj203/W/C9xQJSGlFKUaBVNMQFoFkdAkSgoOtnwonV9lChoBmgJaA9DCN9wH7m1w25AlIaUUpRoFU1eAWgWR0CRKKHWSU1RdX2UKGgGaAloD0MIixnh7UHPb0CUhpRSlGgVTVMBaBZHQJEo2K4x1xN1fZQoaAZoCWgPQwhuwVJdgBNwQJSGlFKUaBVNawFoFkdAkSkIR7JGOXV9lChoBmgJaA9DCOY+OQoQR29AlIaUUpRoFU1kAWgWR0CRKb8Sf16FdX2UKGgGaAloD0MI7rCJzFzHb0CUhpRSlGgVTXQBaBZHQJEpz7ALy+Z1fZQoaAZoCWgPQwhM32sIDkxyQJSGlFKUaBVNQQFoFkdAkSv0pqh11XV9lChoBmgJaA9DCHeC/dd5iHBAlIaUUpRoFU0MAWgWR0CRLIEv0yxidX2UKGgGaAloD0MIdNNmnAZWb0CUhpRSlGgVTSgBaBZHQJEuY3HaN+91fZQoaAZoCWgPQwikwthCEDlvQJSGlFKUaBVNWAFoFkdAkS+keQuEmXV9lChoBmgJaA9DCDFhNCvbBUJAlIaUUpRoFUvkaBZHQJEv6IvalDZ1fZQoaAZoCWgPQwimJsEbku9xQJSGlFKUaBVNMgFoFkdAkTFV6eGwinV9lChoBmgJaA9DCFSsGoT5GnBAlIaUUpRoFU1dAWgWR0CRMyqaw2VFdX2UKGgGaAloD0MIP1WFBmLKckCUhpRSlGgVTSgBaBZHQJEznKQq7RR1fZQoaAZoCWgPQwjgoSjQJyRyQJSGlFKUaBVNgAFoFkdAkTRrKq4pdHV9lChoBmgJaA9DCOf7qfGSCXJAlIaUUpRoFU05AWgWR0CRNO1JUYKqdX2UKGgGaAloD0MIUrgeheuNbkCUhpRSlGgVTR8BaBZHQJE1Q//vOQh1fZQoaAZoCWgPQwjye5v+bJhyQJSGlFKUaBVNDwFoFkdAkTd4XO4XoHV9lChoBmgJaA9DCCvAd5v3/3BAlIaUUpRoFU11AWgWR0CRN6+m3vx6dX2UKGgGaAloD0MIxhUXR2XAcECUhpRSlGgVTR0BaBZHQJE4si/wiJR1fZQoaAZoCWgPQwi/uipQCyduQJSGlFKUaBVNtgFoFkdAkTmZbD/EO3V9lChoBmgJaA9DCPZE14UfxnBAlIaUUpRoFU2ZAWgWR0CROkSQYDT0dX2UKGgGaAloD0MIZohjXVzfbUCUhpRSlGgVTScBaBZHQJE7FH09QoF1fZQoaAZoCWgPQwhkBFQ4gvxsQJSGlFKUaBVN0gFoFkdAkTuq7yxzJnV9lChoBmgJaA9DCHzuBPuvQG5AlIaUUpRoFU0bAWgWR0CRPUeAd4mkdX2UKGgGaAloD0MIi4o4neR3b0CUhpRSlGgVTS0BaBZHQJE/1dqtYCB1fZQoaAZoCWgPQwgIqkavRixwQJSGlFKUaBVNfAFoFkdAkT/aG5+Yt3V9lChoBmgJaA9DCGmn5nLDenFAlIaUUpRoFU15AWgWR0CRP/oh6jWTdX2UKGgGaAloD0MIZD+LpYjBcUCUhpRSlGgVTTIBaBZHQJFAYlIEr5J1fZQoaAZoCWgPQwgMBWwHYx5xQJSGlFKUaBVNOgFoFkdAkUHNSZSeiHV9lChoBmgJaA9DCMMpc/PN+HBAlIaUUpRoFU1DAWgWR0CRQnbxVhkRdX2UKGgGaAloD0MI+dnIdVNcc0CUhpRSlGgVTVoBaBZHQJFCnxNIsiB1fZQoaAZoCWgPQwi37XvUX4ptQJSGlFKUaBVNIgFoFkdAkUNlQZXMhXV9lChoBmgJaA9DCHNjesKSknBAlIaUUpRoFU0zAWgWR0CRQ9a8Hv+gdX2UKGgGaAloD0MIb/Wc9P6RcECUhpRSlGgVTUEBaBZHQJFFgxesxPB1fZQoaAZoCWgPQwid2a7QBw9iQJSGlFKUaBVN6ANoFkdAkUYIaDPGAHV9lChoBmgJaA9DCAjpKXIISHNAlIaUUpRoFU0qAWgWR0CRRh7eEZivdX2UKGgGaAloD0MIveDTnDzqbECUhpRSlGgVTUsBaBZHQJFGrcpLEk11fZQoaAZoCWgPQwhwfO2ZpT5rQJSGlFKUaBVNcAFoFkdAkV3hKtga33V9lChoBmgJaA9DCKGjVS1prnBAlIaUUpRoFU2ZAWgWR0CRXxgXMyJsdX2UKGgGaAloD0MIMLyS5LmSRUCUhpRSlGgVS+poFkdAkV9sFINEw3V9lChoBmgJaA9DCOrouBoZw3JAlIaUUpRoFU09AWgWR0CRYMsenyd4dX2UKGgGaAloD0MIdQXbiGd9cECUhpRSlGgVTVcBaBZHQJFhiPbO/tZ1fZQoaAZoCWgPQwhI/fUKSxVyQJSGlFKUaBVNYAFoFkdAkWHOUY8+zXV9lChoBmgJaA9DCNkmFY11JXJAlIaUUpRoFU0TAWgWR0CRYwfozN2UdX2UKGgGaAloD0MI9Bd6xCgcckCUhpRSlGgVTWQBaBZHQJFkOGUOd5J1fZQoaAZoCWgPQwhL6gQ00SVwQJSGlFKUaBVNnQFoFkdAkWR7nPmganV9lChoBmgJaA9DCJKumXzzZ3FAlIaUUpRoFU1iAWgWR0CRZebKA8SxdX2UKGgGaAloD0MIMj7MXranckCUhpRSlGgVTQkCaBZHQJFmkRlHz6J1fZQoaAZoCWgPQwhCk8SS8gdtQJSGlFKUaBVNWQFoFkdAkWfEKqn3tnV9lChoBmgJaA9DCCUFFsCUEXFAlIaUUpRoFU1AAWgWR0CRaAHdGiHqdX2UKGgGaAloD0MIB5s6j8qucUCUhpRSlGgVTWUBaBZHQJFovEzfrKN1fZQoaAZoCWgPQwi5T44CRM1MQJSGlFKUaBVL5GgWR0CRaTFdLQHBdX2UKGgGaAloD0MIcf+R6VA1cECUhpRSlGgVTQ4BaBZHQJFpiBSUC7t1fZQoaAZoCWgPQwh8SPjeX3RxQJSGlFKUaBVNHAFoFkdAkWsPm9xp+XV9lChoBmgJaA9DCHB87ZkljW1AlIaUUpRoFU3EAWgWR0CRbI+gUUO/dX2UKGgGaAloD0MIGF+0x8tZcUCUhpRSlGgVTRwBaBZHQJFtdng5zYF1fZQoaAZoCWgPQwh1H4DU5npwQJSGlFKUaBVNZAFoFkdAkW/UqlP8AXV9lChoBmgJaA9DCH/Bbtg2KHFAlIaUUpRoFU1eAWgWR0CRcEMtsenydX2UKGgGaAloD0MIyxEykOcpcUCUhpRSlGgVTSgBaBZHQJFw2CQLeAN1fZQoaAZoCWgPQwjSyOcVz55xQJSGlFKUaBVNMAFoFkdAkXDyojv/i3V9lChoBmgJaA9DCAfTMHxEcnBAlIaUUpRoFU0mAWgWR0CRcuS00FbFdX2UKGgGaAloD0MI71NVaKAmb0CUhpRSlGgVTT0BaBZHQJFzNNL127p1fZQoaAZoCWgPQwiEEfsEkBRxQJSGlFKUaBVNEAFoFkdAkXOA5R0lq3V9lChoBmgJaA9DCLt+wW6Y6nJAlIaUUpRoFU0nAWgWR0CRdTdd3SrpdX2UKGgGaAloD0MIgsmNImsvbkCUhpRSlGgVTbEBaBZHQJF1OURnOB11fZQoaAZoCWgPQwggDDz33gdzQJSGlFKUaBVNJQFoFkdAkXWUlJHy3HV9lChoBmgJaA9DCFaDMLd7+25AlIaUUpRoFU0gAWgWR0CRdbpH7P6bdX2UKGgGaAloD0MIYRvxZDcEcUCUhpRSlGgVTXQBaBZHQJF3Dspobn51fZQoaAZoCWgPQwiKq8q+KwNxQJSGlFKUaBVNUQFoFkdAkXjzzVc2SHV9lChoBmgJaA9DCBx4tdzZVHBAlIaUUpRoFU1FAWgWR0CRetf9xZMddX2UKGgGaAloD0MIo3a/CnBDcECUhpRSlGgVTR0BaBZHQJF7usIVuaZ1fZQoaAZoCWgPQwgapyGqcOlvQJSGlFKUaBVNfgFoFkdAkXxwlfJFLHV9lChoBmgJaA9DCFwea0YGy25AlIaUUpRoFU07AWgWR0CRfKbzshPkdX2UKGgGaAloD0MIv4HJjaIhckCUhpRSlGgVTRUBaBZHQJF+UVymygR1fZQoaAZoCWgPQwj2fqMd9xlxQJSGlFKUaBVNHwFoFkdAkX50K/mDDnV9lChoBmgJaA9DCGqlEMglwGRAlIaUUpRoFU3oA2gWR0CRf51e0G/vdX2UKGgGaAloD0MIBfwaSQI1bECUhpRSlGgVTXUBaBZHQJGAGs+3Yth1fZQoaAZoCWgPQwhT51HxfxFvQJSGlFKUaBVNgAFoFkdAkYBvQjUutnV9lChoBmgJaA9DCHeE04JXqXFAlIaUUpRoFU0dAWgWR0CRgPff4yoGdX2UKGgGaAloD0MIwha7fVZcbkCUhpRSlGgVTV8BaBZHQJGBeJTER8N1fZQoaAZoCWgPQwgKv9TPG4pvQJSGlFKUaBVNQwFoFkdAkYHzUy57PnV9lChoBmgJaA9DCFXCE3r9U3NAlIaUUpRoFU1DAWgWR0CRgfTd+G47dX2UKGgGaAloD0MIZhah2AqpbkCUhpRSlGgVTSgBaBZHQJGCtrSE12t1fZQoaAZoCWgPQwh2GJP+3utwQJSGlFKUaBVNYQFoFkdAkYNJooNNJ3V9lChoBmgJaA9DCJBmLJpOX3JAlIaUUpRoFU1GAWgWR0CRhVHqeK8+dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2b/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95f70d0f3e9896c44061ff79f3086482fa3fe4ee028a8515c4e91fa21260aed9
|
3 |
+
size 84829
|
ppo-LunarLander-v2b/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2e04266b779a56c3abf1c70bc1e3e55093012521e4170c728e43a268128830a
|
3 |
+
size 43201
|
ppo-LunarLander-v2b/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2b/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0c49225f7acaf2bc65ee0bc6a687a73e55df195cdc6a8346b61e54dda227fde
|
3 |
+
size 188257
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 252.83609113411472, "std_reward": 18.70582174963603, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T23:57:02.475909"}
|